用户名: 密码: 验证码:
PPARα激动剂调控心脏糜酶介导大鼠心肌纤维化的作用及信号转导机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的心肌纤维化是高血压左心室重构的重要病理改变之一,也是心脏舒张功能障碍的主要原因,更是心功能由代偿期向失代偿期转变的关键。因此,预防和逆转心肌纤维化、恢复心功能对高血压靶器官保护具有重要意义。大量研究表明,来源于心脏肥大细胞的糜酶参与心血管的病理性重构,在高血压、心肌梗死、心肌病、心力衰竭、冠脉支架植入术后再狭窄、动脉粥样硬化及动脉瘤等疾病的发生、发展中具有重要作用。文献报道,糜酶能抑制血管平滑肌细胞增殖,并促进心肌细胞肥大。心脏成纤维细胞(CFs)是心肌纤维化的主要效应细胞,其过度增殖及胶原合成增多是心肌纤维化的病理基础。但糜酶对CFs增殖与胶原合成有何影响及其信号转导机制目前尚不清楚。近年研究表明,糜酶能激活转化生长因子-β1(TGF-β1)的前体,但糜酶能否通过活化的TGF-β1诱导CFs增殖及胶原合成目前还不明确。Smads蛋白家族是近年发现的参与TGF-β1信号转导的细胞内效应分子之一,特异性地调节TGF-β1靶基因的表达。业已证实,TGF-β1/Smads信号通路的激活参与肝、肺、肾、腹膜和皮肤等器官和组织的纤维化病变,但该信号通路是否在高血压心肌纤维化的病理过程中发挥重要作用尚不清楚。过氧化物酶体增殖物激活受体(PPARs)是一类配体依赖的核转录因子,包括α、β/δ和γ三种亚型。近年来关于PPARγ及其激动剂噻唑烷二酮类药物在代谢综合征中的心血管保护作用已进行了广泛研究,但对于PPARα的研究相对较少。晚近研究表明,PPARα在心肌组织呈高水平表达,对心肌肥厚发挥负调控作用,这预示着PPARα信号通路将成为高血压左心室肥厚防治新策略的一个有效靶点。贝特类调脂药对原发性高甘油三脂血症有肯定的疗效,自从被确认为PPARα的特异性激动剂以来,非诺贝特调脂以外的心血管保护效应倍受关注。在体外培养的心肌细胞,非诺贝特可抑制多种炎症介质及细胞因子引起的心肌细胞肥大,但其对CFs增殖与胶原合成有无影响及其细胞内信号通路,目前尚不十分清楚。此外,新近研究表明,PPARγ激动剂可下调TGF-β1基因表达从而抑制肾间质纤维化,其机制可能与阻断TGF-β1/Smads信号通路有关。但是,在糜酶介导心肌纤维化的病理过程中有无TGF-β1/Smads及PPARα信号途径的参与,以及这两条信号转导通路之间是否存在“信息交流”(cross-talk),目前也不明确,有待探讨。因此,本研究在细胞和分子水平上观察心脏糜酶对大鼠CFs增殖、胶原合成的影响及其细胞内信号转导通路,探讨糜酶在心肌纤维化中的作用机制;研究PPARα及其激动剂非诺贝特对糜酶介导的TGF-β1/Smads信号途径的调控作用,阐明非诺贝特逆转高血压心肌纤维化的分子机制。旨在为临床防治高血压左室重构提供理论依据和治疗新思路。
     研究方法本研究以体外培养的SD大鼠CFs为研究对象,采用MTT比色法、放射性核素掺入实验、流式细胞仪细胞周期分析、ELISA、RT-PCR及蛋白免疫印记等方法和技术,观察:(1)糜酶对大鼠CFs增殖和胶原合成的影响;(2)糜酶对大鼠CFs的TGF-β1、Smad2、Smad3、Smad7 mRNA和蛋白表达的影响;(3) PPARα激动剂非诺贝特对糜酶诱导的大鼠CFs增殖和胶原合成的影响:(4)非诺贝特干预对大鼠CFs的PPARα、TGF-β1mRNA和蛋白表达以及Smad2/3、p-Smad2/3、Smad7蛋白表达的影响。
     研究结果(1)不同浓度的糜酶作用24 h,CFs的数目呈浓度依赖性增加,15、30和60 ng/ml组A_(490)值分别为0.263±0.033、0.348±0.031和0.387±0.026,均较对照组(0.201±0.019)显著增加(P<0.01)。TGF-β1中和抗体预处理组和丝/苏氨酸激酶抑制剂预处理组的A_(490)值均明显低于30 ng/ml糜酶组(P<0.05或P<0.01),AT_1受体拮抗剂预处理组和AT_2受体拮抗剂预处理组的A_(490)值与糜酶组比较,均无显著性差异(P>0.05)。(2) CFs的DNA合成随糜酶浓度的增加而增多,15、30和60 ng/ml组~3H-TdR掺入量分别为319±29、372±43和401±47(cpm/孔),较对照组(252±35 cpm/孔)明显升高(P<0.01)。10μmol/L糜酶抑制剂预处理组的~3H-TdR掺入量显著低于30ng/ml糜酶组(P<0.01)。(3)细胞周期分析结果表明,15、30和60 ng/ml糜酶作用24 h,CFs的G_0/G_1期细胞百分率均较对照组显著降低(P<0.05或P<0.01),S期细胞百分率和增殖指数(PI)则较对照组明显增高(P<0.05或P<0.01),G_2/M期细胞百分率与对照组比较无显著性差异(P>0.05)。10μmol/L糜酶抑制剂预处理组G_0/G_1期细胞百分率显著高于30 ng/ml糜酶组(P<0.01),S期细胞百分率和PI明显低于糜酶组(P<0.01),G_2/M期细胞百分率与糜酶组及照组比较均无明显差异(P>0.05)。(4)随着糜酶浓度的增高,CFs总胶原合成呈递增趋势,15、30和60 ng/ml组~3H-脯氨酸掺入量分别为520±75、684±62和769±58(cpm/孔),均较对照组(435±60 cpm/孔)显著增加(P<0.05或P<0.01)。TGF-β1中和抗体预处理组和丝/苏氨酸激酶抑制剂预处理组的~3H-脯氨酸掺入量均显著低于30 ng/ml糜酶组(P<0.05或P<0.01);AT_1受体拮抗剂预处理组和AT_2受体拮抗剂预处理组的~3H-脯氨酸掺入量与糜酶组比较无显著性差异(P>0.05)。(5)不同浓度的糜酶作用24 h,Ⅰ、Ⅲ型胶原mRNA表达水平呈浓度依赖性增加,其中15、30和60 ng/ml组Ⅰ型和Ⅲ型胶原mRNA表达水平均较对照组显著升高(P<0.01),但7.5 ng/ml组与对照组比较无显著性差异(P>0.05)。(6)随着糜酶浓度的增高,CFs培养上清中Ⅰ、Ⅲ型胶原蛋白含量呈递增趋势,其中15、30和60 ng/ml组Ⅰ型和Ⅲ型胶原蛋白含量均较对照组明显增加(P<0.05或P<0.01),但7.5ng/ml组与对照组比较无显著性差异(P>0.05)。(7) 15、30和60 ng/ml糜酶作用3h,TGF-β1 mRNA表达水平分别为0.698±0.051、1.096±0.078和1.242±0.065,均较对照组(0.299±0.035)明显增加(P<0.01)。TGF-β1中和抗体预处理组的TGF-β1 mRNA表达水平明显低于30 ng/ml糜酶组(P<0.05或P<0.01),但AT_1受体拮抗剂和AT_2受体拮抗剂预处理组的TGF-β1 mRNA水平与糜酶组比较,均无显著性差异(P>0.05)。(8) 15、30和60 ng/ml糜酶作用6 h,TGF-β1蛋白表达水平分别为0.968±0.069、1.782±0.058和2.656±0.085,均较对照组(0.333±0.023)明显升高(P<0.05或P<0.01)。TGF-β1中和抗体预处理组的TGF-β1蛋白表达水平较30 ng/ml糜酶组显著降低(P<0.05或P<0.01),但AT_1受体拮抗剂和AT_2受体拮抗剂预处理组的TGF-β1蛋白水平与糜酶组比较,均无明显差异(P>0.05)。(9)不同浓度的糜酶作用6 h,Smad2和Smad3的mRNA表达水平与对照组比较,均无显著性差异(p>0.05)。(10)在30 ng/mL糜酶作用下,3 h、6 h、12 h和24 h组p-Smad2/3表达水平均较对照组显著升高(P<0.05或P<0.01);Smad2/3蛋白表达水平与对照组比较均无显著性差异(P>0.05)。3 h组Smad7蛋白表达水平较对照组显著升高(P<0.05);6 h、12 h和24 h组Smad7蛋白水平均显著低于对照组(P<0.05或P<0.01)。(11)不同浓度的非诺贝特预处理后,CFs的数目呈递减趋势,其中50和100μmol/L组的A_(490)值均较糜酶组显著较少(P<0.05或P<0.01)。非诺贝特与其拮抗剂共同干预组的A_(490)值与糜酶组比较无显著性差异(P>0.05)。100μmol/L非诺贝特单独作用对CFs的数目无明显影响(P>0.05)。(12)不同浓度的非诺贝特预处理后,CFs的DNA合成呈浓度依赖性减少,其中50和100μmol/L组均较糜酶组明显减少(P<0.01)。非诺贝特与其拮抗剂共同干预组的~3H-TdR掺入量与糜酶组比较无显著性差异(P>0.05)。100μmol/L非诺贝特单独作用下,~3H-TdR掺入量无明显变化(P>0.05)。(13)不同浓度的非诺贝特预处理后,CFs的G_0/G_1期细胞百分率呈递增趋势,S期细胞百分率和PI则呈递减趋势,其中50和100μmol/L组与糜酶组比较均有显著性差异(P<0.05或P<0.01)。100μmol/L非诺贝特单独作用下,CFs的G_0/G_1期细胞百分率、S期细胞百分率和PI均无明显变化(P>0.05)。(14) 10、50和100μmol/L非诺贝特预处理组CFs的总胶原合成呈浓度依赖性减少,其中50和100μmol/L组的~3H-脯氨酸掺入量均较糜酶组显著降低(P<0.01)。非诺贝特与其拮抗剂共同干预组的~3H-脯氨酸掺入量与糜酶组比较无显著性差异(P>0.05)。100μmol/L非诺贝特单独作用对~3H-脯氨酸掺入量无明显影响(P>0.05)。(15)不同浓度的非诺贝特预处理后,CFs的Ⅰ、Ⅲ型胶原mRNA表达水平均呈递减趋势,其中50和100μmol/L组均较糜酶组显著减低(P<0.01)。非诺贝特与其拮抗剂共同干预组的Ⅰ、Ⅲ型胶原mRNA表达水平与糜酶组比较无显著性差异(P>0.05)。100μmol/L非诺贝特单独作用对Ⅰ、Ⅲ型胶原mRNA表达均无显著影响(P>0.05)。(16)不同浓度的糜酶作用6 h,CFs的PPARαmRNA水平呈递减趋势,其中15、30和60 ng/ml组均较对照组明显减低(P<0.01)。10、50和100μmol/L非诺贝特预处理后,CFs的PPARαmRNA表达水平呈浓度依赖性增加,其中50和100μmol/L组均较糜酶组显著增加(P<0.05或P<0.01)。100μmol/L非诺贝特单独作用后,PPARαmRNA表达水平较对照组明显升高(P<0.01)。(17)不同浓度的糜酶作用12 h,CFs的PPARα蛋白水平呈浓度依赖性下降,其中15、30和60 ng/ml组较对照组明显减少(P<0.05或P<0.01)。10、50和100μmol/L非诺贝特预处理后,CFs的PPARα蛋白表达水平呈递增趋势,其中50和100μmol/L组较糜酶组明显增加(P<0.01)。100μmol/L非诺贝特单独作用组的PPARα蛋白表达水平较对照组显著升高(P<0.01)。(18)不同浓度的非诺贝特预处理后,CFs的TGF-β1 mRNA表达水平呈递减趋势,其中50和100μmol/L组均较糜酶组明显减少(P<0.01)。非诺贝特与其拮抗剂共同干预组的TGF-β1 mRNA水平与糜酶组比较无显著性差异(P>0.05)。100μmol/L非诺贝特单独作用下,TGF-β1 mRNA水平无明显变化(P>0.05)。(19)10、50和100μmol/L非诺贝特预处理组CFs的TGF-β1蛋白表达水平呈浓度依赖性减少,其中50和100μmol/L组均较糜酶组显著减少(P<0.05或P<0.01)。100μmol/L非诺贝特单独作用对TGF-β1蛋白水平为无显著影响(P>0.05)。(20)不同浓度的糜酶作用12h,CFs的Smad2/3蛋白表达水平与对照组比较均无明显差异(P>0.05)。不同浓度的非诺贝特预处理后,Smad2/3蛋白表达水平亦无明显变化(P>0.05)。(21) 15、30和60 ng/ml糜酶作用6h,CFs的p-Smad2/3蛋白表达水平均较对照组明显升高(P<0.05或P<0.01)。不同浓度的非诺贝特预处理后,p-Smad2/3蛋白表达水平呈递减趋势,其中50和100μmol/L组均较糜酶组显著下降(P<0.05或P<0.01)。100μmol/L非诺贝特单独作用下,p-Smad2/3的蛋白表达水平无明显变化(P>0.05)。(22) 15、30和60 ng/ml糜酶作用6 h,Smad7 mRNA表达水平均较对照组显著减少(P<0.05或P<0.01),不同浓度的非诺贝特预处理后,CFs的Smad7 mRNA表达水平呈浓度依赖性增加,其中50和100μmol/L组均较糜酶组明显增加(P<0.05或P<0.01)。100μmol/L非诺贝特单独作用对Smad7 mRNA表达水平无显著影响(P>0.05)。(23) 15、30和60 ng/ml糜酶作用12 h,CFs的Smad7蛋白表达水平均较对照组明显降低(P<0.01)。不同浓度的非诺贝特干预后,Smad7蛋白表达水平呈浓度依赖性升高,其中50和100μmol/L组均较糜酶组明显升高(P<0.05或P<0.01)。100μmol/L非诺贝特单独作用下,Smad7蛋白表达水平无明显变化(P>0.05)。
     研究结论(1)糜酶以浓度依赖的方式促进SD大鼠CFs增殖和胶原合成,提示心脏糜酶可能在心肌纤维化的发生、发展中具有重要的作用。(2)糜酶可上调TGF-β1表达,同时促进Smad2/3的磷酸化、下调Smad7表达,说明糜酶可激活TGF-β1/Smads信号通路。(3) TGF-β1中和抗体及丝/苏氨酸激酶抑制剂可抑制糜酶介导的CFs增殖和胶原合成作用,但血管紧张素Ⅱ受体阻滞剂(ARB)对糜酶诱导的CFs增殖、胶原合成及TGF-β1产生均无明显影响。表明TGF-β1/Smads信号通路参与糜酶致心肌纤维化作用,并且该作用与AngⅡ途径无关。(4) PPARα激动剂非诺贝特以浓度依赖的方式抑制糜酶诱导的大鼠CFs增殖和胶原合成,提示非诺贝特可能具有逆转心肌纤维化的作用。(5)非诺贝特通过激活PPARα抑制TGF-β1的生成;同时下调p-Smad2/3表达、上调Smad7表达。这可能是非诺贝特抑制CFs增殖和胶原合成,从而逆转心肌纤维化的分子生物学机制之一。(6) PPARα途径和TGF-β1/Smads信号通路可能存在信息交流:即活化的PPARα可下调TGF-β1的表达,进而抑制Smad2/3的磷酸化,并上调Smad7的表达,从而抑制TGF-β1的信号传导,对TGF-β1/Smads通路发挥负调控作用。
