用户名: 密码: 验证码:
猪瘟慢性感染对猪免疫功能影响的细胞与分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟(Classical Swine Fever, CSF)是由猪瘟病毒(Classical Swine Fever Virus, CSFV)引起的猪的高度接触性、传染性疾病,给养猪业造成巨大威胁和经济损失,被世界动物卫生组织(OIE)列为必须报告的法定传染病之一。本研究旨在通过CSFV中低致病力毒株感染后,从基因、细胞、机体三个水平上对CSFV慢性感染实验猪的临床症候、病理损伤、炎症反应、免疫应答、免疫调节功能的影响进行系统的研究,阐明CSFV慢性感染的免疫机理,为CSF的防控与净化措施提供理论依据。
     1.中等致病力毒株HeBHHl/95全基因组测序及分析
     设计CSFV全基因组分段PCR扩增引物,对PCR产物进行克隆并测序,利用DNAStar和ClustalX等生物信息学软件进行序列编辑和拼接,分析全基因组的结构和组成,并从Genebank上下载参考序列进行多重序列比对及同源性分析。测序结果显示本研究获得CSFV中等致病力毒株HeBHH1/95的全基因组序列,基因组由12,297个核苷酸构成,共包括1个CDS和2个非编码区。CDS中各基因排序及长度与NCBI已登录CSFV序列均相同。与HeBHH1/95碱基差异最大的是基因3型毒株csfv94.4IL94TWN,为台湾分离株。碱基差异最小为2.2亚群毒株csfv_GXWZ02,为中国大陆分离株。遗传压力分析显示,HeBHH1/95株异意替换率(Ka)/同意替换(Ks)比值低于1,显示HeBHH1/95的ORF处于负选择压力下。使用不同致病力毒株进行归类分析,并无与致病性相关的序列特征。
     2.猪瘟慢性感染动物模型的构建、组织病理学及病毒在体内的动态分布研究
     以肌肉注射的方式对11头30日龄健康断奶仔猪人工感染CSFV中等致病力毒株HeBHH1/95株,构建了病程为45d的猪瘟慢性感染动物模型,同时设2头阴性对照猪,感染后每天测量实验猪体温并对临床症状进行打分记录。在1dpi,3dpi,6dpi,10dpi,15dpi,25dpi,35dpi,45dpi剖杀感染猪并采集组织器官和体外分泌物共30种。根据临床症状和体温变化,将整个慢性感染病程分成三个阶段,即潜伏期(1dpi~7dpi)、发病期(8~24dpi)、转归期(25dpi~45dpi)。潜伏期内感染猪体温正常,无明显临床症状;进入发病期后体温逐渐升高至41.5℃,表现猪瘟典型临床症状。19dpi后体温开始降低,临床症状逐渐消失;转归期体温正常,食欲正常,偶尔拉稀,尤其是复制了感染猪在临床上常见的耳尖尾尖发绀、坏死和断耳断尾的“僵猪”典型特征。
     对上述采集的不同感染时间采集的24个组织样本切片后进行HE染色,结果显示,第3dpi,腹股沟淋巴结和颌下淋巴结开始出现炎性细胞浸润,微血栓形成;脾脏小梁周围可见红细胞、炎性细胞浸润;扁桃体黏膜表面可见炎性细胞浸润,淋巴细胞变性,此时其他组织未见病变。随着病程的发展,其他组织逐渐出现病变,第15dpi,所有组织均表现出不同程度的病变。在转归期,大部分器官组织未发现明显组织病理变化,但免疫器官、肾脏、肝脏以及十二指肠仍可见组织病变。免疫组化结果显示,在3dpi,脾脏、扁桃体、腹股沟淋巴结、肠系膜淋巴结、回盲瓣、回肠等组织中开始检出CSFV阳性信号;6dpi,肝脏、胃、十二指肠、胰腺、结肠、直肠、肾脏中开始检出CSFV阳性细胞;10dpi~45dpi,所有样本组织中均可检出CSFV阳性细胞,但在转归期数量有所下降。采用猪瘟病毒荧光定量RT-PCR对24个组织器官检测,CSFV慢性感染病程中各个组织器官核酸载量都呈现从低到高,再降低的变化趋势;通过2-ddCt方法统计分析,CSFV对各组织嗜性从高到低排序为:脾脏、颌下淋巴结、回肠、腹股沟淋巴结、扁桃体、肠系膜淋巴结、胰腺、肾脏、皮肤、肺脏、回盲瓣、空肠、肝脏、食道、胃、结肠、睾丸、十二指肠、膀胱、直肠、心肌、脊髓、肌肉、大脑。病毒载量的变化与临床症候、病例剖解变化的规律是一致的。研究结果表明:采用中等致病力毒株成功复制了猪瘟病毒慢性感染动物模型,慢性感染中CSFV的主要复制场所为淋巴器官,且对淋巴器官具有持续性的、不可恢复性的损伤,对其他组织的损伤具有可恢复性;相较于CSF急性感染,扁桃体依然是病毒载量较高的组织,是进行CSFV活体检测最敏感的组织之一。组织病理学和病毒载量的研究结果显示在病程的三个阶段大部分组织器官病变规律与临床症候的发病规律相一致。
     3.猪瘟慢性感染及疫苗免疫对猪外周血免疫细胞及细胞因子转录水平的影响
     将23头实验用猪(60日龄)随机分为攻毒组、疫苗组和对照组,定期采血,采用qRT-PCR技术、流式细胞仪和ELISA技术,检测猪外周血中11种细胞因子转录水平、淋巴细胞亚群分析和猪瘟抗体水平。结果显示:慢性感染组中实验猪存活43dpi以上,在感染过程中T淋巴细胞减少和免疫抑制是猪瘟慢性感染早期的临床特征,具有直接杀伤能力的γδT细胞、杀伤性T细胞和辅助型T细胞的数量降低均开始于2dpi,而不具备直接杀伤能力的活化记忆T细胞数量的降低开始于9dpi。在HeBHH1/95感染后,所有检测抗病毒因子均显著上升。HCLV免疫组在5-7dpi时淋巴细胞绝对数量略有上升,在12dpi到达高峰,对照组差异显著(P<0.05),而后逐渐下调并趋于稳定。进一步的流式细胞仪检测结果显示淋巴细胞数量的提升主要是由于辅助性T细胞数量的增多。在HCLV免疫组中,CSFV抗体开始呈现阳性(阻断率>40%)出现在9-12dpi之间,在此期间IL-8转录水平大幅上调,这两者增长与抗体形成的相关性揭示了Th细胞通过增殖诱导B淋巴细胞成熟,诱导细胞因子表达,产生特异性CSFV抗体,并形成免疫保护的机制。
     综上所述,通过检测中等致病力毒株建立的猪瘟慢性感染中实验动物的临床表现、病理变化和病原动态分布,分析了CSFV慢性感染和免疫后的各免疫相关因子动态变化,比较感染前后和免疫前后各指标变化,分析了慢性感染的病理特征及病毒在逃避宿主免疫过程和形成特异性抗体中起关键作用的细胞及细胞因子的动态变化,为阐述CSFV慢性感染和免疫的机制提供理论科学依据。
Classical Swine Fever (CSF) caused by Classical Swine Fever Virus (CSFV) is a highly contagious and hemorrhagic disease of pigs and is classified as a notifiable animal disease by Office International des Epizooties (OIE). By studying the histopathological changes and transcription level of cytokines gene after experimental infected with moderate virulent strains and the vaccine strain (HCLV) in vivo, the effects on immune system have been anlysised systematically. The results of this study will supply scientific basis for explaining the mechanism of CSFV chronic infection.
