用户名: 密码: 验证码:
脂肪基质干细胞移植治疗急性心肌梗死的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分脂肪来源与骨髓来源的基质干细胞的比较
     目的比较脂肪来源基质干细胞(ASCs)与骨髓来源的基质干细胞(MSCs)分离效率、表面抗原及免疫原性特点,为ASCs的细胞移植治疗提供实验依据。方法人脂肪组织用胶原蛋白酶Ⅰ消化,对消化后分离的有核细胞贴壁法培养获得ASCs。骨髓组织用密度梯度离心,获得单个核细胞,贴壁法培养获得MSCs,对培养前后的细胞计数并进行比较,流式细胞仪测定两种培养后细胞的CD13、CD29、CD31、CD34、CD44、CD45、CD49d、CD105、CD106、HLA-DR等表面抗原表达。分别以不同数量细胞加入到外周血混合淋巴细胞培养体系和植物血凝素(PHA)刺激的外周血淋巴细胞转化体系中,用MTT还原法测定细胞增殖,分别观察ASCs和MSCs对混合淋巴细胞反应和淋巴细胞转化的影响,比较两种细胞的免疫特性。同时用乳鼠心肌细胞裂解液诱导ASCs分化为类心肌细胞,并对诱导后的细胞运用免疫组化、RT-PCR方法鉴定,以进一步确定ASCs的干细胞身份。
     结果从骨髓中刚分离出的有核细胞明显多于来源于脂肪者(P<0.001),但培养后获得的基质干细胞数差别无显著性意义(P>0.05)。两种细胞都表达CD13、CD29、CD44、CD105,均不表达CD31、CD34、CD45、HLA-DR。而在CD49d、CD106的表达上存在差异。相同数量的ASCs和MSCs在混合淋巴细胞反应、淋巴细胞转化实验中对淋巴细胞的抑制作用相当(P>0.05)。诱导培养后的ASCs细胞表达心脏特异性肌钙蛋白T(cTnT)、结蛋白(desmin),同时也表达心脏特异性基因cTnT、ANP、αMHC。
     结论ASCs和MSCs在细胞形态上无明显差别,相同重量的脂肪组织和骨髓组织分离获得的干细胞数量相当。两种细胞表面抗原、免疫原性等方面相似。ASCs可以在体外诱导分化成类心肌细胞。因而人体脂肪可以作为一种充足的干细胞来源加以利用。本研究为进一步利用ASCs进行细胞移植治疗疾病的研究奠定了基础。
     第二部分脂肪基质干细胞分泌细胞因子及其对内皮细胞的作用
     目的分离培养脂肪基质干细胞(ASCs),探讨其分泌的细胞因子及其对内皮细胞增殖及凋亡影响的生物活性作用。
     方法人脂肪组织用胶原蛋白酶Ⅰ消化后贴壁法培养获得ASCs,流式细胞术鉴定其表面抗原CD31、CD44、CD45、CD105的表达情况。ELISA法测定ASCs分泌的细胞因子:血管内皮细胞生长因子(VEGF)、肝细胞生长因子(HGF)、基质细胞衍生因子1α(SDF-1α)等,RT-PCR法测定相应mRNA表达。从人脐静脉分离并培养内皮细胞后,加入含ASCs上清液的培养液(实验组)或常规培养液(对照组)继续培养3天后,细胞计数测定内皮细胞的增殖。另有实验组及对照组加入肿瘤坏死因子α(TNF-α)诱导内皮细胞凋亡后,将内皮细胞行PI与annexin V双染色后流式细胞仪测其凋亡率。并半定量RT-PCR法测定并比较两组ASCs中Bcl-2 mRNA表达情况。
     结果培养获得ASCs,表型为CD34+CD105+CD31-CD45-,细胞培养上清中测得各细胞因子的含量为:VEGF ,(75±16) pg/ml; HGF ,(637±157) pg/ml;SDF-1α,(482±113) pg/ml。RT-PCR法测得ASCs表达VEGF、HGF、SDF-1α的mRNA。含ASCs上清培养液的实验组内皮细胞数为(134±19)%,显著高于对照组(97±12)%(P<0.05),证明ASCs上清能促进内皮细胞的增殖。TNF-α诱导凋亡24小时后,对照组内皮细胞凋亡率(6.9±1.7)%高于实验组(3.1±1.2)%,(P<0.05)。进一步测定发现,实验组bcl-2的mRNA表达明显上调(P<0.05)。
     结论ASCs能分泌VEGF、HGF、SDF-1α等细胞因子,并因此促进内皮细胞的增殖,抑制内皮细胞的凋亡。其抑制凋亡作用和上调细胞的bcl-2 mRNA表达有关。
     第三部分脂肪基质干细胞移植治疗大鼠急性心肌梗死
     目的探讨大鼠脂肪基质干细胞(ASCs)移植于大鼠梗死心肌后的增殖分化情况及对心功能的影响。
     方法Sprague-Dawley(SD)大鼠脂肪组织用胶原蛋白酶Ⅰ消化,贴壁法培养获得ASCs,流式细胞术鉴定其表面抗原CD31、CD44、CD45、CD90的表达情况。将SD大鼠左前降支结扎制造急性心肌梗死模型后,在梗死心肌处植入DAPI标记ASCs(实验组)或DMEM培养液(对照组)。移植后1wk及4wk,超声多谱勒检查并计算左室短轴缩短率(FS)、左室射血分数(LVEF)等以评价心功能。并取梗死区心肌组织行冰冻切片,应用免疫组织化学的方法进行移植细胞形态学检查,观察移植ASCs向内皮细胞、心肌细胞的分化情况并进行毛细血管密度测定。RT-PCR、ELISA法测梗死区VEGF的mRNA及蛋白表达情况。