     综上所述,不难看出心脏糜酶可诱导CFs增殖和胶原合成,因而具有促进心肌纤维化的作用,该作用的细胞内信号转导机制与TGF-β1表达上调、Smad2/3磷酸化增加以及Smad7表达下调有关。PPARα激动剂非诺贝特可抑制糜酶介导的心肌纤维化反应,从而发挥其调脂以外的心血管保护效应,其分子机制可能是通过激活PPARα抑制TGF-β1生成,从而下调p-Smad2/3表达并上调Smad7表达。因此,非诺贝特可能对高血压心肌纤维化发挥负调控作用,本研究结果有望为高血压左心室重构的发生提供理论依据和新的治疗靶点。
Background and objective Myocardial fibrosis is not only one of the important pathological bases of left ventricular remodeling induced by essential hypertension but also the main cause of cardiac diastolic dysfunction.Moreover, myocardial fibrosis is regarded as a major determinant leading to cardiac functional transition from compensation to decompensation.Therefore,it is very important to prevent and regress myocardial fibrosis,and to improve cardiac function for target organic protection of hypertension.A significant body of literature demonstrates that cardiac mast cell-derived chymase is involved in the cardivascular pathologic remodeling,which has been found to play a crucial role in the progression of many cardiovascular diseases,such as hypertension, myocardial infarction,cardiomyopathy,congestive heart failure,restenosis after percutaneous transluminal coronary angioplasty,atherosclerosis,aneurysm,and so on.Recent studies suggest that chymase could inhibit proliferation of vascular smooth muscle cells and elicit hypertrophic response of cardiac myocytes.Cardiac fibroblasts(CFs) have long been considered as major effectors of myocardial fibrosis.The excessive proliferation of CFs and enhanced collagen synthesis are thus regarded as pathological foundation of myocardial fibrosis.However,it remains unknown whether chymase can exert effects on CFs proliferation and collagen synthesis,and the underlying mechanisms of signal transduction are also obscure.Although it has been reported that chymase can activate latent transforming growth factor-β1 (TGF-β1) recently,the relative role of chymase-mediated TGF-β1 forming system in CFs proliferation has not been well established.In the last few years,a major advance in understanding TGF-β1 post-receptor signaling is the identification of Smad proteins,which may specifically modulate the transcriptions of TGF-β1 target genes.It has been well documented that the activation of TGF-β1/Smads signaling pathway may participate in the fibrotic progression of many organs,including liver,lung,kidney,peritoneum and skin. Little has been known about whether TGF-β1/Smads signaling pathway could contribute to myocardial fibrosis caused by hypertension.Peroxisome proliferator-activated receptors(PPARs) are ligand-dependent nuclear receptors, including PPARα,PPARβ/δand PPARγ,.Over the past few years,extensive studies have been focused on the protective effects of PPARγ,and its agonist, thiazolidinediones,on cardiovascular tissue which could be compromised in metabolic syndrome.In contrast,the knowledge about the possible role of PPARαin the prevention of cardiovascular disease is rather sparse.Recent evidence demonstrates that PPARαis highly expressed in myocardial tissue and exert an inhibitory effect on myocardial hypertrophy,indicating that further insight into the PPARαpathway may have important therapeutic implications on hypertensive left ventricular hypertrophy.It has been confirmed that fibrates,a sort of lipid-lowering drugs,have pronounced therapeutic effects on essential hypertriglyceridemia.Since being identified as PPARαactivator,fenofibrate has attracted a great deal of attention with regard to its beneficial effect on cardiovascular system beyond its contribution to lipid metabolism.In vitro, fenofibrate could inhibit the hypertrophy of cultured cardiac myocytes induced by many proinflammatory mediators and cytokines.However,whether fenofibrate can inhibit CFs proliferation and collagen synthesis,and the signaling pathway involved remain unclear so far.Currently,it has been observed that PPARγagonist can down-regulate gene expression of TGF-β1 and thus arrest the progression of renal interstitium fibrosis.The underlying mechanism may be related to the blockade of TGF-β1/Smad signaling pathway. However,it remains unclear whether TGF-β1/Smads and PPARαsignaling pathway participate in the chymase-induced myocardial fibrosis modulated by fenofibrate and whether there exist a cross-talk between the two pathways.This study was therefore designed to observe the effect of mast cell-derived chymase on cell proliferation and collagen synthesis of cultured CFs at cellular and molecular level,and to discuss the mechanisms of its effect on myocardial fibrosis.Moreover,we also investigated the role of PPARαand its agonist fenofibrate on TGF-β1/Smads signaling pathway activited by chymase in order to elucidate the mechanisms of preventive and therapeutic effects of fenofibrate on hypertensive myocardial fibrosis.Accordingly,the study was attempted to provide noval theoretical evidence and new strategy for the clinical treatment on hypertensive left ventricular hypertrophy.
     Methods In this study,cultured CFs of neonatal SD rats were used as experimental models.Moreover,MTT assay,radionuclide incorporation method, flow cytometry technique,ELISA,RT-PCR and Western blot were applied to identify:(1) the effects of chymase on cell proliferation and collagen synthesis of cultured CFs in SD rats;(2) the effects of chymase on the mRNA and proteinic expression of TGF-β1,Smad2,Smad3 and Smad7 in CFs;(3) the effects of fenofibrate,a PPARαagonist,on CFs proliferation and collagen synthesis induced by chymase;(4) the intervention effects of fenofibrate on the mRNA and proteinic expression of PPARα,TGF-β1,and the proteinic expression of Smad2/3,p-Smad2/3 and Smad7 in CFs.