     1The complete genome sequencing and comparative analysis of the csfv moderate virulent strain HeBHHl/95
     Primers used in PCR for each fragment which cover all the genome of the moderate virulent strain HeBHHl/95.The products of PCR were sequenced, and the segmants were assembled and edited by Clustal X and DNAStar for bioinformatics analysis. The genome contains12,297nucleotides, encoding3,898amino acids flanked by a373-nt region at the5'untrans-lated region (UTR) and a227-nt region at the3'UTR. The subgroup2viruses SXDT2011, GXWZ02,0406_CH_01_TWN, SXYL2006,96TD, Paderborn isolated from1994to2010in China,Taiwan,Europe show high similarites from97.9%to96.75%.According to the ratio of dN to dS,the CSFV under pure solections.
     2Histopathology and Dynamic Distribution of Classical Swine Fever Virus in Chronically Infected Pigs
     11piglets were challenged with CSFV moderate virulence strains HeBHHl/95strain by intramuscular injection, CSF chronic infection model animal was establi shed, while2piglets as negative control. Body temperature and clinical symptoms were recorded daily. Infected pigs were killed on different time interval,30kind s of samples including organs and vitro secretions were collected for HE staining, immunohistochemistry and FQ-PCR. The course of chronic infection could be di vided into three periods due to the symptoms,clinical score and body temperature record, as the incubation period (1dpi~7dpi), diseased period (8-24dpi), latent peri od (25-45dpi). In the incubation period, temperature of infected pigs was nomal and no clinical symptom. In diseased period, body temperature rise to41.5℃and showed CSF typical symptom. In latent period, the temperature recover to normal level and clinical symptoms disappeared slowly. Results of HE staining sh ow that:3DPI, infiltration of inflammatory cells,micro-thrombosis had been detecte d on lymph nodes of inguen and submaxillary lymph nodes; infiltration of erythro cyte and inflammatory cells could be found around the trabecula of spleen; infiltr ation of inflammatory cells in the mucous membrane of tonsil, lymphocyte degen erstion in the lymphoid nodules;15dpi, all kinds of tissues had been detected histopat hological changes, such as microvascular bleeding, thrombus forming and infiltration of inflammatory cell and histiocytenecrosis.In the latent period(35dpi and45dpi),mos t of tissues had recovered,but histopathological change still harmful on the immun e organs and kidney,liver. These results indicated that there are harmful lesion and histopathological chamge still present on the immune organs although the clinical symptoms were not significant on the CSF chronic infection piglets during the la tent period.In the all CSF chronic infection period, all tissues and organs were foun d typical CSF histopathological changes;In the latent period, most organs recovered but some organs responsible for the immune function still present histopathological chan ges. Histopathological lesions are found on the organs which cannot recovered first ly after infection.
     3The influence of CSFV chronic infection on immune cell and production of cytokines
     23piglets were divided into3groups randomly as HeBHHl/95infected group, HCLV vaccinated group and control group. PBMC and serum were prepared at different phases. qRT-PCR, flow cytometry and ELISA were used for detecting mRNA accumulation of10cytokines, analysis of lymphocyte subsets and levels of CSFV antibody.Results showed that the experimental pigs of HeBHHl/95infected group can survived more than43dpi. CSFV chronic infection can reduce T lymphocytes and immunosuppression. The numbers of γδT cells, killer T cells and helper T cells reduceed from2dpi, those cells have direct killing ability, while activated memory T cells without direct killing ability reduced in9dpi. All detected antiviral factor (IL-1β, IL-2, IL-4, IL-8, IFN-α, IFN-β, TNF-α, Mx1, PKR and OAS) of HeBHH1/95infected group were significant up-regulation. Lymphocyte cells of HCLV vaccinated group rose slightly on5-7dpi, reached peak on12dpi, showed significantly different from the control group (P <0.05), then gradually decreased and became stable. Moreover, flow cytometry results showed that the increment of the lymphocyte count mainly due to the helper T cells increases. CSFV antibody of HCLV vaccinated group showed positive (blocking rate>40%) on9-12dpi, IL-8transcription levels were significantly increased in this period. The results revealed that the Th cells induced B lymphocyte maturation and expression of cytokines produced specific CSFV antibody and form the mechanisms of immune protection by proliferation.
     In summary, clinical symptom, pathological change,and dynamic distribution of virus after CSFV chronic infection had been systemic studied in this research. Additionally,analyze the dynamic changes of cells and cytokines that play a key role in the process of virus to evade host immune and induce specific antibodies, by comparing each index change of infection before/after and immunity before/after. This study will provide a scientific basis to in order to explain the mechanism of CSFV chronic infection and attenuated vaccine strain immunization.
引文
[1]殷震,刘景华.动物病毒学(第2版)[M].科学出版社,1997,
    [2]Weiland E, Stark R, Haas B, et al. Pestivirus glycoprotein which induces neutralizing antibodies forms part of a disulfide-linked heterodimer [J]. J Virol, 1990,64(8):3563-3569.
    [3]Vail Gennip H. G, A B, Van Rijn P A. Experimental non-transmissible marker vaccines for classical swine fever(csfv)by trans-complementation of E(rns)or E2 of CSFV. [J]. Vaccine,2002,20:1544-1556.
    [4]Hulst M M, Westra D F, Wensvoort G, et al. Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera [J]. J Virol,1993,67(9): 5435.5442.
    [5]Tratschin J D, Moser C, Ruggli N, et al. Classical swine fever virus leader proteinase Npro is not required for viral replication in cell culture [J]. J Virol,1998, 72(9):7681-7684.
    [6]Rumenapf T, Stark R, Heimann M, et al. N-terminal protease of pestiviruses: identification of putative catalytic residues by site-directed mutagenesis [J]. J Virol, 1998,72(3):2544-2547.
    [7]Rumenapf T, Unger G, Strauss J H, et al. Processing of the envelope glycoproteins of pestiviruses [J]. J Virol,1993,67(6):3288-3294.
    [8]Rumenapf T, Stark R, Meyers G, et al. Structural proteins of hog cholera virus expressed by vaccinia virus:further characterization and induction of protective immunity [J]. J Virol,1991,65(2):589-597.
    [9]Marusawa H, Hijikata M, Chiba T, et al. Hepatitis C virus core protein inhibits Fas-and tumor necrosis factor alpha-mediated apoptosis via NF-kappaB activation [J]. J Virol,1999,73(6):4713-4720.
    [10]Konig M, Lengsfeld T, Pauly T, et al. Classical swine fever virus:independent induction of protective immunity by two structural glycoproteins [J]. J Virol,1995, 69(10):6479-6486.