     结果培养获得ASCs,表型为CD44+CD90+CD31-CD45-。植入梗死区的ASCs可以分化为血管内皮细胞,实验组梗死心肌处血管密度在移植后1wk及4wk较对照组均明显增高(P <0.01),并且VEGF基因及蛋白水平在移植后1wk及4wk均较对照组明显增高(P <0.01)。移植后4wk,实验组大鼠LVEF及FS较对照组明显提高(P <0.01)。结论ASCs移植可以促进大鼠梗死后心肌血管新生,改善心功能。
PartⅠComparison of mesenchymal stem cells from adipose tissue and bone marrowbonearrow
     Objective To compare adipose stromal cells (ASCs) and bone marrow mesenchymal stem cells (MSCs) and make a foundation for cell therapy basing on ASCs. Methods Human adipose tissue was digested with collagenase typeⅠsolution and ASCs were derived by culture. At the same time, Mononuclear cells were isolated from human bone marrow and MSCs were derived by culture. Cells number was compared before and after culture. Two population of cells surface phenotype (CD13, CD29, CD31, CD34, CD44, CD45, CD49d, CD105, CD106 and HLA-DR) was examined by flow cytometry. These two kinds of cells were added to mixed lymocyte cultrures and PHA-induced lymphocyte transformation cultures with various concentratons. The proliferation of lymphocyte was messured by MTT method, effect of ASCs and MSCs on mixed lymphocyte response and PHA-induced lymphocyte transformation were investigated. At the same time, ASCs were cultured under the induction myocardial cell lysate, the expression of myocardium specific protein and genes after induction were tested by immunofluorescence method or RT-PCR.
     Result ASCs were isolated and cultured from human adipose tissue. The cultured ASCs displayed a fibroblast-like morphology and were similar to MSCs. Even the number of nucleated cells isolated from bone marrow was significantly higher than from adipose tissue(P<0.001), No significant differences were observed for yield of adherent stromal cells (P>0.05). Both cells expressed CD13, CD29, CD44, CD105 and both cells were negative for CD31, CD34, CD45 and HLA-DR. Difference in expression were noted for CD49d and CD106. The same number of ASCs and MSCs showed comparatively negative immunomodulatory functions by inhibited the mixed lymphocyte response and induction of transformation (P>0.05). After 2 weeks of culture under the induction of myocardial cell lysate, cells expressed cTnT and desmin as well as the myocardium specific genes cTnT, ANP andαMHC.