     Results(1) Treatment with 15 ng/ml,30 ng/ml and 60 ng/ml chymase for 24 h significantly increased CFs number in a dose-dependent manner,and the A490 Value(0.263±0.033,0.348±0.031,and 0.387±0.026,respectively) were all significantly higher than that of control(0.201±0.019,P<0.01).The A_(490) Value in 30 ng/ml chymase-treated CFs was markedly decreased by pretreatment with TGF-β1 neutralizing antibody or serine/threonine kinase inhibitor(P<0.05 or P<0.01).Neither AT_1 receptor blocker nor AT_2 receptor blocker significantly altered the A_(490) Value of chymase-treated CFs(P>0.05).(2) Administration with chymase at 15 ng/ml,30 ng/ml and 60 ng/ml for 24 h significantly increased DNA synthesis in a dose-dependent manner,and the ~3H-TdR incorporation (319±29 cpm/well,372±43 cpm/well,and 401±47 cpm/well,respectively) were all remarkably higher than that of control(252±35 cpm/well,P<0.01).The ~3H-TdR incorporation in 10μmol/L chymase inhibitor-pretreated group was notablely lower than that in 30 ng/ml chymase group(P<0.01).(3) Cell cycle analysis revealed that treatment with chymase(15 ng/ml,30 ng/ml and 60 ng/ml) for 24 h significantly decreased the percentages of cells in G_0/G_1 phase of the cell cycle(P<0.05 or P<0.01),and increased the percentages of cells in S phase and the proliferation index(PI) when compared with that of control(P<0.05 or P<0.01).Whereas The percentages of cells in G_2/M phase were not significantly changed by chymase(P>0.05).Pretreatment with 10μmol/L chymase inhibitor markedly increased G_0/G_1 phase percentage(P<0.01),and decreased S phase percentage and PI when compared with that of 30 ng/ml chymase group (P<0.01).But pretreatment with 10μmol/L chymase inhibitor had no effect on G_2/M phase percentage when compared with chymase group or control group (P>0.05).(4) Administration with chymase(15 ng/ml,30 ng/ml and 60 ng/ml) for 24 h significantly increased total collagen synthesis in a dose-dependent manner,and the ~3H-Proline incorporation(520±75cpm/well,684±62 cpm/well and 769±58 cpm/well,respectively) were all remarkably higher than that of control(435±60 cpm/well,P<0.05 or P<0.01).The ~3H-proline incorporation in TGF-β1 neutralizing antibody or serine/threonine kinase inhibitor-pretreated group was significantly lower than that in 30 ng/ml chymase group(P<0.05 or P<0.01).Neither AT_1 receptor blocker nor AT_2 receptor blocker significantly changed the ~3H-proline incorporation of chymase-treated cells(P>0.05).(5) Treatment with chymase(15 ng/ml,30 ng/ml and 60 ng/ml) for 24 h markedly increased the mRNA levels of collagen Type-Ⅰand -Ⅲin a dose-dependent manner when compared with control(P<0.01),whereas chymase at 7.5 ng/ml had no significant effect on the mRNA expression of collagen Type-Ⅰand -Ⅲ(P>0.05).(6) Administration with chymase(15 ng/ml,30 ng/ml and 60 ng/ml) for 24 h significantly increased the protein content of collagen Type-Ⅰand -Ⅲin cultured supematant of CFs when compared with control (P<0.01),whereas chymase at 7.5 ng/ml had no marked effect on the protein content of collagen Type-Ⅰand -Ⅲ(P>0.05).(7) Treatment with 15 ng/ml,30 ng/ml and 60 ng/ml chymase for 3 h,the mRNA levels of TGF-β1 were 0.698±0.051,1.096±0.078,and 1.242±0.065,respectively,which were all notably higher than that of control(0.299±0.035,P<0.01).The mRNA expression of TGF-β1 in TGF-β1 neutralizing antibody-pretreated group was remarkably lower than that in 30 ng/ml chymase group(P<0.05 or P<0.01). Neither AT_1 receptor blocker nor AT_2 receptor blocker significantly modified the mRNA expression of TGF-β1 induced by chymase(P>0.05).(8) Administration with 15 ng/ml,30 ng/ml and 60 ng/ml chymase for 6 h,the protein levels of TGF-β1 were 0.968±0.069,1.782±0.058 and 2.656±0.085,respectively,which were all significantly higher than that of control(0.333±0.023,P<0.05 or P<0.01).The protein expression of TGF-β1 in TGF-β1 neutralizing antibody-pretreated group was markedly lower than that in 30 ng/ml chymase group(P<0.05 or P<0.01).Neither AT_1 receptor blocker nor AT_2 receptor blocker significantly altered the protein expression of TGF-β1 mediated by chymase(P>0.05).(9) Treatment with chymase at different concentrations for 6 h had no significant effects on the mRNA expression of Smad2 and Smad3 (P>0.05).(10) Administration with chymase at 30 ng/mL for 3 h,6 h,12 h and 24 h significantly increased the p-Smad2/3 when compared with control(P<0.05 or P<0.01),while the protein expressionof Smad2/3 was not notably altered (P>0.05).The protein expression of Smad7 in 3 h group was higher than that in control group(P<0.05).However,treatment with chymase for 6 h,12 h,and 24 h markedly decreased the protein expression of Smad7 when compared with control(P<0.05 or P<0.01).(11) Pretreatment with fenofibrate at different concentrations decreased the number of CFs in a concentration-dependent manner,and the A49o Value in 50μmol/L group and 100μmol/L group was significantly lower than that in chymase group(P<0.05 or P<0.01).The A_(490) Value was no significant difference between the chymase group and the co-pretreated with fenofibrate and its antagonist group(P>0.05).100μmol/L Fenofbrate alone had no significant effect on the number of CFs(P>0.05).(12) Pretreatment with fenofibrate at different concentrations decreased the DNA synthesis of CFs in a concentration-dependent manner,and the ~3H-TdR incorporation in 50μmol/L group and 100μmol/Lgroup was markedly lower than that in chymase group(P<0.01).The ~3H-TdR incorporation was not changed by fenofibrate and its antagonist co-pretreatment when compared with that of chymase group(P>0.05).100μmol/L fenofibrate alone had no significant effect on ~3H-TdR incorporation into CFs(P>0.05).(13) Pretreatment with fenofibrate at different concentrations increased the percentages of cells in G_0/G_1 phase,and decreased those in S phase and the PI,which in 50μmol/L group and 100μmol/L group had signifcant difference when compared with that in chymase group(P<0.05 or P<0.01).100μmol/L fenofibrate alone had no significant effect on PI,the percentages of cells in G_0/G_1 phase or S phase (P>0.05).(14) Pretreatment with fenofibrate at 10μmoFL,50μmol/L and 100μmol/L remarkably decreased the ~3H-proline incorporation in a concentration-dependent manner,and the ~3H-proline incorporation at 50μmol/L and 100μmol/L was significantly lower than that of chymase group(P<0.01). The ~3H-proline incorporation had no significant change in fenofibrate and its inhibitor-pretreated group when compared with that in chymase group(P>0.05). 100μmol/L fenofibrate alone had no apparente effect on ~3H-proline incorporation into CFs(P>0.05).(15) Pretreatment with fenofibrate at different concentrations decreased the mRNA expression of collagen Type-Ⅰand -Ⅲin a concentration-dependent manner,and the mRNA levels at 50μmol/L and 100μmol/L were significantly lower than that of chymase group(P<0.01).The mRNA expression of collagen Type-Ⅰand -Ⅲhad no significant change in fenofibrate and its inhibitor-pretreated group when compared with that in chymase group(P>0.05).100μmol/L fenofibrate alone had no marked effect on the mRNA expression of collagenⅠandⅢ(P>0.05).(16) Administration with chymase at different concentrations for 6 h lowered the mRNA expression of PPARα,and the expression levels at 15 ng/ml,30 ng/ml and 60 ng/ml were significantly lower than that of control(P<0.01).Pretreatment with fenofibrate at 10μmol/L,50μmol/L and 100μmol/L increased mRNA expression of PPARαin a concentration-dependent manner,and the expression levels at 50μmol/L and 100μmol/L were significantly higher than that of chymase group (P<0.05 or P<0.01).100μmol/L fenofibrate alone notably elevated the mRNA expression of PPARαwhen compared with control(P<0.01).(17) Treatment with chymase at different concentrations for 12 h decreased the protein expression of PPARα,and the expression levels at 15 ng/ml,30 ng/ml and 60 ng/ml were significantly lower than that of control(P<0.05 or P<0.01). Pretreatment with fenofibrate at 10μmol/L,50μmol/L and 100μmol/L up-regulated the protein expression of PPARαin a concentration-dependent manner,and the expression levels at 50μmol/L and 100μmol/L were significantly higher than that of chymase group(P<0.01).100μmol/L fenofibrate alone remarkably elevated the protein expression of PPARαwhen compared with control(P<0.01).(18) Pretreatment with fenofibrate at different concentrations down-regulated the mRNA expression of TGF-β1,and the expression levels at 50μmol/L and 100μmol/L were significantly lower than that of chymase group(P<0.01).The expression level was not altered in fenofibrate and its antagonist co-pretreated group when compared with that in chymase group(P>0.05).100μmol/L fenofibrate alone had no significant effect on the mRNA expression of TGF-β1(P>0.05).(19) Pretreatment with fenofibrate at 10μmol/L,50μmol/L and 100μmol/L down-regulated the protein expression of TGF-β1,and the expression levels at 50μmol/L and 100μmol/L were significantly lower than that of chymase group(P<0.05 or P<0.01).100μmol/L fenofibrate alone had no marked effect on the protein expression of TGF-β1(P>0.05).(20) Administration with chymase at different concentrations for 12 h had no significant effect on the protein expression of Smad2/3(P>0.05) No changes of Smad2/3 in protein expression was observed when CFs were pretreated with different concentrations of fenofibrate(P>0.05).(21) Treatment with chymase at 15 ng/ml,30 ng/ml and 60 ng/ml for 6 h up-regulated the protein expression of p-Smad2/3 when compared with control(P<0.05 or P<0.01).Pretreatment with fenofibrate at different concentrations down-regulated the protein expression of p-Smad2/3,and the expression levels at 50μmol/L and 100μmol/L were significantly lower than that of chymase group(P<0.05 or P<0.01).100μmol/L fenofibrate alone had no notable effect on the protein expression of p-Smad2/3(P>0.05).(22) Administration with chymase at 15 ng/ml,30 ng/ml and 60 ng/ml for 6 h down-regulated the mRNA expression of Smad7 when compared with control(P<0.05 or P<0.01). Pretreatment with fenofibrate at different concentrations up-regulated the mRNA expression of Smad7 in a concentration-dependent manner,and the expression levels at 50μmol/L and 100μmol/L were significantly higher than that of chymase group(P<0.05 or P<0.01).100μmol/L fenofibrate alone had no significant effect on the mRNA expression of Smad7(P>0.05).(23) Treatment with chymase at 15 ng/ml,30 ng/ml and 60 ng/ml for 12 h down-regulated the protein expression of Smad7 when compared with control(P<0.01). Pretreatment with fenofibrate at different concentrations up-regulated the protein expression of Smad7 in a concentration-dependent manner,and the expression levels at 50μmol/L and 100μmol/L were significantly higher than that of chymase group(P<0.05 or P<0.01).100μmol/L fenofibrate alone had no remarkable effect on the protein expression of Smad7(P>0.05).
