用户名: 密码: 验证码:
氧化应激对动物消化道结构与功能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化应激是人类和动物范围极广的综合病症的主要原因之一。这些综合病症包括肠炎、肠蠕动紊乱、各种急性炎症,诸如创伤愈合过程中出现的炎症、心血管疾病、神经紊乱及一些与代谢有关的疾病等。其中对消化道的氧化损伤在动物生产中发生率极高,由于慢性应激状态下,表征不易察觉,危害性极大。消化道是动物体内营养素的消化、吸收和代谢的主要器官,因此,过量的自由基极易诱发胃肠疾病及消化道功能紊乱。本课题拟建立体外和体内氧化应激模型,选用大鼠和仔猪为试验对象,从消化道发育、结构、功能、功能激素基因表达等多方面研究自由基对动物胃肠功能的调控及氧化干预机制。
     1.自由基对离体大鼠小肠上皮细胞的损伤及干预研究
     选用5只初生未经哺乳的Wistar大鼠,于当日屠宰取出小肠,并进行小肠上皮细胞分离。细胞体外培养72h后,建立黄嘌呤/黄嘌呤氧化酶(X/XO)体外氧化损伤模型,细胞随机分为七组:对照组A加入等量的高温灭菌的三蒸水,氧化损伤B、C、D各组加入X (10μmol/L),并分别加入XO(10,40,70 U/L),抗氧化E、F、G各组加入X(10μmol/L)和谷胱甘肽(GSH,1.5μmol/ml),并分别加入XO(10,40,70U/L)。应激培养24h后,通过测定细胞活力、DNA片段化、凋亡率及细胞内外氧化还原指标,研究氧化应激对离体小肠上皮细胞增值、功能、凋亡的影响以及对细胞的氧化损伤干预机制。结果表明,不同剂量的X/XO均可导致离体大鼠IEC氧化应激的发生。在相对轻度的氧化应激条件下(XO,10U/L),离体大鼠IEC增殖明显降低,而抗氧化酶合成出现应激响应,其中SOD的活性略高于对照组(P>0.05),适度的氧化应激可能选择性的刺激氧化酶的合成。高活性的XO(40、70 U/L)导致细胞膜氧化脂质化程度显著提高,细胞膜通透性增强,细胞内Ca2+浓度的明显增加(P<0.05);随着添加的XO活性提高,DNA片段化和细胞凋亡率均呈上升趋势。添加GSH提高了离体大鼠IEC抗氧化酶活性及的总抗氧化能力;与相应的X/XO单独处理组比较,GSH显著降低了细胞内钙离子浓度和细胞凋亡率;同时GSH显著降低了XO(10, 40 U/L)两剂量组脂质氧化程度(P<0.05)。上述结果表明:X/XO系统导致离体培养大鼠IEC氧化损伤和细胞凋亡,轻度的氧化应激即可显著的降低小肠上皮细胞的增殖,外源性GSH能够有效抑制诱发性氧化应激对IEC造成的氧化损伤。
     2.半胱胺对吲哚美辛诱发的胃粘膜氧化损伤及其能量代谢影响
     选用45只体重200-250克的雄性SD大鼠。试验随机分为3组,对照组(A):灌服生理盐水1ml/只;单纯应激组(B):灌服吲哚美辛(IND,45mg/kg体重);抗氧化组(C):灌服半胱胺(CS,100mg/kg体重),1小时后灌服IND(45mg/kg体重)。分别在6、12、24小时3个时相点屠宰,分别测定:胃液PH值,血浆生长抑素浓度,胃粘膜溃疡指数(UI),胃壁细胞H+,K+-ATP酶活性,前列腺素E2(PGE2),黄嘌呤氧化酶(XO)活性,抗氧化指标(SOD, GSH, CAT),MDA含量,胃粘膜组织中及其线粒体内腺苷酸(ATP/ADP/AMP)含量和诱导型一氧化氮合成酶(iNOS)的基因表达。结果表明:灌服IND的大鼠胃泌酸能力迅速增强,6h即出现胃粘膜损伤,胃粘膜UI随应激时间延长而明显增加(P<0.05);CS在试验后期显著抑制了胃泌酸,同时降低了UI。IND处理大鼠提高了胃粘膜中H+,K+-ATP和黄嘌呤氧化酶(XO)酶活性,CS有效的抑制了H+,K+-ATP酶和XO活性的提高,但与对照组比较各时相点仍然均有提高。氧化损伤导致血浆中生长抑素的浓度迅速提高,CS使生长抑素在24h降低到生理水平。灌服IND后,各时相点胃粘膜PGE2含量均出现显著降低(P<0.05),CS有效的抑制PGE2下降,但仍然低于对照组。IND导致胃粘膜组织的氧化损伤,脂质化明显增强,CS对粘膜起到显著抗氧化保护作用,降低了脂质化程度。氧化应激发生时胃粘膜和胃粘膜线粒体中ATP、ADP、AMP、总腺苷酸池含量及能荷值均有明显降低,CS处理后使得ADP含量和能荷值与对照组差异不明显(P>0.05);其它各项指标在线粒体中含量显著高于损伤组,但在胃粘膜中与损伤组比较差异不显著。在24h时相点,IND处理组大鼠胃粘膜中iNOS mRNA基因表达量显著高于对照组和CS处理组;CS抑制了大鼠iNOS mRNA基因表达量,但仍然显著高于对照组(P<0.05)。综上所述,急性的氧化应激导致胃粘膜的氧化损伤,影响了胃正常的分泌功能和结构完整性,组织内氧化还原状态失衡,粘膜内的能量代谢紊乱,能荷降低,促使iNOS mRNA基因表达增强,抗氧化剂(CS)有效的抑制了氧化应激,显著抑制了部分氧化指标的变化。
     3.自由基对实验性肠炎仔猪肠道结构、功能调控作用研究
     选取21±2日龄的断奶仔猪50头,利用右旋糖苷硫酸钠(DSS)诱导仔猪肠炎模型,随机分为5个处理组,1组,基础日粮,饮用自来水;2组,基础日粮,饮用含4%DSS水;3组,基础日粮+0.03%FeSO4+含4%DSS的水;4组,基础日粮+0.2%FeSO4+含4% DSS水;5组,基础日粮+1%FeSO4+含4%DSS的水,试验期10天。测定仔猪生产性能、腹泻率、消化率、肠道菌群、肠道通透性、和吸收率、脂质氧化程度、肠粘膜自由基和抗氧化指标,并进行肠道形态观察。结果表明:在诱导性肠炎仔猪日粮中添加铁前后,肠道粘膜出现不同程度的氧化应激,这和持续的应激减弱了抗氧化防御体系的功能有关,自由基在炎症加剧中起到重要作用。低剂量的铁可以适当提高仔猪的生产性能和消化率,但对治疗腹泻效果不显著(P>0.05)。过量的铁加重了实验性肠炎断奶仔猪肠道粘膜的损伤,加剧了肠炎的症状,致使消化率、日增重显著降低,微生物菌群失衡。高铁导致的过氧化产物MDA增多,脂质氧化降低了仔猪肠道吸收和屏障功能,证明适度剂量的补铁对缺铁和患消化道炎症的仔猪是有利的。
     4.高能日粮对仔猪消化器官发育、功能及氧化还原状态的影响
     试验选取21±2日龄的三元断奶仔猪30头,随机分为3组。1组,基础日粮(含1.5%豆油);2组,5%豆油日粮;3组,10%豆油日粮。试验期21天。测定仔猪生产性能,营养消化率,消化器官重量,血清中总胆固醇(TC)、甘油三脂(TG)血浆丙二醛(MDA)、超氧化物歧化酶(SOD)及皮质醇浓度,肠粘膜中消化酶活性、IGF-1和GHr基因表达;以研究高能日粮诱发的慢性应激对仔猪生长效果及其可能机制。结果表明:添加5%油脂组显著提高了仔猪的生产性能,包括ADG、FI,F/G三项指标,而添加10%油脂组与对照组比较无明显差异(P>0. 05 )。不同剂量油脂添加对小肠重量及脂肪酶的活性均显著增加(P<0.05),10%油脂组小肠粘膜重量反而降低;添加油脂对其它器官重及肠道蛋白酶活性无影响;均提高了仔猪血液中的TC、TG浓度,并随油脂浓度增加呈上升趋势。而5%油脂组CP、EE消化率均显著高10%油脂组。10%油脂组诱发血液中皮质醇和MDA显著提高,抗氧化酶SOD活性明显下降。5%油脂组小肠粘膜GHR mRNA表达量略提高,而添加10%油脂却出现明显下降(P<0.05);添加油脂剂量对IGF-1基因表达没有影响。综上所述,可以推断,高能饲料诱发仔猪氧化应激,对仔猪的生长产生负效应,随着时间的延长这种副作用越显著。
Gastrointestinal tract is main digestive, absorbtive and metabolic organ in animal. It is difficult to be conscious of gastrointestinal disfunction induced by moderate stress, Oxidative stress of gastrointestinal mucosa is involved in inflammatory bowel disease, and appropriate antioxidant may modulate intestinal redox status. The aim of our experiment was to study the effect and regulation mechanism of free radical and antioxidant on gastrointestinal growth, structure, function, hormone exudation and expression of gene.