     Conclusion Like MSCs, ASCs displayed the similar fibroblast-like morphology. Yield of adherent stromal cells per gram of tissue was similar between bone marrow and adipose tissue. ASCs were similar to MSCs in the features of CD markers and immunosuppressive properties. ASCs could be differentiated into myocardial like cells induced by myocardial cell lysate. So human adipose tissue is an abundant and accessible source of adult stem cells. and this may make a foundation for the study of cell therapy basing on ASCs.
     PartⅡEffect of cytokines secreted by human adipose stromal cells on endothelial cells
     Objective To isolate and culture adipose stromal cells (ASCs), and study the angiogenic or antiapoptotic effect of cytokines secreted by ASCs on endothelial cells.
     Methods Human adipose tissue was digested with collagenase typeⅠsolution and ASCs was derived by culture. The cultured cells surface phenotype (CD31, CD44, CD45 and CD105) was examined by flow cytometry. ELISA was used to detect the secretion level of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF) and stromal cell derived factor-1α(SDF-1α) and RT-PCR was used to detect the expression of their mRNA. Ehdothelial cells were isolated from human umbilical vein and cultured. Then the ASCs medium was used to culture human umbilical vein endothelial cells. Endothelial cells counting by hemacytometer to determined the proliferation. Endothelial cells were also incubated with 10ng/ml TNF-αin the presence or absence of ASC-conditioned medium. To assess cell viability, endothelial cells were harvested 24 hours later, stained with annexin V-FITC /propidium iodide (PI) and then subjected to analytic flow cytometry to assess the apoptois of endothelial cells. RT-PCR was used to detect the expression of Bcl-2 mRNA in the endothelial cells.
     Result ASCs was isolated from adipose tissue and derived by culture. Examined by flow cytometry, ASCs expressed CD44 and CD105 while did not expressed CD31 or CD45. Significiant amounts of cytokines were measured in the supernentant by ELISA. The levels of VEGF were (75±16) pg/ml, HGF were (637±157) pg/ml, SDF-1αwere (482±113) pg/ml. The mRNA of VEGF, HGF and SDF-1αwere significantly expressed in ASCs. Endothelial cells were cultured with or without ASCs medium. 3 days later the number of endothelial cells in ASC-conditioned medium (125±19)% was significantly higher than that of controls (97±12)%(P<0.05). After cocultured with TNF-α24 hours, the apoptosis rates of endothelial cells in ASC-conditioned medium (3.1±1.2)% was significantly lower than those of controls (6.9±1.7)%. (P<0.05). Conclusion ASCs can secrete cytokines and have significantly effect on the endothelial cells proliferation and apoptosis.
     PartⅢAdipose tissue stromal cells transplantation in rats of acute myocardial infarction
     Objective The present study was to investigate the proliferation and differentiation of rat adipose stromal cells (ASCs) when implanted into ischemic myocardium and the improvement of heart function.
     Methods Sprague-Dawley rat adipose tissue was digested with collagenase typeⅠsolution and ASCs were derived by culture. The cells surface phenotype (CD31, CD44, CD45 and CD90) was examined by flow cytometry. ASCs labeled with 4'6-diamidino-2-phenylindole (DAPI, ASCs group) or Dulbecco’s modified Eagle medium (DMEM, control group) was transplanted into the ischemic myocardium, which was produced by ligation of left descending branch of coronary artery. At 1 and 4 weeks after transplantation, specimens were acquired from infracted area and also, echocardiography was done to detect the effects on heart function. Then cell morphology and capillary density were measured, and vascular endothelial growth factor (VEGF) expression levels were assayed by RT- PCR and ELISA.