    [11]Weiland F, Weiland E, Unger G, et al. Localization of pestiviral envelope proteins E(rns) and E2 at the cell surface and on isolated particles [J]. J Gen Virol,1999,80 (Pt5):1157-1165.
    [12]Moormann R J, Bouma A, Kramps J A, et al. Development of a classical swine fever subunit marker vaccine and companion diagnostic test [J]. Vet Microbiol, 2000,73(2-3):209-219.
    [13]Kosmidou A, Ahl R, Thiel H J, et al. Differentiation of classical swine fever virus (CSFV) strains using monoclonal antibodies against structural glycoproteins [J]. Vet Microbiol,1995,47(1-2):111-118.
    [14]Sullivan D G, Chang G J, Akkina R K. Genetic characterization of ruminant pestiviruses:sequence analysis of viral genotypes isolated from sheep [J]. Virus Res, 1997,47(1):19-29.
    [15]Zhou J H, Gao Z L, Zhang J, et al. Comparative the codon usage between the three main viruses in pestivirus genus and their natural susceptible livestock [J]. Virus Genes,2012,44(3):475-481.
    [16]Yang Z, Wu R, Li R W, et al. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral replicon as a non-transmissible vaccine candidate against CSF and JE infections [J]. Virus Res,2012,165(1):61-70.
    [17]Jamin A, Gorin S, Cariolet R, et al. Classical swine fever virus induces activation of plasmacytoid and conventional dendritic cells in tonsil, blood, and spleen of infected pigs [J]. Vet Res,2008,39(1):7.
    [18]Risatti G R, Borca M V, Kutish G F, et al. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine [J]. J Virol,2005,79(6):3787-3796.
    [19]Sarma D K, Mishra N, Vilcek S, et al. Phylogenetic analysis of recent classical swine fever virus (CSFV) isolates from Assam, India [J]. Comparative Immunology, Microbiology and Infectious Diseases,2011,34(1):11-15.
    [20]Patil S S, Hemadri D, Shankar B P, et al. Genetic typing of recent classical swine fever isolates from India [J]. Vet Microbiol,2010,141(3-4):367-373.
    [21]Leifer I, Hoffmann B, Hoper D, et al. Molecular epidemiology of current classical swine fever virus isolates of wild boar in Germany [J]. J Gen Virol,2010,91(Pt 11): 2687-2697.
    [22]王琴.我国猪瘟病毒流行株致病性分析及流行病学信息系统的建立与应用[北京:中国农业大学,预防兽医学,2006:28.
    [23]Tratschin J D, Moser C, Ruggli N, et al. Classical swine fever virus leader proteinase Npro is not required for viral replication in cell culture [J]. Journal of virology,1998,72(9):7681-7684.
    [24]Silva-Krott I U, Kennedy M A, Potgieter L N D. Cloning, sequencing, and in vitro expression of glycoprotein gp48 of a noncytopathogenic strain of bovine viral diarrhea virus [J]. Veterinary Microbiology,1994,39(1):1-14.
    [25]Ruggli N, Tratschin J D, Schweizer M, et al. Classical swine fever virus interferes with cellular antiviral defense:evidence for a novel function of Npro [J]. Journal of virology,2003,77(13):7645-7654.
    [26]Bauhofer O, Summerfield A, Sakoda Y, et al. Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation [J]. Journal of virology,2007,81(7):3087-3096.
    [27]La Rocca S A, Herbert R J, Crooke H, et al. Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro [J]. Journal of virology,2005,79(11):7239-7247.
    [28]Mayer D, Hofmann M A, Tratschin J D. Attenuation of classical swine fever virus by deletion of the viral Npro gene [J]. Vaccine,2004,22(3):317-328.
    [29]Lattwein E, Klemens O, Schwindt S, et al. Pestivirus virion morphogenesis in the absence of uncleaved nonstructural protein 2-3 [J]. J Virol,2012,86(1):427-437.
    [30]Moormann R J, Van Gennip H G, Miedema G K, et al. Infectious RNA transcribed from an engineered full-length cDNA template of the genome of a pestivirus [J]. J Virol,1996,70(2):763-770.
    [31]Balint A, Baule C, Palfi V, et al. A 45-nucleotide insertion in the NS2 gene is responsible for the cytopathogenicity of a bovine viral diarrhoea virus strain [J]. Virus Genes,2005,31(2):135-144.
    [32]Balint A, Palfi V, Belak S, et al. Viral sequence insertions and a novel cellular insertion in the NS2 gene of cytopathic isolates of bovine viral diarrhea virus as potential cytopathogenicity markers [J]. Virus Genes,2005,30(1):49-58.
    [33]Dumoulin F L, Von Dem Bussche A, Li J, et al. Hepatitis C virus NS2 protein inhibits gene expression from different cellular and viral promoters in hepatic and nonhepatic cell lines [J]. Virology,2003,305(2):260-266.
    [34]Xu J, Mendez E, Caron P R, et al. Bovine viral diarrhea virus NS3 serine proteinase: polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication [J]. J Virol,1997,71(7):5312-5322.
    [35]Grassmann C W, Isken O, Behrens S E. Assignment of the multifunctional NS3 protein of bovine viral diarrhea virus during RNA replication:an in vivo and in vitro study [J]. J Virol,1999,73(11):9196-9205.
    [36]Wen G, Xue J, Shen Y, et al. Characterization of classical swine fever virus (CSFV) nonstructural protein 3 (NS3) helicase activity and its modulation by CSFV RNA-dependent RNA polymerase [J]. Virus Res,2009,141(1):63-70.
    [37]Moulin H R, Seuberlich T, Bauhofer O, et al. Nonstructural proteins NS2-3 and NS4A of classical swine fever virus:essential features for infectious particle formation [J]. Virology,2007,365(2):376-389.
    [38]Zhu Z, Wang Y, Yu J, et al. Classical swine fever virus NS3 is an IRES-binding protein and increases I RES-dependent translation [J]. Virus Res,2010,153(1): 106-112.
    [39]Voigt H, Wienhold D, Marquardt C, et al. Immunity against NS3 protein of classical swine fever virus does not protect against lethal challenge infection [J]. Viral Immunol,2007,20(3):487-494.
    [40]He X S. Regulation of Adaptive Immunity by HCV [M].2006,
    [41]Grassmann C W, Isken O, Tautz N, et al. Genetic analysis of the pestivirus nonstructural coding region:defects in the NS5A unit can be complemented in trans [J]. J Virol,2001,75(17):7791-7802.
    [42]Reed K E, Gorbalenya A E, Rice C M. The NS5A/NS5 proteins of viruses from three genera of the family flaviviridae are phosphorylated by associated serine/threonine kinases [J]. J Virol,1998,72(7):6199-6206.
    [43]Johnson C M, Perez D R, French R, et al. The NS5A protein of bovine viral diarrhoea virus interacts with the alpha subunit of translation elongation factor-1 [J]. J Gen Virol,2001,82(Pt 12):2935-2943.
    [44]刘湘涛.猪瘟病毒和猪瘟的防制[M].中国农业科技出版社.1996.
