用户名: 密码: 验证码:
基于“肾为先天之本”2型糖尿病肾虚证的miRNA研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     糖尿病已经成为威胁人民健康的重要非传染疾病之一,在我国尤其以2型糖尿病为主。2型糖尿病的发病既有复杂的遗传背景,同时与环境等因素密切相关。以2型糖尿病为载体,从中医“肾为先天之本”理论为基础,能够更好的阐述“遗传-环境-疾病”相互作用和中医的整体观。本文在前期全基因组表达谱研究平台上,引入miRNA芯片技术,旨在探索2型糖尿病肾虚证的表观遗传学机制。
     1.通过对中医古籍中消渴病的梳理和对现在表观遗传学方法的探讨,从理论上讨论将表观遗传学方法引入到中医藏象学的研究的创新和应用价值。
     2.通过对793例成都地区2型糖尿病患者的家族史回顾性调查,揭示遗传因素对肾虚证的影响。
     3.从2型糖尿病患者中筛选出8例典型肾虚证和非肾虚证患者,并分别和4例正常人对比,分析差异表达miRNA并筛选意义较大的miRNA进行PCR验证,从分子水平初步探讨肾虚证糖尿病的分子机制变化。
     方法
     1.2型糖尿病人群的病证结合研究:采用肾虚证辨证因子及等级量化表对2型糖尿病人群面对面进行病证结合调查,采用统计学分析方法,探讨分析肾虚证糖尿病人群的分布特征。
     2. miRNA表达谱芯片异常表达基因的筛选:采用miRNA表达谱芯片技术,对筛选的12例样本分3组两两对比,进行miRNA基因表达谱试验,对差异miRNA进行靶基因预测。
     3.对miRNA表达谱芯片分析结果的qPCR验证:通过筛选出的“肾虚-非肾虚”组FC较大的差异miRNA,通过PCR方法进一步验证分析结果。
     结果
     1.通过对历代中医古籍文献的梳理发现肾虚是消渴发病的重要因素之一。结合表观遗传学方法,能丰富2型糖尿病的肾虚证候微观本质。
     2.调查2型糖尿病病患793例,有明确家族史的患者169例,占全部21.3%,其发病率无性别差异。有2型糖尿病家族史组的肾虚患者百分比明显高于无2型糖尿病家族史组,两组肾虚患者人数百分比比较有统计学意义,提示“肾虚”可能在2型糖尿病家族聚集中起一定的作用。
     3.肾虚证、非肾虚证糖尿病及正常对照组三组样本两两比较分别筛选出差miRNA。其中肾虚与非肾虚组差异miRNA13条;肾虚与健康对照差异12条;非肾虚与正常对照差异11条。
     4.在对“肾虚-非肾虚’miRNA芯片结果中筛选出3条候选差异miRNA:miR-335, miR-377和miR-497,用于qPCR验证。qPCR(?)吉果与芯片结果结果一致,miR-335, miR-377和miR-497在肾虚组中的表达均高于非肾虚组,但组间差异不显著(P>0.05)。
     结论
     1.将表观遗传学引入到对中医藏象、证候及中医遗传等很多问题的研究能够有所突破。同时能够更好的阐述“肾为先天之本”的生物学意义。
     2.通过对2型糖尿病患者家族史的回顾研究发现2型糖尿病存在家族聚集现象,肾虚对2型糖尿病家族聚集趋势起一定的作用。
     3.2型糖尿病肾虚证在特征性miRNA主要涉及机体免疫及细胞周期等方面有关,提示肾虚在2型糖尿病中可能机理为降低组织细胞功能。
     4. miRNA表达谱芯片的结果及前期基因芯片结果基本一致,提示2型糖尿病肾虚证的机制涉及多层面的改变,后期有深入研究的必要。
Objectives:
     Diabetes has become one of the most important threats to people especially Type2Diabets (T2DM) in our country. The mechanism of T2DM has been proved with complex genetic background and environmental factors. Basd on the traditional Chinese medicine theory "the kidney is the congenital foundation", the study of T2DM mechanism can better reveal the interaction of "gene-environment-disease" and the whole concept of Chinese medicine. In this paper, we tried to explore the epigenetic mechanism in kidney deficiency syndrome of T2DM.
     1. To discuss the innovation and application value of combination of epigenetics method and Chinese medicine phenomenological research in theory by summary the ancient Chinese medicine book and epigenetic methods.
     2. To reveal the influence of genetic factors on kidney deficiency through the large scale investigation with kidney deficiency scale.