     Result ASCs derived by culture expressed CD44 and CD90 while did not expressed CD31 or CD45. ASCs were alive at 1 and 4 weeks after transplantation and had a trend toward differentiation into vascular endothelial cells. The number of capillary vessels in peri-infarct area in ASCs group increased significantly compared with control group (P <0.01). The levels of VEGF mRNA and protein expression at 1 week increased significantly in ASCs group compared with control group (P < 0.01). Left ventricular function, including ejection fraction, fractional shortening were higher in ASCs group when compared with control group at 4 weeks (P <0.01).
     Conclusion ASCs transplantation can accelerate angiogenesis in infarcted area after rat myocardial infarction and improve heart function.
引文
1. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiacmyocytes divide aftermyocardial infarction. N Engl J Med,2001 , 344 (23) : 1750-1757.
    2. Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl J Med, 2002, 346 (1): 5-15.
    3. Anderson DJ, Gage Fh, Weissman IL, et al. Can stem cells cross lineage boundaries? Nat Med, 2001, 7(4): 393-395.
    4. Hodgson DM, Behfar A, Zingman Lv, et al. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am J Physiol Heart Circ Physiol, 2004, 287(2): H471-479.
    5. Caspi o, Lesman A, Basevitch Y, et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells.Circ Res, 2007,100 (2):263-272.
    6. He JQ, Ma Y, Lee Y, et al. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res, 2003, 93(1): 32-39.
    7. Siminiak T, Kalawski R, Fiszer D, et al. Autologous skeletal myoblast transplantation for severe postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J, 2004, 148 (3): 531-537.
    8.毛晓波,曾秋棠,王祥等。同种异体骨髓基质细胞移植促进心肌梗死后血管新生.中国病理生理杂志, 2005, 21(1):158.
    9.李宾公,曾秋棠,王红祥等。急性心肌梗死患者外周血来源内皮祖细胞CXCR4受体表达及功能的变化。中华急诊医学杂志, 2007, 18(04): 358-361。
    10.李宾公,曾秋棠,晏凯利。骨髓干细胞动员治疗大鼠急性心肌梗死的实验研究。中国急救医学,2005,25(4):268-270。
    11. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet, 2004, 364(9429):141-148.
    12. Yoon YS, Park JS, Tkebuchava T, et al. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation, 2004, 109(25): 3154-3157.
    13. Zuk PA, Zhu M, Ashjian P. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002, 13(12):4279-4295.
    14. Cao Y, Sun Z, Liao L, et al. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun, 2005, 332(2): 370-379.
    1. M.F. Pittenger, A.M. Mackay, S.C. Beck, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-147.
    2. M.F. Pittenger, A.M. Mackay, S.C. Beck, et al. Multilineage potential of adult Mesenchymal stem cells: progress toward promise. Cytotherapy, 2005, 7(1): 36-45.
    3. Baksh D, Song L, Tuan RS.Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004, 8(3):301-316.
    4. Zimmet JM, Hare JM. Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy. Basic Res Cardiol. 2005, 100(6):471-81.
    5. Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 2003, 5(5): 362-369.
    6. Miranville A, Heeschen C, Sengenes C. Improvement of postnatal neovssularization by human adipose tissue-derived stem cells. Circulation, 2004, 110(3):349-355.
    7. Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 2004, 109(10):1292-1298.
    8.袁岩,陈连凤,张抒扬,等。心肌细胞裂解液对骨髓间充质干细胞向心肌细胞分化诱导作用的研究。中华心血管病杂志,2005,2:170-173。
    9. Li TS, Ito H, Hayashi M, et al. Cellular expression of integrin-beta(1) is of critical importance for inducing therapeutic angiogenesis by cell implantation. Cardiovasc Res, 2005, 65(1): 64-72.
    10. J.B. Levesque, Y. Takamatsu, S.K. Hilsson, et al. VASCssular cell adhesion molecule-1 (VCAM-1) is cleaved by neutrophil proteases in the bone marrow following haematopoietic cell mobilization by granulocyte colony stimulating factor. Blood, 2001, 98(5): 1289-12990.
    11. Wiesmann A, Buhring HJ, Mentrup C, et al. Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation. Head Face Med. 2006, 31:2-8.