    [45]沈青春,宁宜宝,王琴,等.猪瘟病毒持续感染对母猪繁殖性能及仔猪猪瘟疫苗免疫效力的影响[J].畜牧兽医学报,2004,04):449-453.
    [46]丘惠深.猪瘟的持续性感染的根源在于带毒母猪[J].养猪,2004,2004(3):29-30.
    [47]Tu C, Lu Z, Li H, et al. Phylogenetic comparison of classical swine fever virus in China [J]. Virus Res,2001,81(1-2):29-37.
    [48]Paton D J, Mcgoldrick A, Greiser-Wilke I, et al. Genetic typing of classical swine fever virus [J]. Vet Microbiol,2000,73(2-3):137-157.
    [49]王琴,宁宜宝,赵耘,等.9株猪瘟分离毒株的致病特性[J].中国兽医学报,2007,27(2):145-149.
    [50]王在时,丘惠深,郎洪武,等.猪瘟病毒流行株与疫苗株主要抗原编码基因差异研究[J].中国兽药杂志,2001,35(1):1-3.
    [51]丘惠深,郎洪武,王在时.猪瘟兔化弱毒疫苗与我国近年猪瘟野毒的免疫保护相关性试验[J].中国兽药杂志,1997,31(3):115-117.
    [52]Aynaud J M, Corthier G, Laude H, et al. Sub-clinical swine fever:a survey of neutralizing antibodies in ther sera of pigs from herds having reproductive failures [J]. Ann Rech Vet,1976,7(1):57-64.
    [53]Suradhat S, Damrongwatanapokin S. The influence of maternal immunity on the efficacy of a classical swine fever vaccine against classical swine fever virus, genogroup 2.2, infection [J]. Vet Microbiol,2003,92(1-2):187-194.
    [54]周远成.CSFV SM株感染对猪外周血白细胞的影响以及在猪体内的分布[D];硕士学位论文,雅安,四川农业大学,2009.
    [55]Moennig V, Floegel-Niesmann G, Greiser-Wilke I. Clinical signs and epidemiology of classical swine fever:a review of new knowledge [J]. The Veterinary Journal, 2003,165(1):11-20.
    [56]De Las Mulas J M, Ruiz-Villamor E, Donoso S, et al. Immunohistochemical detection of hog cholera viral glycoprotein 55 in paraffin-embedded tissues [J]. Journal of Veterinary Diagnostic Investigation,1997,9(1):10.
    [57]Summerfield A, Knotig S M, Mccullough K C. Lymphocyte apoptosis during classical swine fever:implication of activation-induced cell death [J]. Journal of Virology,1998,72(3):1853-1861.
    [58]刘俊,王琴,范学政,等.猪瘟病毒急性感染后病毒载量的动态分布规律研究[J].中国畜牧兽医学会2008年学术年会暨第六届全国畜牧兽医青年科技工作者学术研讨会论文集,2008,
    [59]Ohno M, Natsume A, Wakabayashi T. Cytokine therapy [J]. Adv Exp Med Biol, 2012,746(86-94.
    [60]Babizhayev M A, Deyev A I. Management of the virulent influenza virus infection by oral formulation of nonhydrolized carnosine and isopeptide of carnosine attenuating proinflammatory cytokine-induced nitric oxide production [J]. Am J Ther,2012,19(1):e25-47.
    [61]Bueno S M, Gonzalez P A, Riedel C A, et al. Local cytokine response upon respiratory syncytial virus infection [J]. Immunol Lett,2011,136(2):122-129.
    [62]Uchide N, Ohyama K, Bessho T, et al. Induction of pro-inflammatory cytokine gene expression and apoptosis in human chorion cells of fetal membranes by influenza virus infection:possible implications for maintenance and interruption of pregnancy during infection [J]. Med Sci Monit,2005,11(1):RA7-16.
    [63]Subauste C S. CD154 and type-1 cytokine response:from hyper IgM syndrome to human immunodeficiency virus infection [J]. J Infect Dis,2002,185 Suppl 1(S83-89.
    [64]Julkunen I, Sareneva T, Pirhonen J, et al. Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression [J]. Cytokine Growth Factor Rev,2001,12(2-3):171-180.
    [65]Sellheyer K, Bergfeld W F. A retrospective biopsy study of the clinical diagnostic accuracy of common skin diseases by different specialties compared with dermatology [J]. J Am Acad Dermatol,2005,52(5):823-830.
    [66]Casciari J J, Sato H, Durum S K, et al. Reference databases of cytokine structure and function [J]. Cancer Chemother Biol Response Modif,1996,16(315-346.
    [67]Cohen M C, Cohen S. Cytokine function:a study in biologic diversity [J]. Am J Clin Pathol,1996,105(5):589-598.
    [68]Min J Y, Jang Y J. Macrolide therapy in respiratory viral infections [J]. Mediators Inflamm,2012,2012(649570.
    [69]Muller U, Steinhoff U, Reis L F, et al. Functional role of type Ⅰ and type Ⅱ interferons in antiviral defense [J]. Science,1994,264(5167):1918-1921.
    [70]Welsh R M, Bahl K, Marshall H D, et al. Type 1 interferons and antiviral CD8 T-cell responses [J]. PLoS Pathog,2012,8(1):e1002352.
    [71]Fallahi P, Ferri C, Ferrari S M, et al. Cytokines and HCV-related disorders [J]. Clin Dev Immunol,2012,2012(468107.
    [72]El-Zayadi A R, Anis M. Hepatitis C virus induced insulin resistance impairs response to anti viral therapy [J]. World J Gastroenterol,2012,18(3):212-224.
    [73]Sahin H, Borkham-Kamphorst E, Do O N, et al. Pro-apoptotic effects of the chemokine CXCL10 are mediated by the non-cognate receptor TLR4 in hepatocytes [J].Hepatology,2012,
    [74]Singh A K, Arya R K, Trivedi A K, et al. Chemokine receptor trio:CXCR3, CXCR4 and CXCR7 crosstalk via CXCL11 and CXCL12 [J]. Cytokine Growth Factor Rev, 2012,
    [75]Sung J H, Zhang H, Moseman E A, et al. Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes [J]. Cell,2012,150(6): 1249-1263.
    [76]Thiele S, Malmgaard-Clausen M, Engel-Andreasen J, et al. Modulation in Selectivity and Allosteric Properties of Small-Molecule Ligands for CC-Chemokine Receptors [J]. J Med Chem,2012,55(18):8164-8177.
    [77]Orita T, Kimura K, Nishida T, et al. Cytokine and Chemokine Secretion Induced by Poly(I:C) through NF-kappaB and Phosphoinositide 3-Kinase Signaling Pathways in Human Corneal Fibroblasts [J]. Curr Eye Res,2012,
    [78]Antman K H. G-CSF and GM-CSF in clinical trials [J]. Yale J Biol Med,1990, 63(5):387-410.
    [79]Ruef C, Coleman D L. [GM-CSF and G-CSF:cytokines in clinical application] [J]. Schweiz Med Wochenschr,1991,121(12):397-412.