     3. To explore the mechanism of kidney deficiency syndrome of diabetes from the molecular level by miRNA microarray.
     Methods:
     1. The combination of disease and syndrome:Clinical investigations with kidney deficiency facto scaling on T2DM patients. And the then statistic analyzed the distribution characteristics of kidney deficiency syndrome in T2DM
     2. miRNA microarray tests:miRNA microarrays screen out potential differentially miRNA for type2diabetes with kidney-deficiency group, non-kidney-deficiency group and normal group. The target gene predicted for the key miRNA.
     3. Fluorescent quantitation PCR:candidate characristic miRNA in "kidney deficiency group-non kidney deficiency group"were tested with PCR.
     Results:
     1. Based on ancient Chinese literature, kidney deficiency is thought to be one of the most important factors in the pathogenesis of diabetes. With epigenetics techology, kidney deficiency syndrome in microscopic nature rich type2diabetes can be enriched.
     2. In793T2DM patients, there are169cases of patients with family history, accounting for21.3%. There is no dfference in male and femal.The percentage of kidney deficiency patients with a family history was significantly higher than that of no family history (P<0.05). That suggested "deficiency of kidney" may play a role in the familial aggregation of T2DM.
     3. There are13different miRNA between kidney deficiency group and non-kidney deficiency group; there are12different miRNA between kidney deficiency group and normal controls; there are11different miRNA between non kidney deficiency group and normal controls.
     4.3candidate different miRNA (miRNA:miR-335.miR-377and miR-497) between kidney deficiency group and non kidney deficiency group were chosen to qPCR verification. The results were consistent with the microarray results. However, the difference between groups was not significant (P>0.05).
     Conclusions:
     1. With the help of Epigenetics Chinese medicine research such as Chinese medicine syndromes and genetics may achieve a breakthrough. At the same time the theory "the kidney is the congenital foundation" can be better explained.
     2. By the investigation of family histories of T2DM patients, the congenital kidney deficiency may play a role in the pathogenesis of T2DM.
     3. The miRNA basis of kidney deficiency syndrome in T2DM related to the immunity and the aging which may imply kidney deficiency in T2DM possible mechanism to reduce cell function.
     4. The miRNA microarray and candidate miRNA qPCR results are basically consistent. It may imply that T2DM deficiency syndrome has certain significance in miRNA level changes which should be necessary to explore deep later.
引文
[1]中华医学会糖尿病分会.中国2型糖尿病防治指南2010版.北京:北京大学医学出版社.2011.
    [2]Ling C, Ronn T, Nitert M D. Epigenetics and Type 2 Diabetes[J]. Epigenetic Aspects of Chronic Diseases,2011:135-145.
    [3]Bener A. Yousafzai M T, Al-Hamaq A O. Familial aggregation of T2DM among Arab diabetic population[J]. International Journal of Diabetes in Developing Countries,2012:1-3.
    [4]Williams M A, Qiu C, Dempsey J C, et al. Familial aggregation of type 2 diabetes and chronic hypertension in women with gestational diabetes mellitus[J]. The Journal of reproductive medicine,2003,48(12):955.
    [5]Hariri S, Yoon P W, Qureshi N, et al. Family history of type 2 diabetes:a population-based screening tool for prevention?[J]. Genetics in Medicine,2006,8(2): 102-108.
    [6]Liu Y, Niu N, Zhu X, et al. Genetic variation and association analyses of the nuclear respiratory factor 1 (nRF1) gene in Chinese patients with type 2 diabetes[J]. Diabetes,2008,57(3):777-782.
    [7]Bouatia-Naji N. Bonnefond A, Cavalcanti-Proenca C. et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk[J]. Nature genetics,2008.41(1):89-94.
    [8]Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes[J]. Nature,2007.445(7130):881-885.
    [9]李渊何.单味中药治疗糖尿病的研究进展[J].天津中医学院学报,2004,23(2):102-]03.
    [10]倪青,张效科,崔娜.芪药消渴胶囊干预2型糖尿病前期患者76例的临床观察[J].中国中西医结合杂志,2012,32(.12).
    [11]赵明权.中医多途径给药治疗糖尿病周围神经病变46例[J].光明中医,2012,27(9).
    [12]蓝初平.中西医结合治疗早期2型糖尿病肾病疗效分析[J].实用中医药杂志,2013,28(11):930-931.
    [13]Bao N, Lye K W, Barton M K. MicroRNA Binding Sites in Arabidopsis Class 21 HD-ZIP mRNAs Are Required for Methylation of the Template Chromosome[J]. Developmental cell,2004,7(5):653-662.