    12. Brian MS, Kevin CH, Min Z, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 2005, 54 (3): 132-141.
    13. Bacigalupo A, Tong J, Podesta M, et al. Bone marrow harvest for marrow transplantation: effect of multiple small (2 ml) or large (20 ml) aspirates. Bone Marrow Transplant, 1992, 9 (6): 467-470.
    14. Le Blanc K, Tammik L, Sundberg B. et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol, 2003, 57(1):11-20.
    15. McIntosh K, Bartholomew A. Stromal cell modulation of the immune system. A potential role for mesenchymal stem cells. Graft, 2000, 3: 324-328.
    16. Di Nicola, M., Carlo-Stella, C., Magni, M., et al. Human bone marrow stromal cellssuppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 2002, 99(10): 3838-3843.
    17. Rangappa S, Fen C, Lee EH,et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg, 2003,75(3):775-779.
    1. Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 2003, 5: 362-369.
    2. Miranville A, Heeschen C, Sengenes C. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 2004, 110:349-355.
    3. Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 2004, 109:1292-1298.
    4. Rehman J, Li J, Orschell CM, et al. Peripheral blood“endothelial progenitor cells”are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation, 2003,107: 1164–1169.
    5. Li TS, Ito H, Hayashi M, et al. Cellular expression of integrin-beta(1) is of criticalimportance for inducing therapeutic angiogenesis by cell implantation. Cardiovasc Res. 2005, 65: 64-72.
    6. Zuk PA, Zhu M, Ashjian P. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002, 13(12): 4279-4295.
    7. De Ugarte DA, Alfonso Z, Zuk PA, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunology Letters, 2003, 89:267-270.
    8. Zachary I. Signaling mechanisms mediating vascular protective actions of vascular endothelial growth factor. Am J Physiol Cell Physiol, 2001, 280:C1375-1386.
    9. Nakamura T, Mizuno S, Matsumoto K, et al. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. The Journal of Clinical Investigation, 2000, 106:1511-1599.
    10. Yamaguchi J, Kusano KF, Masuo O, et al. Stromal Cell–derived factor-1 effects on Ex Vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 2003, 107:1322-1328.
    11. Lataillade JJ, Clay D, Bourin P, et al. Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G0/G1 transition in CD34+ cells: evidence for an autocrine/paracrine mechanism. Blood, 2002, 99: 1117-1129.
    12. Peters R, Leyvraz S, Perey L, et al. Apoptotic regulation in primitive hematopoietic precursors. Blood, 1998, 92:2041-2052.
    13. Semenza GL. Angiogenesis in ischemic and neoplastic disorders. Annu Rev Med, 2003, 54: 17-28.
    14. Gaustad KG, Boquest AC, Anderson BE, et al. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes .Biochemical and Biophysical Research Communications, 2004, 314: 420-427.
    15. Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells.British Journal of Haematology, 2005, 129: 118-129.
    16. De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs, 2003, 174:101-109.
    17. Morizono K, De Ugarte DA, Zhu M, Zuk P, Elbarbary A, Ashjian P, et al. Multilineage cells from adipose tissue as gene delivery vehicles. Hum Gene Ther,2003,14: 59-66.
    1. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiacmyocytes divide aftermyocardial infarction. N Engl J Med , 2001 , 344 (23) : 1750-1757.
    2. Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl JMed , 2002, 346 (1) : 5-15.
    3. Min JY, Yang Y, Converso KL, et al. Transplantation embryonic stem cells improve scardiac function in postinfarcted rats. J Appl Physiol,2002, 92: 288-296.
    4. Caspi o, Lesman A, Basevitch Y, et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells.Circ Res, 2007,100(2):263-272.
    5. Niagara MI, Haider HKh, Jiang S, et al. Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ Res, 2007, 100(4):545-555.
    6. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res, 2004; 95: 9-20.