    [80]Wu C H, Hu Y F, Chou C Y, et al. Transforming Growth Factor ssl Level and Outcome after Catheter Ablation for Non-paroxysmal Atrial Fibrillation [J]. Heart Rhythm,2012,
    [81]Wang Y, Krishna S, Walker P J, et al. Transforming growth factor-beta and abdominal aortic aneurysms [J]. Cardiovasc Pathol,2012,
    [82]Ween M P, Oehler M K, Ricciardelli C. Transforming Growth Factor-Beta-Induced Protein (TGFBI)/(betaig-H3):A Matrix Protein with Dual Functions in Ovarian Cancer [J]. Int J Mol Sci,2012,13(8):10461-10477.
    [83]Park S Y, Lee J Y, Tak W Y, et al. Erythropoietin decreases carbon tetrachloride-induced hepatic fibrosis by inhibiting transforming growth factor-beta [J]. Chin Med J (Engl),2012,125(17):3098-3103.
    [84]Hirschhorn T, Barizilay L, Smorodinsky N I, et al. Differential Regulation of Smad3 and of the Type II Transforming Growth Factor-beta Receptor in Mitosis: Implications for Signaling [J]. PLoS ONE,2012,7(8):e43459.
    [85]Horiguchi M, Ota M, Rifkin D B. Matrix control of transforming growth factor-beta function [J]. J Biochem,2012,152(4):321-329.
    [86]Xiong Y Y, Wang J S, Wu F H, et al. The effects of (+/-)-Praeruptorin A on airway inflammation, remodeling and transforming growth factor-beta1/Smad signaling pathway in a murine model of allergic asthma [J]. Int Immunopharmacol,2012, 14(4):392-400.
    [87]Termen S, Tan E J, Heldin C H, et al. p53 regulates epithelial-mesenchymal transition induced by transforming growth factor beta [J]. J Cell Physiol,2012,
    [88]Morrissey J J. Direct or indirect endothelial cell transforming growth factor-beta receptor activation initiates arteriolar hyalinosis [J]. Kidney Int,2012,82(8): 838-839.
    [89]Lee M H, Choi E N, Jeon Y J, et al. Possible role of transforming growth factor-betal and vascular endothelial growth factor in Fabry disease nephropathy [J]. Int J Mol Med,2012,
    [90]Khan R, Gupta S, Sharma A. Circulatory levels of T-cell cytokines IL-2, IL-4, IL-17,and transforming growth factor-beta) in patients with vitiligo [J]. J Am Acad Dermatol,2012,66(3):510-511.
    [91]Utsal L, Tillmann V, Zilmer M, et al. Elevated serum IL-6, IL-8, MCP-1, CRP, and IFN-gamma levels in 10-to 11-year-old boys with increased BMI [J]. Horm Res Paediatr,2012,78(1):31-39.
    [92]Lu H, Xin Y, Tang Y, et al. Zinc Suppressed the Airway Inflammation in Asthmatic Rats:Effects of Zinc on Generation of Eotaxin, MCP-1, IL-8, IL-4, and IFN-gamma [J]. Biol Trace Elem Res,2012,
    [93]Pardanani A, Begna K, Finke C, et al. Circulating levels of MCP-1, sIL-2R, IL-15, and IL-8 predict anemia response to pomalidomide therapy in myelofibrosis [J]. Am J Hematol,2011,86(4):343-345.
    [94]Asano M, Yamaguchi M, Nakajima R, et al. IL-8 and MCP-1 induced by excessive orthodontic force mediates odontoclastogenesis in periodontal tissues [J]. Oral Dis, 2011,17(5):489-498.
    [95]Knoetig S M, Mccullough K C, Summerfield A. Lipopolysaccharide-induced impairment of classical swine fever virus infection in monocytic cells is sensitive to 2-aminopurine [J]. Antiviral Res,2002,53(1):75-81.
    [96]Carrasco C P, Rigden R C, Vincent I E, et al. Interaction of classical swine fever virus with dendritic cells [J]. J Gen Virol,2004,85(Pt 6):1633-1641.
    [97]Ruggli N, Bird B H, Liu L, et al. N(pro) of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-alpha/beta induction [J]. Virology,2005,340(2):265-276.
    [98]Borca M V, Gudmundsdottir I, Fernandez-Sainz I J, et al. Patterns of cellular gene expression in swine macrophages infected with highly virulent classical swine fever virus strain Brescia [J]. Virus Res,2008,138(1-2):89-96.
    [99]Zaffuto K M, Piccone M E, Burrage T G, et al. Classical swine fever virus inhibits nitric oxide production in infected macrophages [J]. J Gen Virol,2007,88(Pt 11): 3007-3012.
    [100]Sato M, Mikami O, Kobayashi M, et al. Apoptosis in the lymphatic organs of piglets inoculated with classical swine fever virus [J]. Vet Microbiol,2000,75(1): 1-9.
    [101]Van Reeth K, Labarque G, Nauwynck H, et al. Differential production of proinflammatory cytokines in the pig lung during different respiratory virus infections:correlations with pathogenicity [J]. Res Vet Sci,1999,67(1):47-52.
    [102]Yang Y, Chen J, Li H, et al. Porcine interleukin-2 gene encapsulated in chitosan nanoparticles enhances immune response of mice to piglet paratyphoid vaccine [J]. Comp Immunol Microbiol Infect Dis,2007,30(1):19-32.
    [103]Bray M. Pathogenesis of viral hemorrhagic fever [J]. Curr Opin Immunol,2005, 17(4):399-403.
    [104]Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response [J]. Nature,2006,442(7098):39-44.
    [105]Goodman R B, Foster D C, Mathewes S L, et al. Molecular cloning of porcine alveolar macrophage-derived neutrophil chemotactic factors Ⅰ and Ⅱ; identification of porcine IL-8 and another intercrine-alpha protein [J]. Biochemistry,1992, 31(43):10483-10490.
    [106]Summerfield A, Alves M, Ruggli N, et al. High IFN-alpha responses associated with depletion of lymphocytes and natural IFN-producing cells during classical swine fever [J]. J Interferon Cytokine Res,2006,26(4):248-255.
    [107]Chen N, Tong C, Li D, et al. Antigenic analysis of classical swine fever virus E2 glycoprotein using pig antibodies identifies residues contributing to antigenic variation of the vaccine C-strain and group 2 strains circulating in China [J]. Virol J,2010,7(1):378.
    [108]Mayer D, Thayer T M, Hofmann M A, et al. Establishment and characterisation of two cDNA-derived strains of classical swine fever virus, one highly virulent and one avirulent [J]. Virus Res,2003,98(2):105-116.
    [109]Ruggli N, Moser C, Mitchell D, et al. Baculovirus expression and affinity purification of protein E2 of classical swine fever virus strain Alfort/187 [J]. Virus Genes,1995,10(2):115-126.
    [110]Rasmussen T B, Reimann I, Uttenthal A, et al. Generation of recombinant pestiviruses using a full-genome amplification strategy [J]. Vet Microbiol,2010, 142(1-2):13-17.
    [111]Zhao J J, Cheng D, Li N, et al. Evaluation of a multiplex real-time RT-PCR for quantitative and differential detection of wild-type viruses and C-strain vaccine of Classical swine fever virus [J]. Vet Microbiol,2008,126(1-3):1-10.