     Conclusion(1) Cardiac mast cell-derived chymase can promote cell proliferation and collagen synthesis of CFs in a dose-dependent manner, indicating that cardiac chymase may play a significant role in the formation and progression of myocardial fibrosis.(2) Chymase can up-regulate TGF-β1 expression,promote Smad2/3 phosphorylation and down-regulate Smad7 expression,suggesting that chymase can activate TGF-β1/Smads signaling pathway.(3) TGF-β1 neutralizing antibody and serine/threonine kinase inhibitor exert significant inhibitory effects on cell proliferation,collagen synthesis and TGF-β1 expression caused by chymase while angiotensinⅡreceptor blocker (ARB) valsartan and PD123319 fail to exhibit similar changes.The result further indicates that TGF-β1/Smads pathway is involved in myocardial fibrosis caused by chymase.(4) Fenofibrate,a PPARαagonist,can suppress cell proliferation and collagen synthesis of CFs induced by chymase.Thus,it may exert reverse effect on myocardial fibrosis.(5) Fenofibrate can not only activate PPARαand restrain TGF-β1 production,but also down-regulate p-Smad2/3 expression and up-regulate Smad7 expression.This may be one of the molecular and biological mechanisms involved in the inhibitory effects of fenofibrate on cell proliferation,collagen synthesis of CFs and then result in the regression of myocardial fibrosis.(6) There may exist cross-talk between PPARαand TGF-β1/Smads pathway.That is to say,activated PPARαcan exert negative modulation on TGF-β1/Smads pathway by down-regulating TGF-β1 expression, inhibiting Smad2/3 phosphorylation and up-regulating Smad7 expression.
     In a summary,cardiac mast cell-derived chymase can induce cell proliferation and collagen synthesis of CFs and therefore,it can promote myocardial fibrosis.Up-regulation of TGF-β1 expression,phosphorylation of Smad2/3 and down-regulation of Smad7 expression are considered to be one of intra-cellular signal transduction mechariisms.Fenofibrate,a PPARαagonist, can reverse myocardial fibrotic response and thus exert protective effects on cardiovascular system apart from its effect on lipid metabolism.It may be one of the fenofibrate-mediated potential mechanisms that suppression of TGF-β1 expression caused by activating PPARαmay result in down-regulation of Smad2/3 phosphorylation and up-regulation of Smad7 expression.Therefore, this study may provide theoretical evidence and a novel therapeutic target for left ventricular hypertrophy caused by hypertension.
引文
1 Urata H,Kinoshita A,Misono KS,Bumpus FM,Husain A.Identification of a highly specific chymase as the major angiotensin Ⅱ-forming enzyme in the human heart.J Biol Chem,1990,265(36):22348-22357
    2 Urata H,Ganten D.Cardiac angiotensin Ⅱ formation:the angiotensin-Ⅰ converting enzyme and human chymase.Eur Heart J,1993,14(Suppl Ⅰ):177-182
    3 Urata H,Nishimura H,Ganten D.Chymase-dependent angiotensin Ⅱ forming systems in humans.Am J Hypertens,1996,9(3):277-284
    4 Caughey GH,Raymond WW,Wolters PJ.Angiotensin Ⅱ generation by mast cell alpha- and beta-chymases.Biochim Biophys Acta,2000,1480(1-2):245-257
    5 Muilenburg DJ,Raymond WW,Wolters PJ,Caughey GH.Lys40 but not Arg143influences selectivity of angiotensin conversion by human alpha-chymase.Biochim Biophys Acta,2002,1596(2):346-356
    6 Wei CC,Tian B,Perry G,Meng QC,Chen YF,Oparil S,Dell'Italia LJ.Differential Ang Ⅱ generation in plasma and tissue of mice with decreased expression of the ACE gene.Am J Physiol Heart Circ Physiol,2002,282(6):H2254-H2258
    7 Hollenberg NK.Implications of species difference for clinical investigation:studies on the renin angiotensin system.Hypertension,2000,35(1 Pt 2):150-154
    8 袁国会,杨钧国.肥大细胞与心肌纤维化的关系.临床心血管病杂志,2005,21(10):631-633
    9 Doggrell SA,Wanstall JC.Vascular chymase:pathophysiological role and therapeutic potential of inhibition.Cardiovasc Res,2004,61(4):653-662
    10 Kido H,Nakano A,Okishima N,Wakabayashi H,Kishi F,Nakaya Y,Yoshizumi M,Tamaki T.Human chymase,an enzyme forming novel bioactive 31-amino acid length endothelins.Biol Chem,1998,379:885-891
    11 鲁彦,林丽,袁文俊.内皮素家系的新成员—内皮素_((1-31)).生理科学进展,2005,36(1):41-44
    12 Stewart JA Jr,Wei CC,Brower GL,Rynders PE,Hankes GH,Dillon AR,Lucchesi PA,Janicki JS,Dell'Italia LJ.Cardiac mast cell and chymase-mediated matrix metalloproteinase activity and left ventricular remodeling in mitral regurgitation in the dog.J Mol Cell Cardiol,2003,35:311-319
    13 Urata H.Chymase and matrix metalloproteinase.Hypertens Res,2007,30(1):3-4
    14 Lindstedt KA,Wang Y,Shiota N,Saarinen J,Hyytiainen M,Kokkonen JO,Keski-Oja J,Kovanen PT.Activation of paracrine TGF-β1 signaling upon stimulation and degranulation of rat serosal mast cells:a novel function for chymase.FASEB J,2001,15(6):1377-1388
    15 Patella V,Marino I,Lamparter B,Arbustini E,Adt M,Marone G.Human heart mast cells:Isolation,purification,ultrastructure,and immunologic characterization.J Immunol,1995,154(6):2855-2865
    16 Urata H,Boehrn KD,Philip A,Kinoshita A,Gabrovsek J,Bumpus FM,Husain A.Cellular localization and regional distribution of an angiotensin Ⅱ-forming chymase in the heart.J Clin Invest,1993,91(4):1269-1281
    17 Marone G,de Crescenzo G,Adt M,Patella V,Arbustini E,Genovese A.Immunological characterization and functional importance of human heart mast cells.Immunopharmacology,1995,31(1):1-18
    18 Doggrell SA,Wanstall JC.Cardiac chymase:pathophysiological role and therapeutic potential of chymase inhibitors.Can J Physiol Pharmacol,2005,83(2):123-130
    19 Patella V,Marin6 I,Arbustini E,Lamparter-Schummert 13,Verga L,Adt M,Marone G.Stem cell factor in mast cells and increased mast cells desity in idiopathic and ischemic cardiomyopathy.Circulation,1998,97(10):971-978
    20 袁国会,杨钧国,米少华.肥大细胞在大鼠心肌梗死后心肌纤维化中的作用.中华老年医学杂志,2004,23(12):871-874
    21 Erokhina IL,Martynova MG,Moiseeva OM,Emel'ianova OI.Activation of mast ceils after experimental myocardial infarction in 3 week-old rats.Tsitologiia,2006,48(8):661-664
    22 Batlle M,Pérez-Villa F,Látzaro A,Garcia-Pras E,Ramirez J,Ortiz J,Orris J,Roqué M,Heras M,Roig E.Correlation between mast cell density and myocardial fibrosis in congestive heart failure patients.Transplant Proc,2007,39(7):2347-2349
    23 贾秀珍,刘晓雷.糜酶在心血管方面的研究进展.中国分子心脏病学杂志,2002,2(4):33-36
    24 Chen LY,Li P,He Q,Jiang LQ,Cui C J,Xu L,Liu LS.Transgenic study of the function of chymase in heart remodeling.J Hypertens,2002,20(10):2047-2055
    25 Koga T,Urata H,Inoue Y,Hoshino T,Okarnoto T,Matsunaga A,Suzuki M,Miyazaki J,Ideishi M,Arakawa K,Saku K.Human chymase expression in a mice induces mild hypertension with left ventricular hypertrophy.Hypertens Res,2003,26(9):759-768
    26 Wolny A,Clozel JP,Rein J,Mory P,Vogt P,Turino M,Kiowski W,Fischli W.Functional and biochemical analysis of angiotensin Ⅱ-forming pathways in the human heart.Circ Res,1997,80(2):219-227
    27 Shiota N,Jin D,Takai S,Kawamura T,Koyama M,Nakamura N,Miyazaki M.Chymase is activated in the hamster heart following ventricular fibrosis during the chronic stage of hypertension.FEBS Lett,1997,406(3):301-304
    28 Sadjadi J,Kramer GL,Yu CH,Burress Welborn M 3rd,Chappell MC,Gregory Modrall J.Angiotensin converting enzyme-independent angiotensin Ⅱ production by chymase is up-regulated in the ischemic kidney in renovascular hypertension.J Surg Res,2005,127(2):65-69
    29 Jin D,Takai S,Yamada M,Sakaguchi M,Kamoshita K,Ishida K,Sukenaga Y,Miyazaki M.Impact of chymase inhibitor on cardiac function and survival after myocardial infarction.Cardiovasc Res,2003,60(2):413-420
    30 Kanemitsu H,Takai S,Tsuneyoshi H,Nishina T,Yoshikawa K,Miyazaki M,Ikeda T,Komeda M.Chymase inhibition prevents cardiac fibrosis and dysfunction after myocardial infarction in rats.Hypertens Res,2006,29(1):57-64
    31 Takai S,Jin D,Sakaguchi M,Katayama S,Muramatsu M,Sakaguchi M,Matsumura E,Kim S,Miyazaki M.A novel chymase inhibitor,4-[1-([bis-(4-methyl-phenyl)-methyl]-car -bamoyl)3-(2-ethoxy-benzyl)-4-oxo-azetidine-2-yloxy]-benzoic acid(BCEAB),suppressed cardiac fibrosis in cardiomyopathic hamsters.J Pharmacol Exp Ther,2003,305(1):17-23
    32 Baffle M,Roig E,Perez-Villa F,Lario S,Cejudo-Martin P,Garcia-Pras E,Ortiz J,Roqué M,Orris J,Rigol M,Heras M,Ramirez.I,Jimenez W.Increased expression of the renin-angiotensin system and mast cell density but not of angiotensin-converting enzyme Ⅱ in late stages of human heart failure.J Heart Lung Transplant,2006,25(9):1117-1125