     1. Oxidative injury of free radical on the rat IECs, and protection by GSH in vitro
     The objective of the this study was to investigate the direct oxidative injury of the different dose xanthine and xanthine oxidase (X/XO) on rat intestinal epithelial cells (IECs), and protection by glutathione(GSH)in vitro. IECs were maintained in culture medium for 72 h. Subsequently, culture cells were divided into 7 groups, and cultured in the presence and absence of xanthine (10μmol/L), xanthine oxidase (10, 40, 70 U/L) or GSH (1.5μmol/ml) for 24h. The oxidative injury of reactive oxygen species on IECs were evaluated by studying production of malondialdehyde (MDA), DNA fragmentation, total antioxidant capacity (TRAP), proliferation, activity of superoxide dismutase (SOD) and catalase (CAT), the level of Ca2+ and apoptosis of IECs. The results show the proliferation of IECs was significantly inhibited, but the activity of SOD and the value of total antioxidant capacity (TRAP) was slightly increased at low activity of XO (10U/L). However, the oxidative stress significantly inhibited cell proliferation, decreased TRAP, increased lipid peroxidation, concentration of Ca2+ and DNA fragment at XO (40,70 U/L). Both of DNA fragment and apoptosis of IECs increased gradually with the increase of XO concentration (P<0.05). Presence of GSH remarkably enhanced TRAP value (P<0.05), but failed to affect the activity of SOD corresponding X/XO (10 U/L) alone-treated. The reduction in lipid peroxidation and DNA damage and the increase in cell proliferation were also observed in IECs. These results strongly suggest that IECs exposed to X/XO could induce its oxidative stress and injury, GSH could provide significant protection against oxidative injury of IECs by scavenging ROS in vitro. Moderate oxidative stress might selectively stimulated the synthesis of antioxidant enzyme, but significantly decreased cell proliferation.
     2. Regulation of of CS on IND-induced gastric oxidative injury and energy metabolism in rats
     To study the gastroprotective effect of cysteamine (CS) on indomethacin-induced gastric ulcers in rats. A total of 45 male, SD rats weighing 180–220 g, have been used for the experiments. The Forty-five were randomly divided into three groups of 15 each:Control (A), stress (B) oral Indomethacin (IND, 45mg/kg weight); antioxidation (C), oral IND (45mg/kg weight) after oral CS (100mg/kg weight) for 1h. The concent of endogenous prostaglandin E2 (PGE2), the changes of ulcer index, the activities of H+,K+-ATPase and XO, the antioxidative index, the expressions of iNOS mRNA, somatostatin (SS) and the size of adenylic acid pool(ATP, ADP, AMP) in gastric mucosa tissue or mitochondria at postinjury 6, 12, 24h. The results showed that gastric lesions were significantly reduced by CS as compared with the group B. IND significantly damaged gastric mucosa excretive function and integrality, decreased the levels of SOD, glutathione (GSH) and the size of adenylic acid (AMP, ADP, ATP) in gastric mucosal mitochondria. However, CAT and lipid peroxidation (LPO) were increased corresponding the control (P< 0.05). The administration of CS reversed the trend, inducing a significant increase of SOD, GSH and total adenylic acid, a reduction of LPO and SS in gastric mucosa, and inhibitied the expressions of iNOS mRNA compared to the group B. Based on above results, it was concluded that the oxidative stress damged gastric normal structure and function, furthermore induced gastric energy metabolism disfunction. Gastroprotective effect of cysteamine can be attributed to its reducing effect on the oxidative damage.
     3. Regulation of oral iron on the intestinal structure and function in piglets with DSS -induced colitis
     To estimate the effect of oral iron on the intestinal function and oxidative redox status in piglets with dextran sulphate sodium (DSS)-induced colitis, fifty 21-day-old weaned piglets with an average initial weight of 4.80±0.76kg were randomly divided into five groups of ten each. The piglets received regular diet and water, or four diets with 0, 0.03, 0.2 or 1% FeSO4·2H2O and water with 4% DSS, respectively, for 10 days. Growth performance, digestibility, intestinal microflora, permeability, absorptive capacity, lipid peroxidation, free radical, antioxidation index and intestinal structure of piglet were determined. We observed oral iron induced oxidative stress in colonic mucosa, and a markedly higher lactulose/mannitol (Lac/Man) excretion ratio and lower serum concentration of D-xylose in Fe 0.2 and 1% supplementated piglets than piglets on DSS alone, but not in Fe 0.03% supplemented piglets. Supplementation of oral iron resulted in intestinal villus injury in piglets, and dose-response manner. The activities of SOD, CAT and glutathione peroxidase (GPx) significantly increased in the DSS group compared with the control group (P< 0.05). Iron supplementation significantly decreased the activities of GPx and CAT, as was vitamin E content, but not SOD. Furthermore, excess iron significantly increased the production of MDA and hydroperoxides (HP), in a dose-response related manner. In conclusion, excess iron supplementation caused injury on intestinal mucosa in piglets with colitis, these might be involved in the antioxidant defence system weaken in condition which the oxidative stress was stronger and sustained. Thus, lower iron supplementation in diarrhetic and iron-deficient piglets might be beneficial.
     4. Effect of high-caloric feeding on peptic growth, function and redox of piglet
     A total of 30 weaned piglets of an average initial body weight of 5.53±0.53kg, weaned at 21±2 day of age, were allocated to three dietary treatments of ten each in a randomized complete block design. 1) control group: regular diet; 2) 5% grease; 3) 10% grease. The piglets were fed the respective diets for 21 days. To study the mechanism and effect of the high caloric feeding-induced chronic stress on the growth performance, digestibility, the weight of peptic and intestinal mucosa; the content of MDA, total cholesterol (TC), total glycerol(TG) and cortisol in serum, activities of SOD and digestive enzyme, the expression of GHr and IGF-1 were determined. The results showed that 5% grease significantly increased the performance of piglets when compared with the piglets on control diet (P<0.05), but not in 10% gaease group (P>0. 05). Different dose of grease didn’t increase significantly the intestinal weight and the activity of lipase, but not in protease and the weight of other peptic; on the contrary, administration of 10% grease decreased the weight of intestinal mucosa. The level of TC and TG increased with the development of additive grease. The digestibility of CP and EE were increased in the 5% grease group when compared with the 10% grease group, so was the expression of GHR mRNA. However, 10% grease significantly increased the level of cortisol and MDA in serum, reduced activity of SOD and expression of GHR mRNA. Addition of grease had no effect on the expression of IGF-1 mRNA in intestinal mucosa. In conclusion, the high-caloric feeding could cause chronic stress in piglets, induce considerable gastrointestinal side effects, in a time-response related manner.
引文
[1] Frei B, Stocker R, Ames BN. Small molecule antioxidants defenses in human extracellular fluids [M]. In: J.G. Scandalios (Editor). Molecular biology of free radical scavenging systems. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press, 1992, 23-45
    [2] Shlafer M, et al. Possible role for cytotoxic oxygen metabolites in the pathogenesis of cardeac ischemic injury [J]. Circulation, 1982,66:185
    [3] Halliwell B, Gutteridge JMC. Free radicals in biology and medicine [M]. Oxford: Oxford Science Publications. 1999, 105-245
    [4] Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease, an overview [J]. Methods Enzymol, 1990, 186:1-85
    [5] Urban T, Hurbain I, Urban M, Clement A, Housse B. Oxidants and antioxidants. Biological effects and therapeutic perspectives [J]. Ann Chir, 1995; 49:427–34
    [6] Manashi BD, Mark MBS, Case WBS. The acute and chronic stress-induced oxidative gastrointestinal injury in rats, and the protective ability of anovel grape seed proanthocyanidin extract [J]. Nutri Res, 2000, 19:1189-99
    [7]张宗玉,童坦君.衰老的分子机理[J].中华老年医学杂志,1993,12(2):122
    [8] Kaufmann JA, Bickford PC, Taglialatela G. Free radical-dependent chages in constitutive Nuclear factor kappa B in the aged hippocampus [J]. Neuroreport, 2002,13(15):1917-28
    [9]陈志宏,齐聪儒,杨松鹤等.器官衰老和自由基学说[J].承德医学院学报.2003,20(2):143-5
    [10] Nystrom T.The free-radical hypothesis of aging goes prok aryotic.Celluar and molexular lifesciences [J]: CMLS, 2003.60(7):1333-41
    [11]赵克然,杨粘军,曹道俊.氧自由基与临床[M].北京:中国医药出版社.2000,8-19
    [12] Cassino C, Ito K, Bader I, et al. Cigarette smoking and ozone-associated emergency department use for asthma by adults in New York City [J]. Am J Respir Crit Care Med, 1999, 159:1773-1779
    [13]刘宗平,王捍东,王凯等.现代动物营养代谢病学[M].北京:化学工业出版社.2003,273-4.