    [14]Tuddenham L, Wheeler G, Ntounia-Fousara S, et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells[J]. FEBS letters.2006, 580(17):4214-4217.
    [15]Saito Y, Liang G. Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene< i> BCL6 by chromatin-modifying drugs in human cancer cells[J]. Cancer cell,2006.9(6):435-443.
    [16]Scott G K. Mattie M D, Berger C E, et al. Rapid alteration of microRNA levels by histone deacetylase inhibition[J]. Cancer research,2006,66(3):1277-1281.
    [17]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J]. Cell,1993,75(5):843-854.
    [18]Calin G A. Croce C M. MicroRNA-cancer connection:the beginning of a new tale[J]. Cancer research,2006,66(15):7390-7394.
    [19]Volinia S, Calin G A. Liu C G. et al. A microRNA expression signature of human solid tumors defines cancer gene targets[J]. Proceedings of the National Academy of Sciences of the United States of.America.2006,103(7):2257-2261.
    [20]Ji J, Shi J, Budhu A. et al. MicroRNA expression, survival, and response to interferon in liver cancer[J]. New England Journal of Medicine,2009,361(15): 1437-1447.
    [21]Xiao C, Rajewsky K. MicroRNA control in the immune system:basic principles[J]. Cell,2009,136(1):26-36.
    [22]Dai R, Ahmed S A. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases[J]. Translational Research,2011,157(4):163-179.
    [23]Feinberg A P, Tycko B. The history of cancer epigenetics[J]. Nature Reviews Cancer,2004,4(2):143-153.
    [24]Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development[J]. Science,2001.293(5532):1089-1093.
    [25]Reiner S L. Epigenetic control in the immune response[J]. Human molecular genetics,2005,14(suppl 1):R41-R46.
    [26]Duenas-Gonzalez A, Lizano M, Candelaria M, et al. Epigenetics of cervical cancer. An overview and therapeutic perspectives[J]. Molecular cancer.2005.4(1): 38.
    [27]Kelly T K, De Carvalho D D, Jones P A. Epigenetic modifications as therapeutic targets[J]. Nature biotechnology,2010,28(10):1069-1078.
    [28]Kalebic T. Epigenetic changes:potential therapeutic targets[J]. Annals of the New York Academy of Sciences,2003,983(1):278-285.
    [29]Hashimshony T, Zhang J, Keshet I, et al. The role of DNA methylation in setting up chromatin structure during development[J]. Nature genetics,2003,34(2):187-192.
    [30]Lorincz M C, Dickerson D R, Schmitt M, et al. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells[J]. Nature structural & molecular biology,2004,11(11):1068-1075.
    [31]Olsen P H, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 pro-tein synthesis after the initiation of translation. Dev Biol,1999,216(2):671-680
    [32]Nottrott S, Simard M J, Richter J D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol,2006,13(12): 1108-111.
    [33]Petersen C P, Bordeleau M E, Pelletier J, et al. Short RNAs repress translation after initiation in mammalian cells. Mol Cell,2006,21(4):533-54.
    [34]Wu L, Fan J, Belasco J G. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA,2006,103(11):4034-4039.
    [35]Giraldez A J, Mishima Y, Rihel J, et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science,2006,312(5770):75-7.
    [36]Liu J, Valencia-Sanchez M A, Hannon G J, et al. MicroRNA dependent localization of targeted mRNAs to mammalian P bodies. Nat Cell Biol,2005,7(7): 719-723.
    [37]Sen G L, Blau H M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol,2005,7(6):633-636.
    [38]Filipowicz W, Bhattacharyya S N, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight? Nat Rev Genet,2008,9(2):102-114.
    [39]Vasudevan S, Tong Y, Steitz J A. Switching from repression to activation: microRNAs can up-regulate translation. Science,2007,318(5858):1931-1934
    [40]Vasudevan S, Steitz J A. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute2. Cell,2007,128(6):1105-1118.
    [41]Vasudevan S, Tong Y, Steitz J A. Cell-cycle control of microRNA-mediated translation regulation. Cell Cycle,2008,7(11):1545-1549.
    [42]Orom U A, Nielsen F C, Lund A H. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell,2008,30(4): 460-471.
    [43]Bhattacharyya S N, Habermacher R, Martine U, et al. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell,2006, 125(6):1111-1124.