    33 Kanemitsu H,Takai S,Tsuneyoshi H,Yoshikawa E,Nishina T,Miyazaki M,Ikeda T,Komeda M.Chronic chymase inhibition preserves cardiac function after left ventricular repair in rats.Eur J Cardiothorac Surg,2008,33(1):25-31
    34 王先梅,赵连友,郑强荪.糜酶抑制剂对自发性高血压大鼠心肌纤维化的影响.心脏杂志,2006,18(1):31-33
    35 Hocher B,Godes M,Olivier J,Weil J,Eschenhagen T,Slowinski T,Neumayer HH,Bauer C,Paul M,Pinto YM.Inhibition of left ventricular fibrosis by tranilast in rats with renovascular hypertension.J Hypertens,2002,20(4):745-751
    36 Pinto YM,Pinto-Sietsma S J,Philipp T,Engler S,Kossamehl P,Hocher B,Marquardt H,Sethmann S,Lauster R,Merker HJ,Paul M.Reduction in left ventricular messenger RNA for transforming growth factor beta(1) attenuates left ventricular fibrosis and improves survival without lowering blood pressure in the hypertensive TGR (mRen2)27 Rat.Hypertension,2000,36(5):747-754
    37 Miyazaki M,Takai S,Jin D,Muramatsu M.Pathological roles of angiotensin Ⅱproduced by mast cell chymase and the effects of chymase inhibition in animal models.Pharmacol Ther,2006,112(3):668-676
    38 Bacani C,Fdshman WH.Chymase:a new pharmacologic target in cardiovascular disease.Cardiol Rev,2006,14(4):187-193
    39 Kokkonen JO,Lindstedt KA,Kovanen PT.Role for chymase in heart failure:angiotensin Ⅱ-dependent or -independent mechanisms ? Circulation,2003,107(20):2522-2524
    40 陈朋民,陈兰英,范慕贞.仓鼠心肌肥厚模型的建立及左心室chymase、ACE基因表达的检测.高血压杂志,2000,8(1):52-55
    41 陈朋民,李红艳.Chymase与心肌肥厚及心力衰竭.中日友好医院学报,2002,16(2):100-102
    42 Li P,Chen PM,Wang SW,Chen LY.Time-dependent expression of chymase and angiotensin converting enzyme in the hamster heart under pressure overload. Hypertens Res,2002,25 (5): 757-762
    43 Shimizu M, Tanaka R, Fukuyama T, Aoki R, Onto K, Yamane Y. Cardiac remodeling and angiotensin II-forming enzyme activity of the left ventricle in hamsters with chronic pressure overload induced by ascending aortic stenosis. J Vet Med Sci, 2006 , 68 (3): 271-276
    44 Hara M ,Matsumori A ,Ono K. Mast cell induces apoptosis of cardiomyocytes and proliferation of other intromyocardial cells in vitro. Circulation, 1999, 100 (13): 1443-1449
    45 Arakawa K, Urata H. Hypothesis regarding the pathophysiological role of alternative pathways of angiotensin II formation in atherosclerosis.Hypertension, 2000, 36 (4): 638-6341
    46 Ohishi M, Ueda M, Rakugi H, Naruko T, Kojima A, Okamura A, Higaki J, Ogihara T. Relative localization of angiotensin-converting enzyme, chymase and angiotensin II in human coronary atherosclerotic lesions. J Hypertens, 1999,17 (4): 547-553
    47 Leskinen MJ, Heikkila HM, Speer MY, Hakala JK, Laine M, Kovanen PT, Lindstedt KA. Mast cell chymase induces smooth muscle cell apoptosis by disrupting NF-kappaB-mediated survival signaling. Exp Cell Res, 2006 , 312 (8): 1289-1298
    48 Ihara M, Urata H, Kinoshita A, Suzumiya J, Sasaguri M, Kikuchi M, Ideishi M, Arakawa K. Increased chymase-dependent angiotensin II formation in human atherosclerotic aorta. Hypertension, 1999, 33 (6): 1399-1405
    49 Uehara Y, Urata H, Ideishi M, Arakawa K, Saku K. Chymase inhibition suppresses high-cholesterol diet-induced lipid accumulation in the hamster aorta. Cardiovasc Res, 2002, 55 (4): 870-876
    50 Mawatari K, Kakui S, Harada N, Ohnishi T, Niwa Y, Okada K, Takahashi A, Izumi K, Nakaya Y. Endothelin-1_((1-31)) levels are increased in atherosclerotic lesions of the thoracic aorta of hypercholesterolemic hamsters. Atherosclerosis, 2004, 175 (2): 203-212
    51 Nishimoto M, Takai S, Fukumoto H, Tsunemi K, Yuda A, Sawada Y, Yamada M, Jin D, Sakaguchi M, Nishimoto Y, Sasaki S, Miyazaki M. Increased local angiotensin II formation in aneurysmal aorta. Life Sci, 2002 ,71(18): 2195-2205
    52 Furubayashi K, Takai S, Jin D, Muramatsu M, Ibaraki T, Nishimoto M, Fukumoto H, Katsumata T, Miyazaki M. The significance of chymase in the progression of abdominal aortic aneurysms in dogs. Hypertens Res, 2007, 30 (4): 349-357
    53 Tsunemi K, Takai S, Nishimoto M, Jiu D, Sakaguchi M, Muramatsu M, Yuda A, Sasaki S, Miyazaki M. A specific chymase inhibitor, NK3201, suppresses development of abdominal aortic aneurysm in hamsters. J Pharmacol Exp Ther, 2004, 309 (3): 879-883
    54 Tsunemi K, Takai S, Nishimoto M, Yuda.A, Hasegawa S, Sawada Y, Fukumoto H, Sasaki S, Miyazaki M. Possible roles of angiotensin II-forming enzymes, angiotensin converting enzyme and chymase-like enzyme,in the human aneurysmal aorta.Hypertens Res,2002,25(6):817-822
    55 Heikkila HM,Latti S,Leskinen MJ,Hakala JK,Kovanen PT,Lindstedt KA.Activated mast cells induce endothelial cell apoptosis by a combined action of chymase and tumor necrosis factor-alpha.Arterioscler Thromb Vasc Biol,2008,28(2):309-314
    56 Leskinen MJ,Lindstedt KA,Wang Y,Kovanen PT.Mast cell chymase induces smooth muscle cell apoptosis by a mechanism involving fibronectin degradation and disruption of focal adhesions.Arterioscler Thromb Vase Biol,2003,23(2):238-243
    57 Jin D,Takai S,Shiota N,Miyazaki M.Roles of vascular angiotensin converting enzyme and chymase in two-kidney one clip hypertensive hamsters.J Hypertens,1998,16(5):657-664
    58 Kirimura K,Takai S,Jin D,Muramatsu M,Kishi K,Yoshikawa K,Nakabayashi M,Mino Y,Miyazaki M.Role of chymase-dependent angiotensin Ⅱ formation in regulating blood pressure in spontaneously hypertensive rats.Hypertens Res,2005,28(5):457-464
    59 Caiying G,Haisong J,Debbie L,Hamid M,Mingda SMR.A novel vascular smooth muscle chymase is upregulated in hypertensive rats.J Clin Invest,2001,107:703-715
    60 Jin D,Takai S,Yamada M,Sakaguchi M,Yao Y,Miyazaki M.Possible roles of cardiac chymase after myocardial infarction in hamster hearts.Jpn J Pharmacol,2001,86(2):203-214
    61 袁国会,杨钧国,张守焰.曲尼斯特对急性心肌梗死大鼠心肌纤维化的影响.临床心血管病杂志,2005,21(1):52-53
    62 Wolny A,Clozel JP,Rein J,Mory P,Vogt P,Turino M,Kiowski W,Fischli W.Functional and biochemical analysis of angiotensin Ⅱ-forming pathways in the human heart.Circ Res,1997,80(2):219-227
    63 Semeri GG,Boddi M,Cecioni I,Vanni S,Coppo M,Papa ML,Bandinelli B,Bertolozzi I,Polidori G,Toscano T,Maccherini M,Modesti PA.Cardiac angiotensin Ⅱformation in the clinical course of heart failure and its relationship with left ventricular function.Circ Res,2001,88(9):961-968
    64 Okumura K,Jin D,Takai S,Miyazaki M.Beneficial effects of angiotensin-converting enzyme inhibition in adriamycin-induced cardiomyopathy in hamsters.Jpn J Pharmacol,2002,88(2):183-188
    65 Palaniyandi SS,Nagai Y,Watanabe K,Ma M,Veeraveedu PT,Prakash P,Kamal FA,Abe Y,Yamaguchi K,Tachikawa H,Kodama M,Aizawa Y.Chymase inhibition reduces the progression to heart failure after autoimmune myocarditis in rats.Exp Biol Med,2007,232(9):1213-1221
    66 Matsumoto T,Wada A,Tsutamoto T,Ohnishi M,Isono T,Kinoshita M.Chymase inhibition prevents cardiac fibrosis and improves diastolic dysfunction in the progression of heart failure.Circulation,2003,'107(20):2555-2558
    67 Takai S,Shiota N,Sakaguchi M,Muraguchi H,Matsumura E,Miyazaki M. Characterization of chymase from human vascular tissues.Clin Chim Acta,1997,265(1):13-20
    68 Shiota N,Okunishi H,Takai S,Mikoshiba I,Sakonjo H,Shibata N,Miyazaki M.Tranilast suppresses vascular chymase expression and neointima formation in balloon-injured dog carotid artery.Circulation,1999,99(8):1084-1090
    69 Takai S,Miyazaki M.Effect of chymase inhibitor on vascular proliferation.Jpn J Pharmacol,2002,90(3):223-227
    70 Gough PJ,Gomez IG,Wille PT,Raines EW.Macrophage expression of active MMP-9induces acute plaque disruption in apoE-deficient mice.J Clin Invest,2006,116(1):59-69
    71 Ii H,Hontani N,Toshida I,Oka M,Sato T,Akiba S.Group IVA phospholipase A2-associated production of MMP-9 in macrophages and formation of atherosclerotic lesions.Biol Pharm Bull,2008,31(3):363-368
    72 Robertson L,Grip L,Mattsson Hultén L,Hulthe J,Wiklund O.Release of protein as well as activity of MMP-9 from unstable atherosclerotic plaques during percutaneous coronary intervention.J Intern Med,2007,262(6):659-667
    73 Miyazaki M,Wada T,Shiota N,Takai S.Effect of an angiotensin Ⅱ receptor antagonist,candesartan cilexetil,on canine intima hyperplasia after balloon injury.J Hum Hypertens,1999,13(Suppl 1):S21-S25.