    [14] Moore FA.The role of the gastrointestinal tract in postinjury multiple organ failure [J]. Am J Surg, 1999,178(6):449-53
    [15] Farhadi A, Banan A, Fields J, et al. Intestinal barrier: an interface between health and disease [J]. J Gastroenterol Hepatol, 2003,18 (5):479-97
    [16] Schmitz H, Bamteyer C, Fromm M, et al. Utered fight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis [J]. Gastroenterologv, 1999,116(2):301-9
    [17] Naruhashi K, Tamai I, Li Q,et al. Experimental demoastnrtion of the unstirred water layer effect on drug transport in Cxco-2 cells [J].J Phann Sct, 2003,92(7):1502-8
    [18] Von Bultzingslowen I, Adlerberth I, Wold AE, et a1. Oral and intestinal microflora in 5-fluorouracil treated rats, translocatioti to cervical and mesenteric lymph nodes and effects of prohiotic bacteria [J].Oral Microbiol Inuuunn1, 2003,18(5):278-84
    [19] Wehkamp J, Schwind B, Herrlinger KR, et al. Innate immunity and colonic inflammation:enhanced expression of epithelial alpha-defensins [J]. Dig Dis Sci, 2002,47(6): 1349-55
    [20] Kucharzik T, Lugering A, Lugering V, et al. Characterization of M cell development during indomethacin-induced ileitis in rats [J]. Aliment Phamtacol Ther, 2000,14(2):247-256
    [21] Diehel LN, Liberati DM, Dvuchavsky SA, et al. Enterocyte apoptosis and barrier function are modulated by SIgA after exposure to bacteria and hypoxia/reozygenation [J]. Surgery, 2003,134(4),574-80
    [22] Yang H, Kiristioglu I, Fan Y, et al. Interferon-6arrunx exyression by intraepithelial lymphocytes results in a loss of epithelial barrier function in a model of total parenteral nutrition [J]. Ann Surg, 2002,236(2):226-34
    [23] Venkatraman A, Ramakrishan BS, Shaji RV, et al. Amelioration of dextran sulfate colitis by butyrate:role of heat shock protein 70 and NF-kappaB [J]. Am J Physiol Gastrointest Liver Phyeio1, 2003,285(1):177-84
    [24] Gauflin CP, Aguero G, Perligon G. Adjuvant effects of Lactobacillus casei added to a renutrition diet in a malnourished mouse model [J]. Bicxe11, 2002,26(1):35-48
    [25] Resta-Lenert S, Barrett KE. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC) [J]. Am J Clin Nutr, 2003,52(7):988-97
    [26] Isolauri E, Sutas Y, Kankaanpaa P, et al. Probiotics:effects on immunity [J]. Am J Clin Nutr, 2001,73(2 Suppl):444S-450S
    [27] Banan A. Zhang Y, Losurdo J, et al. Carbonylation and disassembly of the F-actin cytoskeleton inoxidant induced barrier dysfunction and its prevention by epidermal gowth factor and transforming growth factor alpha in a human colonic cell live [J].Gut, 2000,46(6):830-7
    [28] Mashimo H, Wu DC, Padolsky DK, et al. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor [J]. Sci, 1996,274 (5285):262-65
    [29] Furuta GT, Turner JR, Taylor CT, et al. Hypoxia-mducible factor 1-dependent induction of intestinal trefoil factor protects barrier function during hypoxia. Med. 2001,193(9):1027-34
    [30] Soldato PD, Foschi D, Benoni G, et al. Oxygen free radicals interact with indomethacin to cause gastro intestinal injury [J]. Agents and Actions, 1985, 17 (5/6) : 484-8
    [31] Pihan G, Regillo C, Szabo S. F ree radicals and lipid peroxidation in ethanol or aspirininduced gastric injury [J]. Dig Dis S ci, 1987, 32:1395-401
    [32] Kurose I, Fukumura D, M iura S, et al. Fluoragraphic study on the oxidative stress in the process of gastric mucosal injury: attenuating effect of vitamin E [J]. J Gastroenterol Hepatol, 1993, 8: 254-8
    [33] Yoshida M, Kitahora T, Wakabayashi G, et al. A ctive oxygen species in formation of acute gastric mucosal lesions induced by thermal injury in rats [J]. Dig Dis Sci, 1995, 40 (6):1306-10
    [34] Asanov ON, Khanevich MD, Shakh BN, et al. New possibilities of prevention of acute gastric and intestinal ulcers in peritonitis w ith drugs of anti-hypoxic and antioxidant action [J]. Klin Med (Mosk), 1991, 69 (7): 54-6
    [35] Tolmach DV, Chubenko SS, Zhdaniuk I. The correction of lipid peroxidation disorders in peptic ulcer patients [J]. V rach Delo, 1991, (2): 86-7
    [36] Morozov VP, Perelygin VG, Savranskii VM, et al. Lip id peroxidation in the blood and tissues of patients with peptic ulcer [J]. Klin Med (Mosk), 1992, 70 (2): 75-7
    [37] Salim AS. Oxygen-derived free radical scavengers: a new approach to the p roblem of refracto ry pep tic ulceration [J]. Med J Malaysia, 1993, 48 (4):392-6
    [38] Mutoh H, Hiraishi H, Ota S et al. Role of oxygen radicals in ethanol-induced damage to cultured gastricmucosal cells [J].Am J Physiol, 1990, 258:603-9
    [39] Hiraishi H, Terano A , Ota S, et al. Role for iron in reactive oxygen species mediated cytotoxicity to cultured rat gastric mucosal cells [J]. Am J P hysiol, 1991, 260: G556-63
    [40] Hiraishi H, Terano A , Ota S, et al. Oxygen metabo lite-induced cytotoxicity to cultured rat gastric mucosal cells [J]. Am J Physiol, 1987, 253:G40-8
    [40] Yajima N , Hiraishi H, Harada T. Protection of cultured rat gastric cells against oxidant stress by iron chelation [J]. Dig Dis Sci, 1995, 40 (4): 879-86
    [41] Minotti G, Aust SD. The requirement for iron (Ⅲ) in the intiation of lipid peroxidation by iron (Ⅱ) and hydrogen peroxide. J B iol Chem. 1987, 262:1098-104
    [42] Hiraishi H, Terano A, Razandi M, et al. Role of iron and superoxide in mediating hydrogen peroxide injury to cultured rat gastric cells [J]. Gastroenterol, 1993, 104: 780-8
    [43] Eppihimer MJ, Granger DN. Ischem ia/reperfussion-induced leukocyte-endothblial interaction inpostcapollary venules [J]. Shock.1997,8:16-25
    [44] Nishino T. The conversion of xanthine dehydrogenase to xanthine oxidase and the role the enzyme in reperfusion injury [J]. J Biochme, 1994, 116: 1-6
    [45] Sangstad OD. Role of xanthine oxidase and its inhibtor in hypoxia:reoxygenation injury [J]. Pediatrics, 1996,98: 103-7
    [46]刘春峰,袁壮.内脏缺血缺氧代谢障碍在SIRS和MODS中的作用[J].小儿急救.2000,7(4): 180-2
    [47] Boros M, Takaichi S, Hatanaka K. Ischemic time-dependent microvascular changes and reperfusion injury in the rat small intestine [J]. J S urg Res, 1995,59(2):311-20
    [48] Zimmerman BJ, Grangler DN: Oxygen free radicals and the gastrointestinal tract: Role in ischemia-reperfusion injury [J]. Hepatogastroenterology, 1994,41:337-42
    [49] Nilsson UA,Schoenberg MH,Aneman A,et al.Free radicals and pathogenesis during ischemia and reperfusion of the cat small intestine [J]. Gastroenterology, 1994,106(3):629-636
    [50] Mitsuoka H, Schmid-Schonbein GW. Mechanisms for blockade of in vivo activator production in the ischemic intestine and multiorgan failure [J]. Shock., 2000,14(5):522-7
    [51] Secchi A ,Ortanderl JM ,Schmidt W, et al. Effect of endotoxemia on hepatic portal and sinusoidal blood flow in rats [J]. J Surg Res, 2000,89 (1):26-30
    [52] Grisham MS, Granger DN, LsferBJ. Modulation of leukocyte-endothelial interations by reactive metabolites of oxgen and nitrogen relenace to ischemic heart disease [J]. Free Radic Biol Med,1998,25:404-33
    [53]杨铁群.自自基与疾病.临床病理生理学[M]:上海,上海医科大学出版社.1999,74-99
    [54] Yoshida M,Wakabayashi G, Kithora T, et al. Protextive effects of rebamipidene microcirculatory disturb on gastric induced by thermal injury in rat [J]. Gastroenterology,1998,114:G1399
    [55] Hisanaga T, Goto H, Arisawa T, et al. Implication of aging on nitric oxide synthase activity in the genesis of water immersion stress induced gastric lesion in rats [J]. Gastroenterology, 1988,114:G0612
    [56] Watanabe S, Takagi WA, Klhda K, et al.Helicobacter pylon-induced gastric mucosual cell injury by inducible nitri oxide sythase [J]. Gastroenterology,1998,114:G1340
    [57] Terano A, Hiraishi H, Ota S, et al. Role of superoxide and hydroxyradicals in rat gastric mucosal injury induced by ethanol [J]. Gastroenterol Jpn, 1989, 24:488-93
    [58] Vaananen PM, Meddings JB, Wallace JL. Role of oxygenderived free radicals in indomethacin-induced gastric injury [J]. Am J Physiol, 1991,261:G470-G475
    [59] Rokutan K,Teshima S,Nikawa T, et al.Reglation ofsuperoxide anion production by gastric surface epithelial cells in culture [J].Gastroenterology, 1998,114:G1082