    [112]Lin Y J, Chien M S, Deng M C, et al. Complete sequence of a subgroup 3.4 strain of classical swine fever virus from Taiwan [J]. Virus Genes,2007,35(3):737-744.
    [113]Ishikawa K, Nagai H, Katayama K, et al. Comparison of the entire nucleotide and deduced amino acid sequences of the attenuated hog cholera vaccine strain GPE-and the wild-type parental strain ALD [J]. Arch Virol,1995,140(8):1385-1391.
    [114]Fletcher S P, Ali I K, Kaminski A, et al. The influence of viral coding sequences on pestivirus IRES activity reveals further parallels with translation initiation in prokaryotes [J]. RNA,2002,8(12):1558-1571.
    [115]Weesendorp E, Backer J, Stegeman A, et al. Transmission of classical swine fever virus depends on the clinical course of infection which is associated with high and low levels of virus excretion [J]. Vet Microbiol,2010,
    [116]Tignon M, Kulcsar G, Haegeman A, et al. Classical swine fever:comparison of oronasal immunisation with CP7E2alf marker and C-strain vaccines in domestic pigs [J]. Vet Microbiol,2010,142(1-2):59-68.
    [117]Riedel C, Lamp B, Heimann M, et al. Characterization of essential domains and plasticity of the classical Swine Fever virus Core protein [J]. J Virol,2010,84(21): 11523-11531.
    [118]Wang Y, Wang Q, Lu X, et al.12-nt insertion in 3'untranslated region leads to attenuation of classic swine fever virus and protects host against lethal challenge [J]. Virology,2008,374(2):390-398.
    [119]Xiao M, Gao J, Wang Y, et al. Influence of a 12-nt insertion present in the 3' untranslated region of classical swine fever virus HCLV strain genome on RNA synthesis [J]. Virus Res,2004,102(2):191-198.
    [120]Klump W M, Bergmann I, Muller B C, et al. Complete nucleotide sequence of infectious Coxsackievirus B3 cDNA:two initial 5'uridine residues are regained during plus-strand RNA synthesis [J]. J Virol,1990,64(4):1573-1583.
    [121]Moormann R J, Warmerdam P A, Van Der Meer B, et al. Molecular cloning and nucleotide sequence of hog cholera virus strain Brescia and mapping of the genomic region encoding envelope protein E1 [J]. Virology,1990,177(1): 184-198.
    [122]Chen N, Hu H, Zhang Z, et al. Genetic diversity of the envelope glycoprotein E2 of classical swine fever virus:recent isolates branched away from historical and vaccine strains [J]. Vet Microbiol,2008,127(3-4):286-299.
    [123]汤波.猪瘟病毒E2基因RT-PCR检测方法的建立及病毒分子流行病学研究[D];重庆:西南大学,预防兽医学,2009.
    [124]杨泽林,曾政,冉智光,等.高致病性猪蓝耳病与经典猪蓝耳病二重RT-PCR检测方法的建立及应用[J].畜牧市场,2010,012):10-12.
    [125]石建平,宣华,卢强,等.伪狂犬病病毒PCR检测方法的建立及初步应用[J].中国预防兽医学报,1996,5(
    [126]吴淑芳,付瑞,邢瑞昌,等.猪细小病毒PCR检测方法的建立与应用[J].中国生物制品学杂志,2007,20(4):292-295.
    [127]曹胜波,陈焕春.猪环状病毒2型的PCR检测方法的建立及应用[J].华中农业大学学报,2001,20(001):53-56.
    [128]钟金栋,花群义,夏雪山,等.猪水泡病病毒RT-PCR检测方法的建立[J].中国农学通报,2006,22(12):
    [129]Mittelholzer C, Moser C, Tratschin J D, et al. Porcine cells persistently infected with classical swine fever virus protected from pestivirus-induced cytopathic effect [J]. Journal of General Virology,1998,79(12):2981.
    [130]吴文福,宁宜宝.我国猪瘟流行新特点与疫苗免疫研究[J].中国兽药杂志,2011,08):33-37.
    [131]王刚.非典型猪瘟猪瘟持续感染[J].中国畜牧兽医文摘,2010,02):29-30.
    [132]田宏,刘湘涛,张彦明,等.猪瘟病毒及其致病机制研究进展[J].动物医学进展,2007,28(B08):27-30.
    [133]王琴,宁宜宝.猪瘟免疫失败的主要原因分析[J].猪世界,2003,7(7-9.
    [134]宁宜宝,王琴,赵耘.猪瘟病毒持续感染与猪瘟预防控制[J].中国兽药杂志,2005,39(5):31-35.
    [135]宁宜宝,王琴,丘惠深,等.猪瘟病毒持续感染对母猪繁殖性能及仔猪猪瘟疫 苗免疫效力的影响[J].畜牧兽医学报,2004,35(4):449-453.
    [136]Gabay C. Interleukin-6 and chronic inflammation [J]. Arthritis Research and Therapy,2006,8(2):3.
    [137]Vrancken R, Haegeman A, Paeshuyse J, et al. Proof of concept for the reduction of classical swine fever infection in pigs by a novel viral polymerase inhibitor [J]. J Gen Virol,2009,90(Pt 6):1335-1342.
    [138]Gisler A C, Nardi N B, Nonnig R B, et al. Classical swine fever virus in plasma and peripheral blood mononuclear cells of acutely infected swine [J]. Zentralbl Veterinarmed B,1999,46(9):585-593.
    [139]Tan Y M, Loke K Y. Quantitative real-time polymerase chain reaction (RQ-PCR) for the rapid detection of SHOX haploinsufficiency in Leri-Weill Syndrome [J]. Diagn Mol Pathol,2005,14(4):247-249.
    [140]Leroy H, De Botton S, Grardel-Duflos N, et al. Prognostic value of real-time quantitative PCR (RQ-PCR) in AML with t(8;21) [J]. Leukemia,2005,19(3): 367-372.
    [141]Silvy M, Pic G, Gabert J, et al. Improvement of gene expression analysis by RQ-PCR technology:addition of BSA [J]. Leukemia,2004,18(5):1022-1025.
    [142]Summerfield A, Mcneilly F, Walker I, et al. Depletion of CD4+ and CD8high+ T-cells before the onset of viraemia during classical swine fever [J]. Veterinary Immunology and Immunopathology,2001,78(1):3-19.
    [143]Sato M, Mikami O, Kobayashi M, et al. Apoptosis in the lymphatic organs of piglets inoculated with classical swine fever virus [J]. Veterinary microbiology, 2000,75(1):1-9.
    [144]孙金福,史子学,郭焕成,等.猪瘟病毒感染猪外周白细胞凋亡及CD4+和CD8+T淋巴细胞亚群的变化[J].中国兽医科学,2008(4):342-345.
    [145]Aasland D, Oppmann B, Grotzinger J, et al. The upper cytokine-binding module and the Ig-like domain of the leukaemia inhibitory factor (LIF) receptor are sufficient for a functional LIF receptor complex [J]. J Mol Biol,2002,315(4): 637-646.