    74 Miyazaki M,Shiota N,Sakonjo H,Takai S.Angiotensin Ⅱ type 1 receptor antagonist,TCV-116,prevents neointima formation in injured arteries in the dog.Jpn J Phmacol,1999,79(4):455-460
    75 Nishimoto M,Takai S,Kim S,Jin D,Yuda A,Sakaguchi M,Yamada M,Sawada Y,Kondo K,Asada K,Iwao H,Sasaki S,Miyazaki M.Significance of chymase-dependent angiotensin Ⅱ-forming pathway in the development of vascular proliferation.Circulation,2001,104(11):1274-1279
    76 Takai S,Yuda A,Jin D,Nishimoto M,Sakagichi M,Sasaki S,Miyazaki M.Inhibition of chymase reduces vascular proliferation in dog grafted veins.FEBS Lett,2000,467(2-3):141-144
    77 Yuda A,Takai S,Jin D,Sawada Y,Nishimoto M,Matsuyama N,Asada K,Kondo K,S asaki S,Miyazaki M.Angiotensin Ⅱ receptor antagonist,L2158,809,prevents intimal hyperplasia in dog grafted veins.Life Sci,2000,68(1):41-48
    78 郑琼莉,祝炜,贾晶,毛莉娜,王超,李红兵.转化生长因子β1与心血管疾病.中国心血管病研究杂志,2006,4(7):550-551
    79 Miyazawa K,Shinozaki M,Hara T,Furuya T,Miyazono K.Two major Smad pathways in TGF-beta superfamily signalling.Genes Cells,2002,7(12):1191-1204
    80 张志梅,左国庆,陈伟庆.转化生长因子-β与恶性肿瘤关系的研究进展.重庆医学,2007,36(2):173-175
    81 Massagué J.TGFbeta signaling:receptors,transducers,and Mad proteins.Cell,1996,85(7):947-950
    82 冯敏,马爱群.TGF-β在心肌分化及心肌梗死后心肌重塑中的作用.医学综述,2003,9(5):297-299
    83 Blobe GC,Schiemann WP,Lodish HF.Role of transforming growth factor beta in human disease.N Engl J Med,2000,342(18):1350-1358
    84 Rahimi RA,Leof EB.TGF-beta signaling:a tale of two responses.J Cell Biochem,2007,102(3):593-608
    85 田晓丽,杨杰.转化生长因子-β研究进展.解放军预防医学杂志,2006,24(2):145-148
    86 Verrecchia F,Mauviel A.Transforming growth factor-beta signaling through the Smad pathway:role in extracellular matrix gene expression and regulation.J Invest Dermatol,2002,118(2):211-215
    87 Verrecchia F,Mauviel A.Transforming growth factor-beta and fibrosis.World J Gastroenterol,2007,13(22):3056-3062
    88 Ruwhof C,van Wamel AE,Egas JM,van der Laarse A.Cyclic stretch induces the release of growth promoting factors from cultured neonatal cardiomyocytes and cardiac fibroblasts.Mol Cell Biochem,2000,208(1-2):89-98
    89 Chen K,Mehta JL,Li D,Joseph L,Joseph J.Transforming growth factor beta receptor endoglin is expressed in cardiac fibroblasts and modulates profibrogenic actions of angiotensin Ⅱ.Circ Res,2004,95(12):1167-1173
    90 Petrov VV,Fagard RH,Lijnen PJ.Stimulation of collagen production by transforming growth factor-betal during differentiation of cardiac fibroblasts to myofibroblasts.Hypertension,2002,39(2):258-263
    91 Attisano L,Wrana JL.Signal transduction by the TGF-β superfamily.Science,2002,296(5573):1646-1647
    92 Derynck R,Zhang Y,Feng XH.Smads:transcriptional activators of TGF-beta responses.Cell,1998,95(6):737-740
    93 Moustakas A,Souchelnytskyi S,Heldin CH.Smad regulation in TGF-beta signal transduction.J Cell Sci,2001,114(Pt 24):4359-4369
    94 Heldin CH,Miyazono K,ten Dijke P.TGF-beta signalling from cell membrane to nucleus through SMAD proteins.Nature,1997,390(6659):465-471
    95 Nakao A,Afrakhte M,Morén A,Nakayama T,Christian JL,Heuchel R,Itoh S,Kawabata M,Heldin NE,Heldin CH,ten Dijke P.Identification of Smad7,a TGF beta-inducible antagonist of TGF-beta signalling.Nature,1997,389(6651):631-635
    96 Inman GJ.Linking Smads and transcriptional activation.Biochem J,2005,386(Pt 1):e1-e3
    97 Wang G,Long J,Matsuura I,He D,Liu F.The Smad3 linker region contains a transcriptional activation domain.Biochem J,2005,386(Pt 1):29-34
    98 牟达,何芳.TGF-β与MAPK细胞内信号转导通路的交互调节及其在心血管疾病中的作用.国际病理科学与临床杂志,2002,26(2):130-134
    99 Dziembowska M,Danilkiewicz M,Wesolowska A,Zupanska A,Chouaib S, Kaminska B.Cross-talk between Smad and p38 MAPK signalling in transforming growth factor beta signal transduction in human glioblastoma cells.Biochem.Biophys Res Commun,2007,354:1101-1106
    100 Hayashida T,Decaestecker M,Schnaper HW.Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-beta-dependent responses in human mesangial cells.FASEB J,2003,17(11):1576-1578
    101 Kamaraju AK,Roberts AB.Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-beta-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo.J Biol Chem,2005,280(2):1024-1036
    102 Yue J,Sun B,Liu G,Mulder KM.Requirement of TGF-beta receptor-dependent activation of c-Jun N-terminal kinases(JNKs)/stress-activated protein kinases(Sapks)for TGF-beta up-regulation of the urokinase-type plasminogen activator receptor.J Cell Physiol,2004,199(2):284-292
    103 Li JH,Huang XR,Zhu H J,Oldfield M,Cooper M,Truong LD,Johnson RJ,Lan HY.Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms:implications for diabetic renal and vascular disease.FASEB J,2004,18(1):176-178
    104 Rodríguez-Vita J,Sánchez-L6pez E,Esteban V,Rupérez M,Egido J,Ruiz-Ortega M.Angiotensin Ⅱ activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-β independent mechanism.Circulation,2005,111:2509-2517
    105 Taimor G,Schlüter KD,Frischkopf K,Flesch M,Rosenkranz S,Piper HM.Autocrine regulation of TGF beta expression in adult cardiomyocytes.J Mol Cell Cardiol,1999,31(12):2127-2136
    106 罗惠兰,何作云.bFGF、TGF-β1在心肌细胞肥大中与cAMP、cGMP的关系研究.第三军医大学学报,2000,22(11):1046-1049
    107 Parter TG,Packer SE,Schneider MD.Peptide growth factors can provoke "fetal"contractile protein gene expression in rat cardiac myocytes.J Clin Invest,1990,85:507-514
    108 黄俊;覃国辉;马业新;刘启功.转化生长因子β1与大鼠心肌细胞肥大关系的实验研究.华中科技大学学报(医学版),2003;32(5):484-485
    109 Schultz Jel J,Witt SA,Glascock B J,Nieman ML,Reiser PJ,Nix SL,Kimball TR,Doetschman T.TGF-betal mediates the hypertrophic cardiomyocyte growth induced by angiotensin Ⅱ.J Clin Invest,2002,109(6):787-796
    110 Gray MO,Long CS,Kalinyak JE,Li HT,Karliner JS.Angiotensin Ⅱ stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1from fibroblasts.Cardiovasc Res,1998,40(2):352-363
    111 van Wamel AJ,Ruwhof C,van der Valk-Kokshoom LE,Schrier PI,van der Laarse A.The role of angiotensin Ⅱ,endothelin-1 and transforming growth factor-beta as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy.Mol Cell Biochem,2001,218(1-2):113-124
    112 van Wamel AJ,Ruwhof C,van der Valk-Kokshoom LJ,Schrier PI,van der Laarse A.Stretch-induced paracrine hypertrophic stimuli increase TGF-betal expression in cardiomyocytes.Mol Cell Biochem,2002,236(1-2):147-153
    113 Li G,Borger MA,Williams WG,Weisel RD,Mickle DA,Wigle ED,Li RK.Regional overexpression of insulin-like growth factor-Ⅰ and transforming growth factor-betal in the myocardium of patients with hypertrophic obstructive cardiomyopathy.J Thorac Cardiovasc Surg,2002,123(1):89-95
    114 罗惠兰,何作云,冯兵,喻陆.人心肌肥大时碱性成纤维细胞生长因子和转化生长因子表达的变化及其意义.中华心血管病杂志,2001,29(7):402-405
    115 Rosenkranz S,Flesch M,Amann K,Haeuseler C,Kilter H,Seeland U,Schlüter KD,Bohm M.Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1).Am J Physiol Heart Circ Physiol,2002,283(3):H1253-H1262
    116 覃国辉,黄俊,马业新.TGF-β1及其信号蛋白Smad2,3在大鼠心肌细胞肥大中的作用.现代医学,2003,31(5):301-303
    117 Kato S,Ueda S,Tamaki K,Fujii M,Miyazono K,ten Dijke P,Morimatsu M,Okuda S.Ectopic expression of Smad7 inhibits transforming growth factor-beta responses in vascular smooth muscle ceils.Life Sci,2001,69(22):2641-2652
    118 Campbell SE,Katwa LC.Angiotensin Ⅱ stimulated expression of transforming growth factor-betal in cardiac fibroblasts and myofibroblasts.J Mol Cell Cardiol,1997,29(7):1947-1958
    119 Kawano H,Do YS,Kawano Y,Starnes V,Barr M,Law RE,Hsueh WA.Angiotensin Ⅱhas multiple profibrotic effects in human cardiac fibroblasts.Circulation,2000,101(10):1130-1137
    120 Martin J,Kelly DJ,Mifsud SA,Zhang Y,Cox AJ,See F,Krum H,Wilkinson-Berka J,Gilbert RE.Tranilast attenuates cardiac matrix deposition in experimental diabetes:role of transforming growth factor-beta.Cardiovasc Res,2005,65(3):694-701
    121 Akiyama-Uchida Y,Ashizawa N,Ohtsuru A,Seto S,Tsukazaki T,Kikuchi H,Yamashita S,Yano K.Norepinephrine enhances fibrosis mediated by TGF-beta in cardiac fibroblasts.Hypertension.2002 Aug;40(2):148-54
    122 Ammarguellat F,Larouche I,Schiffrin EL.Myocardial fibrosis in DOCA-salt hypertensive rats:effect of endothelin ET(A) receptor antagonism.Circulation,2001,103(2):319-324
    123 Khan R.Examining potential therapies targeting myocardial fibrosis through the inhibition of transforming growth factor-beta 1.Cardiology,2007,108(4):368-380
    124 Wang B,Hao J,Jones SC,Yee MS,Roth JC,Dixon IM.Decreased Smad 7 expression contributes to cardiac fibrosis in the infarcted rat heart.Am J Physiol Heart Circ Physiol,2002,282(5):H1685-H1696
    125 呼邦传,初少莉,朱鼎良.转化生长因子β与高血压.高血压杂志,2003,11(3): 196-199
    126 Battegay EJ,Raines EW,Seifert RA,Bowen-Pope DF,Ross R.TGF-beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop.Cell,1990,63(3):515-524
    127 Cucina A,Borrelli V,Randone B,Coluccia P,Sapienza P,Cavallaro A.Vascular endothelial growth factor increases the migration and proliferation of smooth muscle cells through the mediation of growth factors released by endothelial cells.J Surg Res,2003,109(1):16-23
    128 Hirschi KK,Lai L,Belaguli NS,Dean DA,Schwartz RJ,Zimmer WE.Transforming growth factor-beta induction of smooth muscle cell phenotpye requires transcriptional and post-transcriptional control of serum response factor.J Biol Chem,2002,277(8):6287-6295
    129 Ikedo H,Tamaki K,Ueda S,Kato S,Fujii M,Ten Dijke P,Okuda S.Smad protein and TGF-beta signaling in vascular smooth muscle cells.Int J Mol Med,2003,11(5):645-650