    [60] Neilsen H, Andersen LP. Chemotactic activity of Helicobacter pylori sonicate for human polymorphonuclear leucocytes. and monocytes [J]. Gut,1992,33:738-42
    [61] Mooney C, Keenan J, Munster D, et al. Neutrophil activation by Helicobacter pylori [J]. Gut, 1991,32:853-7
    [62] Mai UEH, Perez-Perez GI, Wahl LM, et al. Soluble surface proteins from Helicobacter pylori activate monocytes/macrophages by a lipopolysaccharide-independent mechanism [J]. J Clin Invest, 1991;87:894-900
    [63] Davies GR, Simmonds NJ, Stevens TRS, et al. Helicobacter pylori stimulates antral mucosal reactive oxgen metabolite prodution in vivo [J]. Gut, 1994,35(2):79-185
    [64] Salim AS. Role of oxygen-derived free radical in mechanism of acute and chronic duodenal ulceration in the rat [J]. Dig Dis Sci, 1990,35(1):73-9
    [65] Davies GR, Simmonds NJ, Stevens TRS, et al. Helicobacter pylori stimulates antral mucosal reactive oxgen metabolite [J]. Gut, 1992,33(11):1467-72
    [66] Naito Y, Yoshikawa T, Yoneta T, et al. A new gastric-ulcer model in rats produced by ferrous iron and ascorbic-acid injection [J]. Digestion, 1995, 56:472-8
    [67] Salim AS.Role offree radical seavengem in the management af refractory duodenal ulceration.A new approaeh [J]. J Surg Res, 1994,56(1):45-52
    [68] Dyke GW, Craven JL, Hall R, et al. Effect of. vitamin C supplementation on gastric mucosal DNA damage [J]. Carcinogenesis, 1994,15(2):291-5.8-11
    [69] Baik S, Youn HS, Chung MH, et al. Increased oxidative DNA damage in helicobacter pylori-infected human gastric mucosa [J] .Cancer Research, 1996.56(6):1279-82
    [70] Kamiya H, Murata-Kamiya N, Koizume S, et al. 8-Hydroxyguanine(7,8-dihydro-8-oxoguanine) in hot spots of the c-Ha-ras gene. Effects of sequence contexts on mutation spectra [J]. Carcinogenesis, 1995,16, 883-9
    [71] Cerutti PA. Oxy-radicals and cancer [J]. Lancet, 1994, 344(8926):862-3
    [72] Keshavarzian A, Sedghi S, Kanofsky J. Excessive production of reative oxygen metabolites by inflamed colon: analysis by cheniluminescence probe [J]. Gastroenterology, 1992,103(1):177-85
    [73] Simmonds NJ, Allen RE, Stevens TR, et al. Chemilum inescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease [J]. Gastroenterology, 1992,103(1):186-96
    [74] Sedghi S Fields JZ, Klamut M, et al. Increased production of luminal enhanced chemiluminescence by the inflamed colonic mucosa in patients with ulcerative colitis [J]. Gut, 1993,34:1191-7
    [75] Salim AS. Gastric mucosal cytoprotection in the rat by scavenging oxygen-derived free radical [J]. J Lab Clin Med,1992,119(6):598-620
    [76] Pihan G, Regillo BA, Szabo S. Free radicals and lipid peroxidation in ethanol- or aspirin-induced gastric injury [J]. Dig Dis Sci , 1987; 32: 1395-401
    [77] Romani F, Vertemati M, Frangi M, et al. Effect of superoxide dismutase on liver ischemia-. reperfusion injury in the rat: A biochemical monitoring [J]. Eur. Surg Res, 1988, 20:335-40
    [78] Alarcon de la Lastra C, Nieto A, Martin MJ, et al. Gastric toxicity of racemic ketoprofen and itsenantiomers in rat: oxygen radical generation and COX expression [J]. Infl amm Res, 2002,51:51-7
    [79] Bandyopadhyay D, Biswas K, Bhattacharyya M, et al. Gastric toxicity and mucosal ulceration induced by oxygen-derived reactive species: protection by melatonin [J]. Curr Mol Med, 2001,1:501-13
    [80] Danese S, Cremonini F, Armuzzi A, et al. Helicobacter pylori CagA-positive strains affect oxygen free radicals generation by gastric mucosa [J]. Scand J Gastroenterol, 2001,36:247-50
    [81] Jung HK, Lee KE, Chu SH, et al. Reactive oxygen species activity, mucosal lipoperoxidation and glutathione in Helicobacter pylori-infected gastric mucosa [J]. J Gastroenterol Hepatol, 2001,16:1336-40
    [82] Kwiecien S, Brzozowski T, Konturek PC, et al. The role of reactive oxygen species and capsaicin-sensitive sensory nerves in the pathomechanisms of gastric ulcers induced by stress [J]. J Physiol Pharmacol, 2003,54:423-37
    [83] Kwiecien S, Brzozowski T, Konturek SJ. Effects of reactive oxygen species action on gastric mucosa in various models of mucosal injury [J]. J Physiol Pharmacol, 2002,53:39-50
    [84] Naito Y, Yoshikawa T. Reactive oxygen species and free radical reactions are involved in the pathogenesis of nonsteroidal anti-inflammatory drugs-induced gastric mucosal injury v. Nippon Rinsho, 2002, 60 Suppl 2:211-16
    [85] Bandyopadhyay D, Biswas K, Bhattacharyya M, et al. Involvement of reactive oxygen species in gastric ulceration: protection by melatonin [J]. Indian J Exp Biol, 2002,40:693-705
    [86] Lazaratos S, Irukayama-Tomobe Y, Miyauchi T, et al. Oxygen radicals mediate the final exacerbation of endothelin-1-induced gastric ulcer in rat [J]. Eur J Pharmacol, 2001,413:121-9
    [87] Vitor BE. Gastric injury indeced by water immersion stress: prevention by prostaglanden and the role of glutathione [J]. Curr Surg, 1988,1-2:20-2
    [88] Tarnasky PR, Livingston EH, Jacobs KM, et al. Role of oxyradicals in cold water immersion restraint-induced gastric mucosal injury in the rat [J]. Dig Dis Sci, 1990, 35: 173-7
    [89] Hallliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine [M], Oxford, 1999.
    [90] Cheeseman KH, Slater TF. An introduction to free radical. Biochemistry [J]. Brit Med Bull, 1993,49:481-493
    [91] Kondoh, K. Kamada, M. Kuronaga,et al. Antioxidant property of metallothionein in fasted mice [J]. Toxicology Letters, 2003, 143:301-306
    [92] Fabisiak JP, Borisenko GG, Liu SX, et al. Redox sensor function of metallothioneins [J]. Methods Enzymol, 2002, 353:268-281
    [93] Ebadi M, Leuschen MP, Elrefaey H, et al. The antioxidant properties of zinc and metallothionein [J], Neurochem. Int, 1996, 29(2):159-166
    [94]赵凤志,田德录.愈疡灵对大鼠诱发性十二指肠溃疡的保护作用及机理研究[J].中国中医基础医学杂志,1998,5:24-26
    [95] Samual Asfaha. Epithelial Dysffunction Follow aUout of Colitis ,paper for degree of PHD (2000)
    [96] Asfala S, Bell CJL, MacNaughton WK. Prolonged colinic epithelial hyproesponsiveness after volinitis:roleof inducible nitric oxide synthase [J]. Am J Physiol, 1999,276:703-71
    [97] Wargle TD, Hall L, Turnberg LA. Platelet activating factor: release from colonic mucosa on patients with ulcerative colitis and its effect on colinic secretion [J]. Gut, 1996,38(3):355-61
    [98] Pscheidl E, Schywalsky M, Tschaikowsky K, et al. Fish oilsupplemented parenteral diets normalize splanchnic blood flow and improve killing of translocated bacteria in a low-dose endotoxin rat model [J]. Crit Care Medn, 2000,28:1489-96
    [99] Ilaria P, Patrizia C, Valeri P. Intestinal motility disorder induced by free radicals: A new model mimicking oxidative stress in gut [J]. Pharmacological Research, 2002,46(6): 533-8
    [100]黎君友,吕艺,付小兵等.二胺氧化酶在创伤后肠道损伤中的变化及意义[J].中国危重病急救医学,2000,12:482-4
    [101] Evers BM, Small bowel. Sabiston textbook of surgery [M]: the biological basis of modern surgical practice. 16th ed. Philadelphia: W. B. Saunders Company, 2001, 873-916
    [102] Parekh D, Izukura M, Yoshinaga K, Townsend Jr CM, Thompson JC Endogenous somatostatin is an antitrophic factor for the gut and pancreas [J]. Digestion, 1990,46: 84
    [103] Ansaldo, Najle M, Luquet CM. Oxidative stress genenrated by diesel seawater contamination in the digestive glandof the antactic limpet nacella concinna [J]. Marine Environmental Research,. 2005,59(4):381-90
    [104]方允中,李文杰.自由基与酶[M].北京:科学出版社,1989:46-48
    [105] Helem Wiseman. Damage to DNA by relative and nitrogen species: role in inflammatory disease and nroression to cancer [J]. Biochem, 1996,4:17-29
    [106] T胡森,盛志勇,柳琪琳等.大鼠小肠缺血再灌流时肠内给予不同营养物对肠粘膜吸收功能和能量代谢的影响[J].中华医学杂志.2002,82:689-691
    [107] Hakahashi K, Park JH, Akiba Y, et al. Effects of overfeeding of protein and energy by force feeding on hepatic microsomal mixed function oxidase system in broiler chickens. Comp. Brioche [J]. Physiology, 1995,111A (3):379-84
    [108] Dandona P. Mohanty P. Ghanim H. et al. The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carboxylation [J]. J Clin Endocrinol Metab, 2001,86:335