    7. Kh Haider H, Ashraf M. Bone marrow stem cells in the infarcted heart. Coron Artery Dis, 2005; 16: 99-103.
    8. Zuk PA, Zhu M, Ashjian P. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002, 13:4279-4295.
    9. Gaustad KG, Boquest AC, Anderson BE, et al. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes .Biochemical and Biophysical Research Communications, 2004, 314:420-427.
    10. Cao Y, Sun Z, Liao L, et al. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun, 2005, 13:370-379.
    11.刘静华,邓又斌,杨好意,等.超声心动图观察雄激素对慢性心力衰竭大鼠左心室收缩功能的影响.中华超声影像学杂志,2005,10: 780-782.
    12. Wiesmann A, Buhring HJ, Mentrup C, et al. Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation. Head Face Med, 2006, 31:2-8.
    13. Tholpady SS, Katz AJ, Ogle RC. Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. Anat Rec, 2003,272:398-402.
    14. Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. British Journal of Haematology, 2005, 129: 118–129.
    15. Takayuki Saito, Kuang J Q,Charles C H L, et al. Transcoronary implantation of bone marrow stromal cells ameliorates cardiac function after myocardial infarction. J Thorac Cardiovasc Surg, 2003, 126:114 - 123.
    16. Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 2004, 109:1292-1298.
    17. Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardial infarction. Circulation, 1997, 95: 320-323.
    18. Davan I S, Deschaseaux F, Chalmers D, et al. Can stem cells mend abroken heart. Cardivasc Res, 2005, 65: 305- 316.
    19. Saito T, Kuang JQ, Lin CC, Chiu RC. Transcoronary implantation of bone marrow stromal cells ameliorates cardiac function after myocardial infarction. J Thorac Cardiovasc Surg, 2003, 126: 114-123.
    20. Suzuki K, Brand NJ, Smolemski RT, et al. Development of a novel method for cell transplantation through the cononary artery. Circulation, 2000, 102[supplⅢ]:Ⅲ-359-Ⅲ-364.
    21. De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs, 2003, 174:101-109.
    22. Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy, 2004, 6: 7-14.
    23. Morizono K, De Ugarte DA, Zhu M, Zuk P, Elbarbary A, Ashjian P, et al. Multilineage cells from adipose tissue as gene delivery vehicles. Hum Gene Ther, 2003, 14: 59-66.
    1. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiacmyocytes divide after myocardial infarction. N Engl J Med, 2001 , 344 (23) : 1750-1757.
    2. Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl J Med, 2002, 346 (1) : 5-15.
    3. Jackon KA, Majika SM, Wang HY, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest, 2001, 107(11):1395-1402.
    4. Jackon KA, Mi T, Goodell MA, et al. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA, 1999, 96:14482-14486.
    5. Thomson JA, Itskovitz Eldor J, Shap iro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282 (5391): 1145 - 1147.
    6. Kehat I, Kenyagin OK, SnirM, et al. Humane mbryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocystes. J Clin Invest, 2001, 108 (3): 407 - 414.
    7. He JQ, Ma Y, Lee Y, et al. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res, 2003(1), 93: 32-39.
    8. Satin J, Kehat I, Caspi O, et al. Mechanism of spontaneous excitability in human embryonic stem cell-derived cardiomyocytes. J Physiol, 2004, 559: 479-496.
    9. Klug MG, Soonpaa MH, Koh GY, et al. Genetically seected cardiomyocytes from differentiating embryonic stem cells form stable intracardiacgrafts. J Clin Invest, 1996, 98:216-224.
    10. Min JY, Yang Y, Converso KL, et al. Transplantation embryonic stem cells improve scardiac function in postinfarcted rats. J Appl Physiol, 2002, 92: 288-296.
    11. Caspi o, Lesman A, Basevitch Y, et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells.Circ Res, 2007, 100(2):263-272.
    12. Hodgson DM, Behfar A, Zingman Lv, et al. Stable benefit of embryonic stem celltherapy in myocardial infarction. Am J Physiol Heart Circ Physiol, 2004, 287(2):H471-479.
    13. Chen SS, Fitzgerald W, Zimmerberg J, et al. Cell-cell and cell-extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells, 2007, 25(3): 553-561.