    130 Lindner V.Vascular repair processes mediated by transforming growth factor-beta.Z Kardiol,2001,90(Suppl 3):17-22.
    131 Ryan ST,Koteliansky VE,Gotwals PJ,Lindner V.Transforming growth factor-beta-dependent events in vascular remodeling following arterial injury.J Vasc Res,2003,40(1):37-46
    132 赵炜,李向红,徐书珍.转化生长因子β1在心肌缺氧缺血再灌注损伤修复及心肌重塑中的作用.临床儿科杂志,2006,24(10):853-856
    133 Xia CF,Bledsoe G,Chao L,Chao J.Kallikrein gene transfer reduces renal fibrosis,hypertrophy,and proliferation in DOCA-salt hypertensive rats.Am J Physiol Renal Physiol,2005,289(3):F622-F631
    134 Fukuda N,Hu WY,Kubo A,et al.Abnormal regulation of transforming growth factor-βreceptor on vascular smooth muscle cell from spontaneous hypertension rats by Ang Ⅱ.Hypertension,1998,31:672-677
    135 Jing L,Zhang JZ,Zhao L,Wang YL,Guo FY.High-expression of transforming growth factor betal and phosphorylation of extracellular signal-regulated protein kinase in vascular smooth muscle cells from aorta and renal arterioles of spontaneous hypertension rats.Clin Exp Hypertens,2007,29(2):107-17
    136 Li B,Khanna A,Sharma V.TGF - betal DNA polymorphisms,protein level,and blood pressure.Hypertension,1999,33(pt2):271-275
    137 Suthanthiran M,Li B,Song JO,Ding R,Sharma VK,Schwartz JE,August P.Transforming growth factor-beta 1 hyperexpression in African-American hypertensives:A novel mediator of hypertension and/or target organ damage.Proc Natl Acad Sci USA,2000,97(7):3479-3484
    138 Derhaschnig U,Shehata' M,Herkner H,Bur A,Woisetschlager C,Laggner AN,Hirschl MM.Increased levels of transforming growth factor-betal in essential hypertension. Am J Hypertens,2002,15(3):207-211
    139 Hennessy A,Orange S,Willis N,Painter DM,Child A,Horvath JS.Transforming growth factor-beta 1 does not relate to hypertension in pre-eclampsia.Clin Exp Pharmacol Physiol.2002 Nov;29(11):968-71
    140 August P,Leventhal B,Suthanthiran M.Hypertension-induced organ damage in African Americans:transforming growth factor-beta(1) excess as a mechanism for increased prevalence.Curr Hypertens Rep,2000,2(2):184-191
    141 Torun D,Ozelsancak R,Turan I,Micozkadioglu H,Sezer S,Ozdemir FN.The relationship between obesity and transforming growth factor beta on renal damage in essential hypertension.Int Heart J,2007,48(6):733-741
    142 Zhu S,Liu Y,Wang L,Meng QH.Transforming growth factor-{beta}1 is associated with kidney damage in patients with essential hypertension:renoprotective effect of ACE inhibitor and/or angiotensin Ⅱ receptor blocker.Nephrol Dial Transplant,2008
    143 汪祥海,李玉杰,曾群英.原发性高血压病血清转化生长因子β1水平变化及临床意义.中国心血管病研究杂志,2004,2:110-112
    144 Mallat Z,Tedgui A.The role of transforming growth factor beta in atherosclerosis:novel insights and future perspectives.Curr Opin Lipidol,2002,13(5):523-529
    145 金炜,懂维平,杨红.转化生长因子β1在动脉粥样硬化形成中的作用及机制研究.中国药理学通报,2003,19:650-653
    146 Cipollone F,Fazia M,Mincione G,Iezzi A,Pini B,Cuccurullo C,Ucchino S,Spigonardo F,Di Nisio M,Cuccurullo F,Mezzetti A,Porreca E.Increased expression of transforming growth factor-betal as a stabilizing factor in human atherosclerotic plaques.Stroke,2004,35(10):2253-2257
    147 Jiang X,Zeng HS,Guo Y,Zhou ZB,Tang BS,Li FK.The expression of matrix metalloproteinases-9,transforming growth factor-betal and transforming growth factor-beta receptor I in human atherosclerotic plaque and their relationship with plaque stability.Chin Med J(Engl),2004,117(12):1825-1829
    148 Mallat Z,Gojova A,Marchiol-Foumigault C,Esposito B,Kamaté C,Merval R,Fradelizi D,Tedgui A.Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice.Circ Res,2001,89(10):930-934
    149 Argrnann CA,Van Den Diepstraten CH,Sawyez CG,Edwards JY,Hegele RA,Wolfe BM,Huff MW.Transforming growth factor-betal inhibits macrophage cholesteryl ester accumulation induced by native and oxidized VLDL remnants.Arterioscler Thromb Vasc Biol,2001,21(12):2011-2018
    150 姚孟英,黄振文,李素姣,陈磊.转化生长因子β1水平和冠心病关系研究.医药论坛杂志,2006,27(8):6-8
    151 Tashiro H,Shimokawa H,Sadamatu.K,Yamamoto K.Prognostic significance of plasma concentrations of transforming growth factor'beta in patients with coronary artery disease.Coron Artery Dis,2002,13:139-143
    152 Yamamoto K,Morishita R,Tomita N,Shimozato T,Nakagami H,Kikuchi A,Aoki M,Higald J,Kaneda Y,Ogihara T.Ribozyme oligonucleotides against transforming growth factor-beta inhibited neointimal formation after vascular injury in rat model:potential application of ribozyme strategy to treat cardiovascular disease.Circulation,2000,102(11):1308-1314
    153 Smith JD,Bryant SR,Couper LL,Vary CP,Gotwals PJ,Koteliansky VE,Lindner V.Soluble transforming growth factor-beta type Ⅱ receptor inhibits negative remodeling,fibroblast transdifferentiation,and intimal lesion formation but not endothelial growth.Circ Res,1999,84(10):1212-1222
    154 Kingston PA,Sinha S,David A,Castro MG,Lowenstein PR,Heagerty AM.Adenovirus-mediated gene transfer of a secreted transforming growth factor-beta type Ⅱ receptor inhibits luminal loss and constrictive remodeling after coronary angioplasty and enhances adventitial collagen deposition.Circulation,2001,104(21):2595-2601
    155 Palaniyandi Selvaraj S,Watanabe K,Ma M,Tachikawa H,Kodama M,Aizawa Y.Involvement of mast cells in the development of fibrosis in rats with postrnyocarditis dilated cardiomyopathy.Biol Pharm Bull,2005,28(11):2128-2132
    156 黄荣杰,刘唐威,庞玉生.转化生长因子β1在扩张型心肌病大鼠心肌纤维化中的作用.心脏杂志,2005,17(2):126-128
    157 Dixon IM,Hao J,Reid NL,Roth JC.Effect of chronic AT(1) receptor blockade on cardiac Smad overexpression in hereditary cardiomyopathic hamsters.Cardiovasc Res,2000,46(2):286-297
    158 李龙英,肖 谦.转化生长因子-β1/Smdas信号转导通路与糖尿病心肌病变.国外医学.老年医学分册,2007,28(3):118-121
    159 刘宇宏,刘启云,曾秋棠,陈 斌.转化生长因子β1在心衰大鼠心肌中的表达及氟伐他汀对其的调节作用.华中科技大学学报(医学版),2007,36(4):452-455
    160 杨震,刘晓方,蒋文平.转化生长因子β1在慢性心力衰竭中的变化及其受缬沙坦的影响.苏州大学学报(医学版),2007,27(1):111-113
    161 Hao J,Ju H,Zhao S,Junaid A,Scammell-La Fleur T,Dixon IM.Elevation of expression of Smads 2,3,and 4,decorin and TGF-beta in the chronic phase of myocardial infarct scar healing.J Mol Cell Cardiol,1999,31(3):667-678
    162 高连如,Teerlink J,Karliner J.慢性心力衰竭大鼠转化生长因子-β-Smads信号传导通路的调节异常.中华心血管病杂志,2001,29(3):177-180
    163 Xu J,Cui G,Esmailian F,Plunkett M,Marelli D,Ardehali A,Odim J,Laks H,Sen L.Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation.Circulation,2004,109(3):363-368
    164 Lévy S,Sbragia P.Remodelling in atrial fibrillation.Arch Mal Coeur Vaiss,2005,98(4):308-312
    165 Everett TH 4th,Olgin JE.Atrial fibrosis and the mechanisrris of atrial fibrillation.Heart Rhythm,2007,4(3 Suppl):S24-S27
    166 Khan R,Sheppard R.Fibrosis in heart disease:understanding the role of transforming growth factor-beta in cardiomyopathy,valvular disease and arrhythmia.Immunology,2006,118(1):10-24
    167 Li X,Ma C,Dong J,Liu X,Long D,Tian Y,Yu R.The fibrosis and atrial fibrillation:is the transforming growth factor-beta1 a candidate etiology of atrial fibrillation.Med Hypotheses,2008,70(2):317-319
    168 Verheule S,Sato T,Everett T 4th,Engle SK,Otten D,Rubart-von der Lohe M,Nakajima HO,Nakajima H,Field LJ,Olgin JE.Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1.Circ Res,2004,94(11):1458-1465
    169 Guan Y,Breyer MD.Peroxisome proliferator-activated receptors(PPARs):Novel therapeutic targets in renal disease.Kidney Int,2001,60:14-30
    170 Vamecq J,Latruffe N.Medical significance of peroxisome proliferator-activated receptors.Lancet,1999,354(9173):141-148
    171 Mehrabi M R,Thalhammer T,Haslmayer P.The peroxisome proliferator-activated receptorγ,(PPARγ) is highly expressed in human heart ventricles.Biomed Pharmacother,2002,56(8):407-410