    [146]Poggi A, Zancolli M, Boero S, et al. Differential survival of gammadeltaT cells, alphabetaT cells and NK cells upon engagement of NKG2D by NKG2DL-expressing leukemic cells [J]. Int J Cancer,2011,129(2):387-396.
    [147]Guan H, Zu G, Slater M, et al. GammadeltaT cells regulate the development of hapten-specific CD8+ effector T cells in contact hypersensitivity responses [J]. J Invest Dermatol,2002,119(1):137-142.
    [148]Montesano C, Gioia C, Martini F, et al. Antiviral activity and anergy of gammadeltaT lymphocytes in cord blood and immuno-compromised host [J]. J Biol Regul Homeost Agents,2001,15(3):257-264.
    [149]Zhang B N, Watanabe S, Kohyama M, et al. Tumor formation suppressed in gammadeltaT knock-out mice [J]. Cancer Lett,2000,153(1-2):63-66.
    [150]Molloy M J, Zhang W, Usherwood E J. Suppressive CD8+ T cells arise in the absence of CD4 help and compromise control of persistent virus [J]. J Immunol, 2011,186(11):6218-6226.
    [151]Chen A, Ahlen G, Brenndorfer E D, et al. Heterologous T cells can help restore function in dysfunctional hepatitis C virus nonstructural 3/4A-specific T cells during therapeutic vaccination [J]. J Immunol,2011,186(9):5107-5118.
    [152]Frank G M, Lepisto A J, Freeman M L, et al. Early CD4(+) T cell help prevents partial CD8(+) T cell exhaustion and promotes maintenance of Herpes Simplex Virus 1 latency [J]. J Immunol,2010,184(1):277-286.
    [153]Iwadate Y, Yamaura A, Sakiyama S, et al. Glioma-specific cytotoxic T cells can be effectively induced by subcutaneous vaccination of irradiated wild-type tumor cells without artificial cytokine production [J]. Int J Oncol,2003,23(2):483-488.
    [154]Shirai M, Fujinaga R, Masaki T, et al. Impaired development of HIV-1 gp160-specific CD8(+) cytotoxic T cells by a delayed switch from Thl to Th2 cytokine phenotype in mice with Helicobacter pylori infection [J]. Eur J Immunol, 2001,31(2):516-526.
    [155]Shirai M, Nishioka M. [Induction of cytotoxic T cells specific for HCV-NS5 and cytokine] [J]. Nippon Rinsho,1995,53 Suppl(Pt 1):163-169.
    [156]Snyder J E, Bowers W J, Livingstone A M, et al. Measuring the frequency of cytokine secretion and short-term killing [J]. Nat Med,2003,9(2):231-235.
    [157]Graham S P, Everett H E, Johns H L, et al. Characterisation of virus-specific peripheral blood cell cytokine responses following vaccination or infection with classical swine fever viruses [J]. Vet Microbiol,2010,142(1-2):34-40.
    [158]Zhao H P, Sun J F, Li N, et al. Assessment of the cell-mediated immunity induced by alphavirus replicon-vectored DNA vaccines against classical swine fever in a mouse model [J]. Vet Immunol Immunopathol,2009,129(1-2):57-65.
    [159]Suradhat S, Sada W, Buranapraditkun S, et al. The kinetics of cytokine production and CD25 expression by porcine lymphocyte subpopulations following exposure to classical swine fever virus (CSFV) [J]. Vet Immunol Immunopathol,2005, 106(3-4):197-208.
    [160]Suradhat S, Thanawongnuwech R, Poovorawan Y. Upregulation of IL-10 gene expression in porcine peripheral blood mononuclear cells by porcine reproductive and respiratory syndrome virus [J]. J Gen Virol,2003,84(Pt 2):453-459.
    [161]Wikstrom F H, Fossum C, Fuxler L, et al. Cytokine induction by immunostimulatory DNA in porcine PBMC is impaired by a hairpin forming sequence motif from the genome of Porcine Circovirus type 2 (PCV2) [J]. Vet Immunol Immunopathol,2010,
    [162]Sun J, Shi Z, Guo H, et al. Changes in the porcine peripheral blood mononuclear cell proteome induced by infection with highly virulent classical swine fever virus [J]. J Gen Virol,2010,91(Pt 9):2254-2262.
    [163]Stoddard M B, Pinto V, Keiser P B, et al. Evaluation of a whole-blood cytokine release assay for use in measuring endotoxin activity of group B Neisseria meningitidis vaccines made from lipid A acylation mutants [J]. Clin Vaccine Immunol,2010,17(1):98-107.
    [164]Feng L, Li X Q, Li X N, et al. In vitro infection with classical swine fever virus inhibits the transcription of immune response genes [J]. Virol J,2012,9(175.
    [165]Xiang L, Marshall G D, Jr. Immunomodulatory effects of in vitro stress hormones on FoxP3, Th1/Th2 cytokine and costimulatory molecule mRNA expression in human peripheral blood mononuclear cells [J]. Neuroimmunomodulation,2011, 18(1):1-10.
    [166]Jin J, Joo K M, Lee S J, et al. Synergistic therapeutic effects of cytokine-induced killer cells and temozolomide against glioblastoma [J]. Oncol Rep,2011,25(1): 33-39.
    [167]Valli J L, Williamson A, Sharif S, et al. In vitro cytokine responses of peripheral blood mononuclear cells from healthy dogs to distemper virus, Malassezia and Toxocara [J]. Vet Immunol Immunopathol,2010,134(3-4):218-229.
    [168]Ferreira D M, Darrieux M, Oliveira M L, et al. Optimized immune response elicited by a DNA vaccine expressing pneumococcal surface protein a is characterized by a balanced immunoglobulin G1 (IgGl)/IgG2a ratio and proinflammatory cytokine production [J]. Clin Vaccine Immunol,2008,15(3): 499-505.
    [169]Forlani S, Ratta L, Bulgheroni A, et al. Cytokine profile of broncho-alveolar lavage in BOOP and UIP [J]. Sarcoidosis Vasc Diffuse Lung Dis,2002,19(1): 47-53.
    [170]Nath I, Vemuri N, Reddi A L, et al. The effect of antigen presenting cells on the cytokine profiles of stable and reactional lepromatous leprosy patients [J]. Immunol Lett,2000,75(1):69-76.
    [171]Pannwitz G, Freuling C, Denzin N, et al. A long-term serological survey on Aujeszky's disease virus infections in wild boar in East Germany [J]. Epidemiol Infect,2011,1-11.
    [172]Husebye E E, Opdahl H, Roise O, et al. Coagulation, fibrinolysis and cytokine responses to intramedullary nailing of the femur:An experimental study in pigs comparing traditional reaming and reaming with a one-step reamer-irrigator-aspirator system [J]. Injury,2010,
    [173]Floegel-Niesmann G, Blome S, Gerss-Dulmer H, et al. Virulence of classical swine fever virus isolates from Europe and other areas during 1996 until 2007 [J]. Vet Microbiol,2009,139(1-2):165-169.
    [174]Wang S M, Lei H Y, Huang M C, et al. Modulation of cytokine production by intravenous immunoglobulin in patients with enterovirus 71-associated brainstem encephalitis [J]. J Clin Virol,2006,37(1):47-52.