    14. Xue T, Cho HC, Akar FG, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation, 2005, 111: 11-20.
    15. Min JY, Huang X, Xiang M, et al. Homing of intravenously infused embryonic stem cell-derived cells to injured hearts after myocardial infarction. J Thorac Cardiovasc Surg. 2006, 131(4):889-897.
    16. Nussbaum J, Minami E, Laflamme MA, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. 2007 Feb 6; [Epub ahead of print]
    17. Van CH, Claycomb WC, Delcarpio JB, et al. Myoblast transplantation in the porcine model: a potential technique for myocardial repair. J Thorac Cardiovasc Surg, 1995, 110 (5): 1442-1448.
    18. Chiu RC, Zibaitis A, Kao RL. Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg, 1995, 60: 12-18.
    19. Taylor DA, Atkins BZ, Hungspreugsp, et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med, 1998, 4 (8): 929-933.
    20. Niagara MI, Haider HKh, Jiang S, et al. Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ Res, 2007, 100(4):545-555.
    21. Menasche P, Hagege AA ,Scorsin M ,et al. Myoblast transplantation for heart failure.Lancet, 2001, 357: 257-280.
    22. Hagege AA, Carrion C ,Menasche P, et al. Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet, 2003, 361: 491 - 492.
    23. Menasche P, Hagege AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardial, 2003, 41 (7):1078-1083.
    24. Paganiz FD, Dersimonian H , Zawadzkd A , et al. Autologous skeletal myoblasts transplanted to ischemia damaged myocardium in humans, histological analysis of cell survival and differentiation. J Ann Coll Cardiol, 2003, 4 (5) : 879-888.
    25. Siminiak T, Kalawski R, Fiszer D, et al. Autologous skeletal myoblast transplantation for severe postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J, 2004, 148: 531-537.
    26. Dib N, McCarthy P, Campbell A, et al. Feasibility and safety of autologous myoblast transplantation in patients with ischemic cardiomyopathy. Cell Transplant, 2005, 14: 11-19.
    27. Hagege AA, Marolleau JP, Vilquin JT, et al. Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation, 2006, 114(1 Suppl):I108-113.
    28. JoséJ, Minguel L, Alejandro E. Mesenchymal Stem Cells and the Treatment of Cardiac Disease. Experimental Biology and Medicine. 2006, 231: 39-49.
    29. Bittira B, Kuang JQ, Al-Khaldi A, et al. In vitro preprogramming of marrow stromal cells for myocardial regeneration. Ann Thorac Surg, 2002, 74:1154–1159.
    30. Xu W, Zhang X, Qian H, et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype, in vitro. Exp Biol Med, 2004, 229: 623–631.
    31. Zhao P, Ise H, Hongo M, et al. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation, 2005, 79: 528–535.
    32. Hellstrom M, Kalen M, Lindahl P, et al. Role of PDGF-βand PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 1999, 126:3047–3055.
    33. Gojo S, Gojo N, Takeda Y, et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res, 2003, 288: 51–59.
    34. Davani S, Marandin A, Mersin N, et al. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation, 2003, 108:253–258.
    35. Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation, 2005, 111:150–156.
    36. Saito T, Kuang JA, Lin CCH, et al. Thanscoronary implantation of bone marrow stromal cells ameliorates cardiac function after myocardial infarction. J Thorac Cardiovasc Surg, 2003, 126: 114-123.
    37. Chen SL, Fang WW, Qian J, et al. Improvement of cardiac function after intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patient with acute myocardial infarction. Am J Cardiol, 2004, 94:92-95.
    38. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275: 964-967.
    39. Peichev M, Naiyer AJ, Perieira D, Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood, 2000, 95: 952-958.
    40. Gehling U, Erigiin S, Schumacher U, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood, 2000, 95:3106-3112.
    41. Rehman J, Li J, Orschell C, et al. Peripheral blood“endothelial progenitor cells”are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation, 2003, 107: 1164-1169.