    [109] Djuric Z, Virginia EU, Lilian N, et al. Plasma carotenoids, tocopherols, and antioxidant capacity in a 12-week intervention study to reduce fat and/or energy intakes [J]. Nutrition, 2003,19:244-9
    [110] Yousef MI, Hendy HA, El-Demerdash FM, et al. Dietary zinc deficiency induced-changes in the activity of enzymes and the levels of free radicals, lipids and protein electrophoretic behavior in growing rats [J]. Toxicology, 2002, 175:223-234
    [111] Patricia I. Oteiza MS. Clegg M, et al. Zinc deficiency induces oxidative stress and AP-1 activation in 3T3 cells [J]. Free Radical Biology & Medicine, 2000, 28(7):1091-1099
    [112] Amira A, Shaheen AA, El-Fattah A. Effect of dietary zinc on lipid peroxidation, glutathione, protein thiols levels and superoxide dismutase activity in rat tissues [J]. Int J Biochem Cell Bio, 1995, 27(1):89-95
    [113] Raul A. Wapnir. Zinc deficiency, malnutrition and the gastrointestinal tract [J]. J Nutr, 2000, 130:1388s-1392s
    [114]丁虹,彭仁琇,程路.高锌摄入对正常小鼠脏器抗氧化功能及一氧化氮含量的影响[J].卫生研究.1997,26(6):391-394
    [115] Srigiridhar K, Nair KM, Subramanian R, et al. Oral repletion of iron induces free radical mediated alterations in the gastrointestinal tract of rat [J]. Mol Cell Biochem, 2001, 219: 91-8
    [116] Casanueva E. Viteri FE. Iron and oxidative stress in pregnancy [J]. Nutr, 2003,133:1700S-8S
    [1] Richter C, Gogvadze V, Laffranchi R, et al. Oxidants in mitochondria: from physiology to diseases [J]. Biochim Biophys Acta, 1995,1271:67-74
    [2] Frei B, Stocker R, Ames BN. Small molecule antioxidants defenses in human extracellular fluids [M]. In: Scandalios, J. G., ed. Molecular biology of free radical scavenging systems: Cold Spring Harbor. NY: Cold Spring Harbor Laboratory Press. 1992, 23- 45
    [3] Fernandez V, Videla LA. Biochemical aspect of cellula antioxidant systems [J]. Biol Res, 1996, 29: 177-82
    [4] Lennon SV, Martin SJ, Cotter TG. Dose-dependent induction of apoptosis in human tumor cell lines by widely diverging stimuli [J]. Cell Prolif, 1991, 24: 203-14
    [5] Novogrodsky A, Ravid A, Rubin AL, et al. Hydroxy radical scavengers inhibit lymphocyte mitogenesis [J]. Proc Natl Acad Sci. USA, 1982, 79: 1171- 4
    [6] Urban T, Hurbain I, Urban M, et al. Oxidants and antioxidants. Biological effects and therapeutic perspectives [J]. Ann Chi Commun, 1995,49: 427-34
    [7] Manashi BD, Mark MBS, Case WBS. The acute and chronic stress-induced oxidative gastrointe- stinal injury in rats, and the protective ability of anovel grape seed proanthocyanidin extract [J]. Nutri Res, 2000,19:1189-99
    [8] Schachtschabel DO. Oxidativer Stress und Alter [M]. In: Kaiser J (ed) Autonomie und Kompetenz- Aspekte einer gerontologischen Herausforderung: Lit, Münster-Hamburg-London. 2002,119-27
    [9] Ahmed M. MohamadinB, Ashraf AN. Chloroacetonitrile-induced toxicity and oxidative stress in rat gastric epithelial cells [J]. Pharmacological Res, 1999, 40: 377-83
    [10] Nishino T. The conversion of xanthine dehydrogenase to xanthine oxidase and the role the enzyme in reperfusion injury [J]. J Biochme, (Tokyo). 1994, 116: 1-6
    [11] Manohar M, Balasubramannian KA. Antioxidant enzymes in rat gastrointestinal tract [J]. Indian J Biochem Biophy, 1986, 23:274-8.
    [12] Jaeschke H. Glutathione disulfide as an index of oxidant stress in rat liver during hupoxia [J]. Am J Physiol, 1990,258:499-505
    [13] Chow CK. Interrelationships of xellular antioxidant defense systems[M]. In: Chow CK,ditor. Cellular Antioxidant Defense Mechanisms: Boca Raton. FL: CRC Press. 1988,217-37
    [14] Hodes GR, Young MJ, Paul T, et al. How should xanthine oxidase -generated superoxide yields be measured [J]. Free Radical Biol Med, 2000,29: 434-41
    [15] Mosmann T. Rapid colorimetic assay for celluar growth and survival: Application to proliferation and cytotoxicity assay [J]. J Immunol Methods, 1983,65:55-63
    [16]朱立平,陈学清主编.免疫学常用实验方法[M].北京,人民军医出版社.2000
    [17] Seon JY, Young HK, Robert A. et al. Copper, zinc superoxide dismutase enhances DNA damage and mutagenicity induced by cysteine/iron [J]. Mutation Research, 2000,448:97-104
    [18] Kondoh M, Kamada K, Kuronaga M,et al. Antioxidant property of metallothionein in fasted mice [J]. Toxicology Letters, 2003,143:301-6
    [19] Fabisiak JP, Borisenko GG, Liu SX, et al. Redox sensor function of metallothioneins [J]. Methods Enzymol, 2002, 353:268-81
    [20] Ebadi M, Leuschen MP, Elrefaey H, et al. The antioxidant properties of zinc and metallothionein [J]. Neurochem. Int, 1996, 29(2):159-66
    [21]杨兴斌、杨会宜.补硒与锌对梭曼中毒大鼠乙酰胆碱酯酶活力和抗氧化力的影响[J].中国药理学与毒理学杂志.2003,17(02):117-20
    [22] Sandstrom PA, Tebbey PW, Van CS, et al. Lipid peroxides induce apoptosis in T cells displaying a HIVassociated glutathione peroxidase deficiency [J]. J Biol Chem, 1994,1296:798–801
    [23] Doyotte A, Cossu C, Jacquin MC, et al. Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers or experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus [J]. Aquat Toxicol, 1997,39:93-110
    [24] Oruc EO, Sevgiler Y, Uner N. Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl [J]. Comp Biochem Physiol C, 2004,137: 43-51
    [25] Ben-Shachar D, Riederer P, Youdim MB. Iron-melanin interaction and lipid peroxidation: implications for Parkinson’s disease [J]. J Neurochem, 1991, 57:1609-14
    [26]屠柏强,李健,王美娟等.谷胱甘肽对胃粘膜保护作用的实验研究[J].上海医学.2000,23(2):115
    [27] Trump BF,Berezesky IK, Cowley RA. The cellular and subcellular characteristics of acute and chronic injury with emphasis on the role of calcium [C].In: Pathophysiology of shock, anoxia and ischemia. Ed. by Cowley RA and Trump BF, Baltimore, MD: Williams R. Wilkins, 1982,6-10
    [28] McCabe MJ, Jiang SA. Relation of intracellular zinc triggers apoptosis in mature thymocytes [J]. Lab Invest, 1993,69(1):101
    [29]廖贤平,佘亚雄,李敏.药物对缺氧细胞内钙离子浓度的影响[J].武警医学.1999,10(8),438-40
    [30] Bos JL. The ras gene family and human carcinogenesis [J]. Mutat Res, 1988,195:255–71
    [31] Cheeseman KH,Slater TF. An introduction to free radical biochemistry.Br Med Bull. 1993,49:481-93
    [32] Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants, and human disease: where are we now [J]. J Lab Clin Med, 1992,119(6):598-620
    [33] Weitzman SA, Gordon LI. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis [J]. Blood, 1990,76(4):655-63
    [34] Richter C, Gogvadze V, Laffranchi R, et al. Oxidants in mitochondria: From physiology to diseases[J]. Biochim Biophys Acta, 1995,1271:67-74
    [35] Reid VC, Hardwick SJ, Mitchinson MJ. Fragmentation of DNA in P388D1 macrophages exposed to oxidised low-density lipoprotein [J]. FEBS Lett, 1993, 33(23):218-20
    [36] Schoenberg MH, Beger HG. Reperfusion injury after intestinal ischemia [J]. Crit Care Med, 1993,21:1376-86
    [37] Nilsson UA, Schoenberg MH, Aneman A, et al. Free radicals and pathogenesis during ischemia and reperfusion of the cat small intestine [J]. Gastro, 1994,106(3):629-36
    [38] Schwartzman RA, Cidlowski JA. Apoptosis: the biochemistry and molecular biology of programmed cell death [J]. Endocrine Rev, 1993,14:133-51
    [39] Christ M, Mejia LB, Moosbrugger JE. Apoptosis induced by oxysterols in murine lymphoma cells and in normal thymocytes [J]. Immnuol, 1993,78:455-60
    [1] Singh G. Recent considerations in nonsteroidal antiinflammatory drug gastropathy [J]. Am J Med, 1998, 105: 31S-38S
    [2] Miura T, Muraoka S, Fujimoto Y. Lipid peroxidation induced by indomethacin with horseradish peroxidase and hydrogen peroxide: involvement of indomethacin radicals [J]. Biochem Pharmacol, 2002,63:2069–74
    [3] Dringen R, Hirrlinger J. Glutathione pathways in the brain [J]. Biol Chem, 2003,384: 505-16
    [4] Guth PH, Aures D, Panlsen G. Topica laspirin plus HCl gastric lesions in the rat [J]. Gastroenterology, 1979,76(1):88-93
    [5]孙为豪,陈洪,欧希龙等.质子泵抑制剂的胃粘膜保护作用与环氧化酶-2表达[J].中国药理学报. 2002,18: 661-4
    [6]陈铁楼,蔺世龙,刘景昌等.高压氧对快速减压应激损伤动物脑组织PGs的作用研究[J].海军医学杂志.2003,24:97-9
    [7]昊晓生,李龙宫.比色法测定黄嘌呤氧化酶[J].生物物理与生物化学进展.1986,29,32-43