    [175]Bourke C D, Nausch N, Rujeni N, et al. Integrated Analysis of Innate, Thl, Th2, Thl7, and Regulatory Cytokines Identifies Changes in Immune Polarisation Following Treatment of Human Schistosomiasis [J]. J Infect Dis,2012,
    [176]Albrecht M, Arnhold M, Lingner S, et al. IL-4 Attenuates Pulmonary Epithelial Cell-Mediated Suppression of T Cell Priming [J]. PLoS ONE,2012,7(9):e45916.
    [177]Nayar R, Enos M, Prince A, et al. TCR signaling via Tec kinase ITK and interferon regulatory factor 4 (IRF4) regulates CD8+T-cell differentiation [J]. Proc Natl Acad Sci U S A,2012,109(41):E2794-2802.
    [178]Mehdizadeh Aghdam E, Mahmoudi Azar L, Barzegari A, et al. Effect of periplasmic expression of recombinant mouse interleukin-4 on hydrogen peroxide concentration and catalase activity in Escherichia coli [J]. Gene,2012,
    [179]Grant M, Wilson J, Rock P, et al. Induction of cytokines, MMP9, TIMPs, RANKL and OPG during orthodontic tooth movement [J]. Eur J Orthod,2012,
    [180]Jiang W G, Sanders A J, Ruge F, et al. Influence of interleukin-8 (IL-8) and IL-8 receptors on the migration of human keratinocytes, the role of PLC-gamma and potential clinical implications [J]. Exp Ther Med,2012,3(2):231-236.
    [181]Kiorpelidou E, Foster B, Farrell J, et al. IL-8 release from human neutrophils cultured with pro-haptenic chemical sensitizers [J]. Chem Res Toxicol,2012, 25(10):2054-2056.
    [182]Tekpli X, Landvik N E, Anmarkud K H, et al. DNA methylation at promoter regions of interleukin 1B, interleukin 6, and interleukin 8 in non-small cell lung cancer [J]. Cancer Immunol Immunother,2012,
    [183]Savolainen J, Nieminen K, Laaksonen K, et al. Allergen-induced in vitro expression of IL-18, SLAM and GATA-3 mRNA in PBMC during sublingual immunotherapy [J]. Allergy,2007,62(8):949-953.
    [184]Tseng Y M, Chen S Y, Chen C H, et al. Effects of alcohol-induced human peripheral blood mononuclear cell (PBMC) pretreated whey protein concentrate (WPC) on oxidative damage [J]. J Agric Food Chem,2008,56(17):8141-8147.
    [185]Aoki C A, Dawson K, Kenny T P, et al. Gene expression by PBMC in primary sclerosing cholangitis:evidence for dysregulation of immune mediated genes [J]. Clin Dev Immunol,2006,13(2-4):265-271.
    [186]Ghosh S, Zang S, Mitra P S, et al. Global gene expression and Ingenuity biological functions analysis on PCBs 153 and 138 induced human PBMC in vitro reveals differential mode(s) of action in developing toxicities [J]. Environ Int,2011,37(5): 838-857.
    [187]D'avolio A, Simiele M, De Francia S, et al. HPLC-MS method for the simultaneous quantification of the antileukemia drugs imatinib, dasatinib and nilotinib in human peripheral blood mononuclear cell (PBMC) [J]. J Pharm Biomed Anal,2012,59:109-116.
    [188]Ramani P, Balkwill F R. Action of recombinant alpha interferon against experimental and spontaneous metastases in a murine model [J]. Int J Cancer,1989, 43(1):140-146.
    [189]Diamond M, Kelly J P, Connor T J. Antidepressants suppress production of the Thl cytokine interferon-gamma, independent of monoamine transporter blockade [J]. Eur Neuropsychopharmacol,2006,16(7):481-490.
    [190]Friedman R M. Antiviral activity of interferons [J]. Bacteriol Rev,1977,41(3): 543-567.
    [191]Luo R, Fang L, Jin H, et al. Antiviral activity of type I and type III interferons against porcine reproductive and respiratory syndrome virus (PRRSV) [J]. Antiviral Res,2011,91(2):99-101.
    [192]Zhou H, Zhao J, Perlman S. Autocrine interferon priming in macrophages but not dendritic cells results in enhanced cytokine and chemokine production after coronavirus infection [J]. MBio,2010,1(4):
    [193]Bauhofer O, Summerfield A, Mccullough K C, et al. Role of double-stranded RNA and Npro of classical swine fever virus in the activation of monocyte-derived dendritic cells [J]. Virology,2005,343(1):93-105.
    [194]Assiri A M, Ott T L. Cloning and characterizing of the ovine MX1 gene promoter/enhancer region [J]. Dev Comp Immunol,2007,31(8):847-857.
    [195]Collet B, Boudinot P, Benmansour A, et al. An Mx1 promoter-reporter system to study interferon pathways in rainbow trout [J]. Dev Comp Immunol,2004,28(7-8): 793-801.
    [196]Bazhan S I, Belova O E. Interferon-induced antiviral resistance. A mathematical model of regulation of Mx1 protein induction and action [J]. J Theor Biol,1999, 198(3):375-393.
    [197]Dessens J T, Nuttall P A. Mxl-based resistance to thogoto virus in A2G mice is bypassed in tick-mediated virus delivery [J]. J Virol,1998,72(10):8362-8364.
    [198]Thimme R, Frese M, Kochs G, et al. Mxl but not MxA confers resistance against tick-borne Dhori virus in mice [J]. Virology,1995,211(1):296-301.
    [199]Sugita S, Shimizu N, Watanabe K, et al. Virological analysis in patients with human herpes virus 6-associated ocular inflammatory disorders [J]. Invest Ophthalmol Vis Sci,2012,53(8):4692-4698.
    [200]Josset L, Belser J A, Pantin-Jackwood M J, et al. Implication of inflammatory macrophages, nuclear receptors, and interferon regulatory factors in increased virulence of pandemic 2009 H1N1 influenza A virus after host adaptation [J]. J Virol,2012,86(13):7192-7206.
    [201]Subbalaxmi M V, Prasad A K, Shetty M, et al. Immune reconstitution and inflammatory syndrome due to disseminated tuberculosis in a case of human immunodeficiency virus 2 infection [J]. Indian J Pharmacol,2011,43(3):352-354.
    [202]Sankaran-Walters S, Ransibrahmanakul K, Grishina I, et al. Epstein-Barr virus replication linked to B cell proliferation in inflamed areas of colonic mucosa of patients with inflammatory bowel disease [J]. J Clin Virol,2011,50(1):31-36.
    [203]Li Y, Dinwiddie D L, Harrod K S, et al. Anti-inflammatory effect of MUC1 during respiratory syncytial virus infection of lung epithelial cells in vitro [J]. Am J Physiol Lung Cell Mol Physiol,2010,298(4):L558-563.
    [204]Li X, Hanson C, Cmarik J L, et al. Neurodegeneration induced by PVC-211 murine leukemia virus is associated with increased levels of vascular endothelial growth factor and macrophage inflammatory protein 1 alpha and is inhibited by blocking activation of microglia [J]. J Virol,2009,83(10):4912-4922.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700