    172 闫振成,祝之明,沈成义.代谢综合征PPARγ C-161 T基因多态性与颈动脉损害相关的研究.中华医学杂志,2004,84:543-547
    173 Kurtz TW,Pravenec M.Antidiabetic mechanisms of angiotensin converting enzyme inhibitors and angiotensin Ⅱ receptor antagonists:beyond the renin-angiotensin system.Hypertens,2004,22:2253-2256
    174 Joel B,Moiler DE.The mechanisms of action of PPARs.Annu Rev Med,2002,53:409-35
    175 Lee HJ,Choi SS,Park MK.Fenofibrate lowers abdominal and skeletal adiposity and improves insulin sensitivity in OLETF rats.Biochem Biophys Res Commun,2002,296(2):293-299
    176 Landrier JF,Thomas C,Grober J.Statin induction of liver fatty acid-binding protein (LFABP) gene expression is peroxisome proliferator-activated receptor-alpha-dependent.J Biol Chem,2004,279(44):512-518
    177 Barger PM,Kelly DP.PPAR signaling in the control of cardiac energy metabolism.Trends CardiovascMed,2000,10(6):238-245
    178 Matsuda J,Hosoda K,Itoh H,et al.Increased adipose expression of the uncoupling protein-3 gene by thiazolidinediones in Wistar fatty rats and in cultured adipocytes.Diabetes,1998,47(11):1809-1814
    179 Egan BM.Insulin resistance and the sympathetic nervous system.Curr Hypertens Rep,2003,5(3):247-54
    180 孔俭,孙捷,汲宏磊.罗格列酮对自发性高血压大鼠的降压作用.高血压杂志,2003,11(5):454-456
    181 Kahn BB,Flier JS.Obesity and insulin resistance.J Clin Invest,2000,106(4):473-481
    182 汪华玲,覃数,陈齐红.PPARγ激动剂抑制Ang 11诱导乳鼠心肌细胞合成肿瘤坏死因子.重庆医科大学学报,2005,30(3):373-375
    183 凌宏艳,奉水东,周寿红.罗格列酮对胰岛素抵抗高血压大鼠主动脉功能的影响.生理学报,2005,57(2):125-131
    184 Calnek DS,Mazzella L,Roser S.Peroxisome proliferator activated receptor gamma ligands increase release of nitric oxide from endothelial cells.Arterioscler Thromb Vasc Biol,2003,23(1):52-57
    185 Stephan G,Fredrich E,Anne B,et al.PPAR activators inhibit endothelial cell migration by targeting Akt.Biochem B iophys Res Commun,2002,293:1431-1437
    186 Makris TA,Paizis I,Krespi PG.Insulin receptor number is reduced in healthy off-spring of patients with essential hypertension.Am J Hypertens,2004,17:911-914
    187 Raji A,Willams GH,Selly EW.Rosiglitazone improves insulin sensitivity and lowers blood pressure in hypertensive patients.Diabetes Care,2003,26(1):172-178
    188 Diep QN,El Mabrouk M,Cohn JS.Structure,endothelial function,cell growth,and inflammation in blood vessels of angiotensin Ⅱ-infused rats:role of peroxisome proliferator-activated receptor-gamma.Circulation,2002,105:2296-2302
    189 李光伟,王金平,李春梅.胰岛素增敏剂罗格列酮抗高血压作用探讨.中华内科杂志,2004,43(12):907-910
    190 Ryan MJ,Didion SP,Mathur SP.PPARγ,agonists roglitazone improves vascular function and lowers blood pressure in hypertensivetransgenic mice.Hypertension,2004,43(3):661-666
    191 Vera T,Taylor M,Bohrnan Q.Fenofibrate prevents the development of angiotensin Ⅱ-dependent hypertension in mice.Hypertension,2005,45:732-735
    192 苏工,叶平,黄泽峰.苯扎贝特联合降压治疗对高血压合并高甘油三酯血症患者胰岛素抵抗和血压的影响.中国动脉硬化杂志,2004,12(1):76-79
    193 Martens FM,Visseren FL,Lemay J.Metabolic and additional vascular effects of thiazolidinediones.Drugs,2002,62:1463-1480
    194 Irukayama-Tomobe Y,Miyauchi T,Sakal S,Kasuya Y,Ogata T,Takanashi M,Iemitsu M,Sudo T,Goto K,Yamaguchi I.Endothelin-1-induced cardiac hypertrophy is inhibited by activation of peroxisome proliferator-activated receptor-alpha partly via blockade of c-Jun NH2-terminal kinase pathway.Circulation,2004,109(7):904-10.
    195 Diep QN,Benkirane K,Amiri F.PPAR-alpha activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin Ⅱ infused rats.J Mol Cell Cardiol,2004,36:295-304
    196 王先梅,赵连友,郑强荪.心脏肥大细胞在自发性高血压大鼠心肌重构中的作用.高血压杂志,2005,13:783-787
    197 Wang Y,Shiota N,Leskinen MJ,Lindstedt KA,Kovanen PT.Mast cell chymase inhibits smooth muscle cell growth anti collagen expression in vitro:transforming growth factor-beta1-dependent and -independent effects.Arterioscler Thromb Vasc Biol,2001,21(12):1928-1933
    198 Lijnen PJ,Petrov VV,Fagard RH.Association between transforming growth factor-Beta 1 and hypertension.Am J Hypertens,2003,16:604-611.
    199 Mori Y,Chen SJ,VARGA J.Modulation of endogenous Smad expression in normal skin fibroblasts by transforming growth factor-beta.Exp Cell Res,2000,258:374-383
    200 Okada H,Takemura G,Kosai K.Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure.Circulation,2005,111:2430-2437
    201 Rosenkranz S.TGF-beta1 and angiotensin networking in cardiac remodeling.Cardiovasc Res,2004,63(3):423-432
    202 Frey N,Katus H,Olson EN.Hypertrophy of the heart:a new therapeutic target?Circulation,2004,109:1580-1589
    203 Vazquez-Carrera M.Peroxisome proliferator-activated receptor beta/delta activation inhibits hypertrophy in neonatal rat cardiomyocytes.Cardiovasc Res,2005,65(4):832-841
    204 Ichihara S,Obata K,Yamada Y,Nagata K,Noda A,Ichihara G,Yamada A,Kato T,Izawa H,Murohara T,Yokota M.Attenuation of cardiac dysfunction by a PPAR-alpha agonist is associated with down-regulation of redox-regulated transcription factors.J Mol Cell Cardiol,2006,41(2):318-329
    205 Rose M,Balakumar P,Singh M.Ameliorative effect of combination of fenofibrate and rosiglitazone in pressure overload-induced cardiac hypertrophy in rats.Pharmacology,2007,80(2-3):177-184
    206 Li R,Zheng W,Pi R,Gao J,Zhang H,Wang P,Le K,Liu P.Activation of peroxisome proliferator-activated receptor-alpha prevents glycogen synthase-3-beta phosphorylation and inhibits cardiac hypertrophy.FEBS Lett,2007,581(17):3311-3316
    207 Flavell DM,J amshidi Y,Hawe E,et al.Peroxisome prolifera tor-activated receptors α gene variants influence progression of coronary at herosclerosis and risk of coronary artery disease.Circulation,2002,105:1440-1445
    208 胡琴,李隆贵,吴立荣.大鼠左室肥厚心肌PPARα信号通路失活及其意义.心肺血管病杂志,2004,23(3):166-169
    209 叶平.过氧化体增殖物激活型受体对心肌能量代谢调控的病理生理机制.中国动脉硬化杂志,2003,11:81-83
    210 Goikoetxea MJ,Beaumont J,Gonzalez A,Lopez B,Querejeta R,Larman M,Díez J.Altered cardiac expression of peroxisome proliferator-activated receptor-isoforms in patients with hypertensive heart disease.Cardiovasc Res,2006,69(4):899-907
    211 Iglarz M,Touyz RM,Viel EC,Paradis P,Amiri F,Diep QN,Schiffrin EL.Peroxisome proliferator-activated receptor-alpha and.receptor-gamma activators prevent cardiac fibrosis in mineralocorticoid-dependent hypertension.Hypertension,2003,42(4):737-743
    212 Ogata T,Miyauchi T,Sakai S,Takanashi M,Irukayama-Tomobe Y,Yamaguchi I.Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate,partly by suppressing inflammatory responses associated with the nuclear factor-kappa-B pathway.J Am Coll Cardiol,2004,43(8):1481-1488
    213 孟晓青,邓安国,朱忠华,杨晓,刘建设,付玲,朱红艳,王全胜.罗格列酮抑制大鼠肾间质纤维化的实验研究.华中科技大学学报(医学版),2004,33(2):150-153
    214 王伟铭,刘峰,陈楠.过氧化物酶体增殖物激活受体γ激动剂对大鼠肾成纤维细胞转化生长因子β1/Smad信号途径的作用研究.中华医学杂志,2006,86(11):740-744
    215 Fu M,Zhang J,Zhu X,Myles DE,Willson TM,Liu X,Chen YE.Peroxisome proliferator-activated receptor gamma inhibits transforming growth factor beta-induced connective tissue growth factor expression in human aortic smooth muscle cells by interfering with Smad3.J Biol Chem,2001,276(49):45888-45894
    216 Gardner OS,Dewar BJ,Earp HS,Samet JM,Graves LM.Dependence of peroxisome proliferator-activated receptor ligand-induced mitogen-activated protein kinase signaling on epidermal growth factor receptor transactivation.J Biol Chem,2003,278(47):46261-46269
    217 Diradourian C,Le May C,Catizac M,Girard J,Burnol AF,Pégorier JP.Involvement of ZIP/p62 in the regulation of PPARalpha transcriptional activity by p38-MAPK.Biochim Biophys Acta,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700