    [8] Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryls groups in tissue with Ellman’s reagent [J]. Anal Biochem, 1968,25:192-205
    [9] Sun Y, Larry WO, Ying L. A simple method for clinical assay of superoxide dismutase [J].. Clin Chem, 1988,34:497-500
    [10] Aebi H. Catalase in vitro [J]. Methods in Enzymol, 1984,105:121-6
    [11] Ohkawa H, Ohishi H, Yagi K. Assay for lipid peroxide in animal tissues by thiobarbutiric acid reaction [J]. Anal Biochem, 1979,95:351-8
    [12] Lawrence CB, Davies NT. Anovel simple and rapid method for the isolation of mitochondria, which exhibit respiratory control, fromrat small intestinal mucosa [J]. Biochemica et Biophysica Acta,. 1986,848:35-9
    [13] Atkinson DE. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers [J]. Biochem..1968,7:40-30
    [14]李铁,张席锦.氧自由基在应激性胃溃疡中的发病学意义[J].生理学报. 1993,45(3):286-91
    [15] Bafna P A, Balaraman R. Anti-ulcer and antioxidant activity of DHC-1, a herbal formulation [J]. J Ethnopharmacol, 2004, 90: 123-7
    [16]沈赞明,解红梅.半胧胺盐酸盐和蛋氨酸赖氨酸对山羊细胞免疫的影响[J].中国兽医科技.2004,11(34):27-33
    [17]廖名龙,林瑶.还原型谷胱苷肽治疗肝病进展[J].中华临床医药杂志.2004,5(13):41-2
    [18]张常娥,但建新,赵小玉.螺旋藻预防应激性溃疡的作用机制分析[J].中国病理生理杂志,2002,18: 994-5
    [19] Droge W. Free radicals in the physiological control of cell function [J]. Physiol Rev, 2002, 82: 47–95
    [20] Luz P L, Coimbra S R. Wine, alcohol and atherosclerosis: clinical evidences and mechanisms. Braz J Med Biol Res, 2004, 37: 1275–95
    [21]段玉清,谢笔钧.莲房原花青素体内抗氧化研究[J].营养学报,2003,1:306-308
    [22]李兆申,湛先保,崔忠敏,等.应激对胃粘膜表面上皮层抗酸形态屏障及壁细胞超微结构的影响[J].解放军医学杂志,1999,24(6):401-3
    [23] Lasky MR, Metzler MH, Phillips JO. Aprospective study of omeprazole suspension to prevent clinically significant gastrointestinal bleeding from stress ulcer sinmechanically ventilated traumapatients [J]. J Trauma, 1998,44(3):527-33
    [24] Li Y, Sha W, Nie Y, etal. Effect of intragastric pH on controll of pepticulcer bleeding [J]. J Gastroenterol Hepatol, 2000,15(2):148-54
    [25] Lopina OD, Rubtsov AM. H+,K+-ATPase and acid secretion control in gastric mucosa [J]. Biochemistry (Mosc), 1997, 62(10): 1057-63
    [26] Caplan M J.Gastric H+,K+-ATPase: targeting signals in the regulation of physiologic function [J]. Curr Opin Cell Biol, 1998,10(4): 468-473
    [27] Calhoun BC, Goldenring JR. Rab proteins in gastric parietal cells:evidence for the membrane recycling hypothesis [J]. Yale J Biol Med, 1996,69(1):1-8
    [28] MatsuzakiY,EdagawaM,MaedaM,etal.Beneficial effect of prostaglandinE1 on blood flow to the gastrictube after esophagectomy [J]. Ann Thorac Surg, 1999,67(4):908-10
    [29] SugimotoI, NarimiyaN, OdagiriM, etal. Protective effect of avasopressi-n1 selectiv eantagonist, OPC-21268, against ethanol-induced damage of ther atgastricwall [J]. Dig Dis Sci, 1999,44(3):503-9
    [30] Soto N, Kawano S, Tsuji S, et al. Gastric blood flow in ulcer disease [J]. Scand J Gastroenterol, 1995,30(Suppl 208): 14-20
    [31] Gronbech JE, Varhaug JE, Svanes K. Restituted gastric mucosa:tolerance against low luminal pH and restricted mucosal blood flow in the cat [J]. Gastroenterology, 1989; 96: 50-61
    [32] Balint GA, Sagi I, Dobronte Z, Varro V. Effect of different prostaglandin analogues on gastric acid secretion and mucosal blood flow in the dog: action on stimulated and resting mucosa [J]. Acta Med Hung, 1984, 41: 149-55
    [33] Konturek SJ, Robert A. Cytoprotection of canine gastric mucosa by prostacyclin: possible mediation by increased mucosal blood fl ow [J]. Digestion, 1982, 25: 155-63
    [34] De Souza GE, Cardoso RA, Melo M C, et al. A comparative study of the antipyretic effects ofindomethacin and dipyrone in rats [J]. Inflammation Research, 2002, 51: 24–32
    [35] Wright JP, Young GO, Klaff LJ, et al. Gastric mucosal prostglandin Elevels in patient with gastric ulcer disease and carcinoma [J]. Gastroenterology, 1982;82:263-72
    [36]白音夫,杨宏昕.筚茇挥发油对动物实验性胃溃疡的保护作用[J].中草药. 2000,31(1):40-41
    [37] Miura T, Muraoka S, Fujimoto Y. Lipid peroxidation induced by indomethacin with horseradish peroxidase and hydrogen peroxide: involvement of indomethacin radicals [J]. Biochem Pharmacol, 2002, 63: 2069-74
    [38] Pennisi E. Building a better aspirin [J]. Sci, 1998; 280:1191-2
    [39]王玮,孙梅.胃肠粘膜抗损伤和修复新进展[J].世界华人消化杂志2005,13:2355-9
    [40] Arimura, A,Sato H,Dupont A,et al. Somatostatin; aboundnance of immunoreactive hormone in rat stomach and pancreas [J]. Sci, 1975,189:571-7
    [41]沈德凯,刘冰怀,韦多,章复清,陈亦宜.电针对大鼠应激性胃溃疡的保护过程中中枢及外周单胺类神经递质的影响[J].针刺研究.1994;19:51-3
    [42] Guldvog I. Stress ulceration; possible pathogenic mechanism [J]. Scvnd J Gastroenterd, 1984,19 (Supp1. 105):9-18
    [43] Guldvog, I. Stress ulceration : possible pathogenic mechanism [J]. Scand J Gastroenterol, 1984.19:9-18
    [44] Kauffman J. Mucosal damage to the stomach; how, when and why [J]. Scand J Gastroenterol, 1984,18(Suppl.105):19-28
    [45]李铁,张席锦.前列腺素E和生长抑素的胃粘膜保护作用与琉基的关系[J].北京医科大学学报. 1989,21(6):476-9
    [46] Itoh M. and Guth PH. Role of oxygen- derived free radicals in hemorrhagic shock-induced gastric lesion in the rat. Gastroenterology. 1985,88, 1162-7
    [47] Mizui T, Masami D. Lipid peroxidation: a possible role in gastric damage induced by ethanol in rat. Life Sci. 1986,38, 2163-7
    [48]王艳玲,韩正康.半胱胺对肉用仔鸡增重和生长抑素,内啡肽含量的影响[J].南京农业大学学报,1993,16(增刊):5-8
    [49] Bakhit C, etal. Effects of cystesmine on pre-somatostatinre lated peptides [J]. Regul Pept, 1983,6:169-77
    [50]韩正康,刘宗柱,沈延法.半胱胺引起绵羊外周血液B-内啡肽和几种主要代谢激素的变化[J].畜牧兽医学报,1996,27(3):193-198
    [51]林玲,韩正康.生长抑素耗竭剂-半胱胺促进大鼠!幼兔生长的研究[J].中国应用生理学杂志,1991,7 (4):343-7
    [52] Chen K, Thomas SR, Keaney Jr. Beyond LDL oxidation: ROS in vascular signal transduction [J]. Free Rad Biol Med, 2003, 35: 117-32
    [53] Faine LA, Cicogna AC, Diniz YS, et al. Dietary restriction: metabolic shifting for cardiac health[J]. J Nutr Environ Med, 2003,13: 25-31
    [54] Samdani AF, Dawson TM, Dawson VL. Nitric oxide synthase in models of focal ischemia [J]. Stroke, 1997, 28:1283-8
    [55]施红光,赵剑,姚登福等.大鼠脊髓损伤后诱导型一氧化氮合酶的表达及动态改变[J].中国临床康复.2003,7(32):4330-1
    [56] Di Lorenzo M,Krantis A. Nitric oxide synthase isoenzyme activities in a premature piglet model of necrotizing enterocolitis: effects of nitrergic manipulation [J]. Pediatr Surg Int, 2002,18:624-9
    [57] Nadler EP,Dickinson E,Knisely A,et al. Eexpression of inducible nitric oxide synthase and interleukin-12 in experimental necrotizing enterocolitis [J]. J Surg Res, 2000,92:71-7
    [58] McCafferty DM,Mudgett JS,Swain MG,et al. Inducible nitric oxide synthase plays a critical role in resolving intestinal inflammation [J]. Gastroenter-ology, 1997,12:1022-7
    [59] Nathan C. Nitric oxide as a secretory product of mammalian cells [J]. FASEB J, 1992, 6:3051
    [1] Svoboda M, Drabek J, Krejci J, et al. Impairment of the peripheral lymphoid compartment in iron-deficient piglets [J]. J Vet Med B, 2004,51:231-7
    [2] Richter JR. Management of inflammatory bowel disease.In: Goroll AH, ed. Primary Care. Philadelphia [J]: J B Lippincitt, 1987:329-36
    [3] Erichesen K, Hausken T, Berge R, et al. Effect of oral iron therapy on antioxidant defence in active cronhn disease [J]. Digestin, 1998,59:1287
    [4] Imlay JA, Chin SM, Linn S. Toxic damage through the Fenton reaction in vivo and in vitro [J]. Sci, 1988.240:640-2
    [5] Manashi BD, Mark MBS, Case WBS. The acute and chronic stress-induced oxidative gastrointe- stinal injury in rats, and the protective ability of anovel grape seed proanthocyanidin extract [J]. Nutri Res, 2000,19:1189-99
    [6] Srigiridhar K, Nair KM. Supplementation with alpha-tocopherol or a combination of alpha- tocopherol and ascorbic acid protects the gastrointestinal tract of iron-deficient rats againstiron-induced oxidative damage during iron repletion [J]. Br J Nutr, 2000,84:165-73
    [7] NRC, Nutrition requirements of Swine [M], 10th Revised edn. National Academy press. Washington DC. 1998. 110-116
    [8] Barnett KL, Kornegay ET, Risley CR. Characterization of creep feed consumption and its subsequent effects on immune response scouring index and performance of weanling pigs [J]. J Anim Sci, 1989,67:2698-708