    42. Condorelli G, Borello U, De Angelis L, et al. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci USA, 2001, 98: 10733-10738.
    43. Cornel B, Ralf P, Rudiger P, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation, 2003, 107:1024-1032.
    44. Koyanagi M, Haendeler J, Badorff C, et al. Non-canonical Wnt signaling enhances differentiation of human circulating progenitor cells to cardiomyogenic cells. J Biol Chem, 2005, 280(17): 16838-16842.
    45. Kocher A, Schuster M, Szabolcs S, et al. Neovascularization of ischemic myocardium by human bone marrow derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 2001, 7(4):430-436.
    46. Kawamoto A, Heoncheol G, Hideki I, Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 2001, 103(5):634-637.
    47. Kamihata H, Matsubara H, Nishine T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands and cytokines. Circulation, 2001, 104:1046-1052.
    48. Assmus B, Schachinger V, Teupe C, Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction. Circulation, 2002, 106:3009-3017.
    49. Strauer BE, Brehm M, Zeus T, et al. Repair of infracted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 2002, 106:1913-1918.
    50.李宾公,曾秋棠,王红祥等。急性心肌梗死患者外周血来源内皮祖细胞CXCR4受体表达及功能的变化。中华急诊医学杂志, 2007, 18(04): 358-361。
    51.李宾公,曾秋棠,晏凯利。骨髓干细胞动员治疗大鼠急性心肌梗死的实验研究。中国急救医学,2005,25(4):268-270。
    52. Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest, 2001, 107(11): 1395-1402.
    53. Davani S, Deschaseauxf F, Chalmers D, et al. Can stem cells mend abroken heart. Cardivasc Res, 2005, 65: 305-316.
    54. Balsam LB, Wagrs AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 2004, 428 (6983): 668-673.
    55. Charles E. Murry, Mark H. Soonpaa, Hans Reinecke, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 2004, 428: 664– 668.
    56. Barbash IM, Chouraqui P, Baron J, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infracted myocardium: feasibility, cell migration, and body distribution. Circulation, 2003, 108: 863-868.
    57. Saito T, Kuang JQ, Lin CC, et al. Transcoronary implantation of bone marrow stromal cells ameliorates cardiac function after myocardial infarction. J Thorac Cardiovasc Surg, 2003, 126: 114-123.
    58. Hattan N, Kawaguchi H, Ando K, et al. Purified cardiomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice. Cardiovasc Res, 2005, 65:334-344.
    59. Hamano K, Nishida M, Hirata K, et al. Local implantation of autologuos bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results. Jpn Circ J, 2001, 65: 845-847.
    60. Strauer BE, Brehm M, Zeus T. Repair of infarced myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 2002, 106:1913-1918.
    61. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet, 2004, 364:141-148.
    62. Kuethe F, Figulla HR, Herzau M, et al. Treatment with granulocyte-colony-stimulating factor for mobilization of bone marrow cells in patients with acute myocardial infarction. Am Heart J, 2005, 150:115.
    63. Yoon YS, Park JS, Tkebuchava T, et al. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation, 2004, 109: 3154-3157.
    64. Zuk PA, Zhu M, Ashjian P. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002, 13:4279-4295.
    65. Cao Y, Sun Z, Liao L, et al. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun, 2005, 332:370-379.
    66. Brian MS, Kevin CH, Min Zhu, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med, 2005, 54 (3): 132-141.
    67. De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs, 2003, 174(3):101-109.
    68. Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. British Journal of Haematology, 2005,129 (1): 118-129.
    69. Morizono K, De Ugarte DA, Zhu M, Zuk P, Elbarbary A, Ashjian P, et al. Multilineage cells from adipose tissue as gene delivery vehicles. Hum Gene Ther, 2003, 14 (1): 59-66.
    70. Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 2004, 109(10):1292-1298.
    71. Hofmann M, Wollert KC, Meyer GP, et al. Monitoring of bone marrow cell homing into the infracted human myocardium. Circulation, 2005, 111(17): 2198-2202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700