    [9]杨诗兴等.饲料营养价值评定方法[M].兰州:甘肃人民出版社,1982. 206-7
    [10] Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction [J]. Anal Biochem, 1979,95:351–8
    [11] John AB, Steven DA. Microsample lipid peroxidation [M]. In: S. Fleischer, L.Packer (Editors). Methods in Enzymology. 52. Academic Press, New York. 1978, 302-10
    [12]尹江伟,刘红河,邹晓春,叶泽群.反相高效液相色谱法同时测定儿童血清中维生素A和E。现代预防医学,2004,31(3):351-3
    [13] Heylings JR. Gastrointestinal absorption of paraquat in the isolated mucosa of the rat [J]. Toxicol Appl Pharmacol, 1991,107:482-93
    [14] Srigiridhar K, Nair K M. Iron-deficient intestine is more susceptible to peroxidative damage during iron supplementation in rats [J]. Free Radical Biol Med, 1998,25:660-5
    [15] Hiraishi H, Terano A , Ota S, et al. Oxygen metabolite-induced cytotoxicity to cultured rat gastric mucosal cells [J]. Am J Physiol, 1987,253:G40-8
    [16] Mutoh H, Hiraishi H, Ota S, et al. Role of oxygen radicals in ethanol-induced damage to cultured gastric mucosal cells [J]. Am J Physiol, 1990,258: G603-9
    [17] Bloem, MW. Interdependence of vitamin A and iron: an important association for programmes of anaemia control [J]. Proc Nut Soc, 1995,54,501–8
    [18] Blomhoff H, Smeland E. Role of retinoids in normal hematopoiesis and the immune system [M]. In: Blomhoff, R. (Ed.), Vitamin A in Health and Disease. Marcel Dekker, New York. 1994, 451–84
    [19] Florian J, Schweigert, Herbert G, et al. Effect of iron supplementation on plasma levels of vitamins A, E and C in piglets [J]. Livestock Produ Sci, 2000,63:297–302
    [20] Carrier J, Aghdassi E, Platt I, et al. Effect of oral iron supplementation on oxidative stress and colonic inflammation in rats wi induced colitis [J]. Aliment Pharmacol Ther, 2001,15:1989-99
    [21] Huang RF, Huang SM, Lin BS, et al. N-Acetylcysteine, vitamin C and vitamin E diminish homocysteine thiolactone-induced apoptosis in human promyeloid HL-60 cells [J]. J Nutr, 2002,132:2151-6
    [22]鄢顺琴,风良元,苏英豪,等.胃痛灵对胃粘膜保护作用的实验研究[J].中医杂志,1995,36(1):14
    [23] Grisham MB, Granger DN. Neutrophil-mediated mucosal injury: role of reactive oxygen metabolites [J]. Dig Dis Sci, 1988,33:6-15
    [24] Kafetzis DA, Skevaki C, Costalos C. Neonatal necrotizing enterocolitis: an overnew [J]. Curr Opin Infect Dis, 2003,16:349-55
    [25] Connye N, Kuratko. Iron increases manganese superoxide dismutase activity in intestinal epithelial cells [J]. Toxicol Lett, 1999,104:151-8
    [26] Blum J, Fridovich I. Inactivation of glutathione peroxidase by superoxide radical [J]. Arch Biochem Biophys, 1985,240:500-8
    [27] Kono Y, Fridovich I. Superoxide radical inhibits catalane. J Biol Chem. 1982,257: 5751-4
    [28] Bray RC, Cockle SA, Martin FE, et al. Reduction and inactivation of superoxide dismutase by hydrogen peroxide [J]. Biochem J, 1974,139:43-8
    [29] Czurko C, Steigman C, Turley DL, et al. The role of reperfusion injury in occlusive intestinal ischemia of the neonate:Malonaldehyde-derived fluorescent products and correlation of histology [J]. J Surg Res, 1991,51:1-4
    [30] Kadis S, Vdeze FA, Polanco J. Relationship of iron administration to susceptibility of newborn pigs to enterotoxic colibaeillosis [J]. Am J vet Res, 1984,45,255-9
    [31] Weinberg ED. Iron and infection [J]. Microbiol Res, 1987,42:45-66
    [32] Cheeseman KH, Slater TF. An introduction to free radical biochemistry [J]. Br Med Bull, 1993,49:481 -93
    [33] Halliwell B. Cutteridge JM, Cross CE. Free radicals and antioxidants and human disease: where are we now [J]. J Lab Clin Med, 1992, 119 (6): 598-620
    [34] Antonio RM , Isabel V, Carmen LC, et al. Resveratrol, a polyphenol found in grapes, suppresses oxidative damage and stimulates apoptosis during early colonic inflammation in rats [J]. Biochem Pharmacol, 2004,67:1399-410
    [35] Duthie S, Collins AR. The influence of cell growth detoxifying enzymes and DNA repair on H2O2 mediated DNA damage in humancells [J] Free Radic Biol Med, 199622(4):717-24.
    [36] Hanna B. Ambroz, Tony K, etal. Role of iron in damage to DNA:influence ionizing gradiation,UV light and H2O2 [J].Journal of Photochemistry and Photobiology A: Chemistry. 2001,14(2):9-18
    [37]方允中,郑荣梁.自由基生物学的理论与应用[M].北京:科学出版社,2002,143-7
    [38] Srigiridhar K, Nair KM, Subramanian R, et al. Oral repletion of iron induces free radical mediated alterations in the gastrointestinal tract of rat [J]. Mol Cell Biochem, 2001,219:91–8
    [39] Cera KR, Mahan DC, Cross RF, et al. Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine [J]. J Anim Sci, 1998,66: 574-84
    [40] Hampson DJ. Alterations in piglet small intestinal structure at weaning [J]. Res Vet Sci, 1986,40:32-40
    [41] Travis S, Menzies I. Intestinal permeability: functional assessment and significance [J]. Clin Sci Colch, 1992,82:471-88
    [42] Kuratko C. Fatty acids and iron modulate manganese content and manganese superoxide dismutaseactivity in colonic mucosa during early stages of carcinogenesis [J]. Food Chem Tox, 1998,36:819-24
    [43] Wells CL, Maddaus MA, Reynolds CM, et al. Role of anaerobic flora in the translocation of aerobic and facultatively anaerobic intestinal bacteria [J]. Infect Immun, 1987 Nov,55(11):2689–2694.
    [44]王尚荣.硫酸亚铁合剂对断奶仔猪抗病及生长效果的影响邵阳学院学报[J].2005,2(3)93-5
    [45] Weinberg E D. Iron and infection [J]. Microbiol. Res, 1987 (42): 45~66
    [46] Kadis S, FA, Vdeze J, Polanco, et al. Relationship of iron administration to susceptibility of newborn pigs to enterotoxic colibaeillosis [J]. Am J vet kes, 1984,45: 255-9
    [47] Knight DD, Klasing KC, Forsyth M. E.coli growth in serum of iron dextran- supplemented pigs [J]. J Anim sic, 1983,57:387-95
    [48] Zimmermarn DR. Iron in swine nutrition. Zn National feed Ingredient Association litepcture review on Iron in Animal and Poultry Nutrition , Des Moines ,Iowa : National Feed Ingredient Association. 1980
    [49]李德发主编.猪营养研究进展[M].北京:中国农业大学出版社.1999.268-274
    [50]孔祥瑞,必需微量元素的营养、生理及临床意义[M].合肥:安徽科技出版社,1982
    [51]王尚荣.硫酸亚铁合剂对断奶仔猪抗病及生长效果的影响.邵阳学院学报[J].2005,2:93-5
    [52]蒋宗勇.猪的矿物质营养.哈尔滨:东北农学院动物营养研究室资料汇编[M].1988;231-44
    [53]糜益锋,顾月萍.补铁能提高仔猪白痢防治效果[J].畜牧与兽医,2005,137:60
    [54] Kirchgessner M, Beyer MG, Steinhart H. Activation of pepsin by heavy mental ions including acontribution to the mode of action of copper sulfate in pig nutrition [J]. Br J Nutr, 1976,36:15-26
    [55] Erichesen K, Hausken T, Berge R, Ulvik R,Berstad A. Effect of oral iron therapy on antioxidant defence in active Cronhn disease [J]. Digestin, 1998;59:FOLM128
    [56] Harris ML, Shiller HJ, Reilly PM, Donowitz M, Grisham MB, Bulkley GB. Free radical and other reactive oxgen metabolites in inflammatory bowel disease:cause,consequence or epiphenomenon [J]. Pharm Ther, 1992,53:357-408
    [1]方允中,李文杰.自由基与酶[M].北京:科学出版社.1989:46-48
    [2] Duval C, AugéN, Frisach MF, et al. Mitochondrial oxidative stress is modulated by oleic acid via an epidermal growth factor receptor-dependent activation of glutathione peroxidase [J]. Biochem J, 2002, 367(3): 889-94
    [3]王建峰,乐国伟,施用晖等.高能日粮条件下半胱胺对大鼠抗氧化功能的影响[J].中国饲料. 2005(6):10-12
    [4]李安林,乐国伟,施用晖等。抗氧化剂对高脂日粮诱导大鼠氧化应激的保护作用安徽农业科学[J]. 2006,6:1123-转1142
    [5] NRC, 1998. Nutrition requirements of Swine, 10th Revised edn. National Academy press. Washington D C, pp. 110-6
    [6]杨诗兴等.饲料营养价值评定方法[M].兰州:甘肃人民出版社.1982. 206-7
    [7] Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction [J]. Anal Biochem, 1979,95:351-8
    [8] Srigiridhar K, Nair KM. Iron-deficient intestine is more susceptible to peroxidative damage during iron supplementation in rats [J]. Free Radical Biol Med, 1998,25:660-5
    [9] Erlanger BF, Kokwsky N, Cohen W. The preparation of two new chromogenic substrates of trypsin [J]. Arch Biochem Biophys, 1961,95:271-8
    [10] Erlanger BF, Edel F, Cooper AG. The action of chymo trypsion two new chromogenic substrates [J]. Arch Biochem Biophys, 1966,115:206-10
    [11] Triscari J, Nauss-karol C, Levin BE, et al. Changes in Lipidmetabolisn in diet-induced obesity [J]. Metabolism. 1985, 34(6):580.
    [12] Zannikos PN, Bandyopadhyay AM, Robertsor LM, et al. Expression of the CYP3A and CyP2 cll enzymes in a nutritionally obese rodent model: respotvse to Phenobarbital treatment [J]. Internationd Journal of obesity.&Related Metabolic Disorders, 1994,18(6):369.
    [13] Funderburke DW, Seerly RW. The effects of postweaning stress ors on pig weight change, blood,liver and digestive tract characteristics [J]. J Anim Sci, 1990,68:155-62
    [14]潘兴华,王水琴,牛廷献.应激对动物免疫功能影响的研究[J].中国兽医杂志,1996,22(1):52-3
    [15] Parrott WA, William EG, Hildebrand DF, et a1.Recovery of primary transformants of soybean [J]. Plant Cell Report. 1989,7:61 5-7
    [16] Chrousos, GP. Stressors, stress and neuroendocrine integration of adaptive response. Ann NY Acad Sci, 1998,311-32
    [17] Kelley KW. Cross-talk betty een the immune and endocrine systems [J]. J Anim Sci, 1988,66:2095-108
    [18] Playford RJ, MacDonald CE, Johnson WS. Colostrum and milk derived pep tide growth factors for the treatment of gastrointestinal disorders [J]. Am J Clin Nutr, 2000, 72: 5-14.
    [19] Xu RJ. Composition of porcine milk [A]. In: Xu RJ, Cranwell P D, eds. Gastrointestinal Physiology and Nutrition of Neonatal Pigs (C). Nottingham: Nottingham University Press, 2003. 213-46.
    [20] Georgieva TM, Georgiev IP, Ontsouka E, et al. Abundance of message for insulin2like growth factors- andⅡand for recep tors for growth hormone, insulin2like growth factors21 and 22, and insulin in the intestine and liver of p re2 and full2term calves [J]. J Anim Sci, 2003, 81 (9) : 2294-300
    [21]陈平浩,陈庄,王祖昆等.生长激素分泌规律的研究概况[J].国外畜牧科技,1998,25(2):32-4
    [22] Lobie PE, Garcia AJ, Waters MJ. Growth hormone (GH) regulation of gastric structure and function in the GH-deficient rat :up-regulation of intrinsic factor [J]. Endocrinology, 1992,130 (5):3015-24
    [23] Delehaye-Zervas MC , Mertani H , Martini J F et al . Expression of the growth hormone receptor gene in human digestive tissue [J]. J Clin Endocrinol Metab, 1994,78 (6):1473-80
    [24] Nagano M, Chastre E , Choquet A et al . Expression of prolactin and growth hormone receptor genes and their isoforms in the gastrointestinal tract [J]. Am J Physiol, 1995, 268 (3 Pt 1):G431-G42
    [25]夏东,赵茹茜,胥清富等.猪胃组织中生长激素受体基因表达的发育性变化及品种特点[J].遗传学报, 2002,29(6):492-6
    [26] Dunshea FR, Harris OM, et al. Effects of porcine somatotropin on in vivo glucose kinetics and lipogenesis in the growing pigs [J]. J Anim Sci, 1992;70:141-51
    [27] Goodman HM, Grichtin C. Growth hormone and lipolysis: a reevaluation [J]. Endocrindogy, 1983,113:1697-702
    [28] Magri KA,Gopinath R, gtherton TD. Inhibition of lipoginec enzyme activities by porcine growth hormone(pGH) [J]. J Anim Sci, 1987,65:159
    [29] Dunshea FR. Effects of bovine somatotropin and insulin on whole-body and hindlimb glucose matebolism in growing steers [J]. J Anim Sci, 1995,73:2263-71
    [30] Sechen SJ. Somatotropin in lactating cows: effect on response to epinephrine and insulin [J]. J Anim, 1990, Physsio1258 (Endocirinol-Metab), 21:E582-8
    [31] Vemon RG. Modulation of the activity of acety 1-coA carboxylase and other lipogenic enzymes bygrowth hormone insulin and dexmethasome in sheep adipose tissue and relationship to adaptations to lacation [J]. Biochem J, 1991;274:543-8
    [32]王志明,邱炜,吕新生等.重组生长激素对应激状态下鼠肝生长激素受体mRNA表达及肝脏再生的影响[J].中国普通外科杂志,2000,9(3):237-9
    [33] Petersen SR, Malayappa J, Nancy J, et al. Adjuvant recombinant human growth hormone stimulates insulin-like growth factor binding protein-3 secretion in criticallyⅢtrauma patients [J]. J Trauma, 1995,35(2):295-302
    [34] Kato S, Tanaka A, Ogawa Y, et al. Effect of polaprezinc on impaired healing of chronic gastric ulcers in adjuvant-induced arthritic rats--role of insulin-like growth factors (IGF-1) [J]. Med Sci Monit, 2001,7(1):20-5
    [35] Rchard D, Palmiter. The elusive function of metallothioneins[J]. Proc Natl Acad Sci, 1998, 95:8428-30
    [36]王福俤,赵法伋,景乃禾.脑金属硫蛋白的表达调控及锌的影响[J].国外医学地理分册,1997,1:9-12
    [37] Steven R. Davis, Robert J. Cousins. Metallothionein expression in animals: A physiological perspective on function [J]. J Nutr, 2000. 130:1085-8
    [38] Glen K. Andrews, Jim Geiser. Expression of the mouse metallothionein-I and–II genes provides a reproductive advantage during maternal dietary zinc deficiency [J]. J Nut, 1999, 129:1643-8
    [39]龙建纲.孕期缺锌仔鼠脑中差异表达基因的筛选取及哺乳期后不同膳食水平对小鼠ZnT3、DMT1和MT-1 mRNA表达的影响[J].第二军医大学学位论文.2002
    [40]董晓慧.氨基酸螯合锌吸收、转运特点和影响因素的研究[D].博士学位论文.哈尔滨:东北农业大学,2001
    [41] Krebs NF. Overview of zinc absorption and excretion in the human gastrointestinal tract [J], J Nutr 2000, 130:1374-7
    [42] Spreeuwenberg MAM, Verdonk JMAJ, Gaskins HR, et al. Verstegen: Small Intestine Epithelial Barrier Function Is Compromised in Pigs with Low Feed Intake at Weaning [J]. J Nutr, 2001,131: 1520-7
    [43] Kelly, D, Begbie R, King TP. Postnatal intestinal development [M].In:Varley, M. A.P. E.V. Williams and T. L . J.Lawrence. (eds) Neonatal Survival and Growth. Occasional Publication No. 15. British Society of Animal production Edinburgh, 1992, 63-79.
    [44] Howard KA. The Effect of adoption period to soybean oil ad ditions in the diet of young pigs [J]. J Anim Sci, 1990, 68:678-83
    [45] CalderPC. N-3polyunsaturated fatty acids,inflammation and immunity: pouring oil on troubled water soranother fishy tale [J], Nutr Res, 2001,21:309-41
    [46] Verland MF, Sundst L. Effects of lecithin on fat utilization by weanling pigs [J]. Livestock Prod Sci, 1995,41:217-24
    [47] Takahashi K, Park JH , Akiba Y, et al . Effects of overfeeding of protein and energy by force feeding on hepatic microsomal mixed function oxidase system in broiler chickens [J]. Comp Biochem Physiol, 1995,111A(3):379-84
    [48] Dandona P, Mohanty P, Ghanin H, et al. The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes , lipid peroxidation, and protein carbonylation [J]. J Clin Endocrin &Metab, 2001, 86 (1):355-62
    [49] Helem Wiseman. Damage to DNA by relative and nitrogen species: role in inflammatory disease and progression to cancer [J]. Biochem, 1996,4:17-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700