    [44]Kedde M, Strasser M J, Boldajipour B, et al. RNA-binding protein dnd1 inhibits microRNA access to target mRNA. Cell,2007,131(7):1273-1286.
    [45]Arfa Ⅰ, Abid A, Malouche D. et al. Familial aggregation and excess maternal transmission of type 2 diabetes in Tunisia[J]. Postgraduate medical journal,2007, 83(979):348-351.
    [46]Viswanahan M, McCarthy M I, Snehalatha C, et al. Familial aggregation of type 2 (non-insulin-dependent) diabetes mellitus in South India; absence of excess maternal transmission[J]. Diabetic medicine.2004,13(3):232-237.
    [47]张素华,余路,邱鸿鑫,等.家族性非胰岛素依赖型糖尿病患者的家系调查[J].中华医学杂志,1996,76:435-439
    [48]叶秀兰,张素华,汪志红,等.2型糖尿病家系糖耐量正常的一级亲属血糖的变化[J].重庆医科大学学报,2004,29(5):629-631.
    [49]马晓静,贾伟平,胡承,等.2型糖尿病家系遗传特征的初步分析[J].中华医学杂志,2009,88(36):2541-2543.
    [50]国家中医管理局.中医病证诊断疗效标准.南京大学出版社.南京.1994.
    [51]沈自尹.中医虚证辨证参考标准[J].中两医结合杂志,1986,6(10):598
    [52]张天娥,董小丽,周洪玲.等.脑瘫脾肾虚量表的编制应用与修订[J].现代 中西医结合杂志,2007,16(3):289-291.
    [53]潘玲,谭从娥,王米渠,等.一对糖尿病双生子病证结合调查及差异表达基因分析[J].四川中医,2008,26(10):19-21.
    [54]杨丽萍,陈四清,丁维俊,等.家系虚寒证与非家系虚寒证基因表达谱比较研究[J].中华中医药杂志,2011,26(7):1478-1481.
    [55]吴斌.“证候-基因组”的方法学及家系虚寒证的代谢基因表达谱研究[D].成都中医药大学博士论文,2005.
    [56]李松林,王米渠.杨宇琦,等.2型糖尿病肾虚证分型研究[J].浙江中西医结合杂志,2009,19(1):51-52.
    [57]王自润.肾虚在消渴发病中的作用[J].中华中医药学刊,2008,26(7):1403-1405.
    [58]杨丽萍,王米渠,孙丽婷,等.肾虚糖尿病家系中的血瘀证研究[J].中华中医药杂志,2006,21(8):476-478.
    [59]王米渠,杨丽萍,丁维俊,等.一个寒证家系中发现15个差异表达基因的报告[J].中医杂志,2006,47(2):131-133.
    [60]王文娟,吴志奎,张新华,等.中问型p珠蛋白生成障碍性贫血患者及其父母中医证候家系调查[J].中西医结合学报,2009,7(2):116-120.
    [61]王宏伟,许鑫梅:,罗日永.中医证候及其与体质关系浅谈[J].河南中医药学刊.1999.14(2):1-3.
    [62]王琦,高京宏.体质与证候的关系及临床创新思维[J].中医药学刊,2005,23(3):389-392.
    [63]王琦.体质诊断,中医体质学,北京:人民卫生出版社,2008
    [64]韩玉萍.糖尿病双生子肾虚血瘀证的表观遗传研究[D].成都中医药大学,2010.
    [65]文钦.基于双生子研究证候差异的甲基化调控[D].成都中医药大学,2011.
    [66]王琦.论中医体质研究的3个关键问题(下)[J].中医杂志,2006,47(5):329-332.
    [67]黄建华,卞琴,李文伟,等.稳态作为中医“证”研究的新思路的依据和意义[J].中国中西医结合杂志,2012,32(1):111-114.
    [68]王阶,虞桂micro RN A与冠心病中医证候研究[J].中国中西医结合杂志,2012,32(11):1562-1565.
    [69]郑思道,吴红金,刘宇娜microRNA在现代中医药研究中的作用和意义[J].中西医结合心脑血管病杂志,2012,10(7):857-860.
    [70]Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005,120(1):15-20.
    [71]Huang Z, Huang D, Ni S, et al. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer [J]. International Journal of Cancer, 2010.127(1):118-126.
    [72]Jackson D B. Serum-based microRNAs:are we blinded by potential [J]. Proceedings of the National Academy of Sciences of the United States of America. 2009,106(1):E5.
    [73]Wang Q, Wang Y, Minto A W, et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy[J]. The FASEB Journal, 2008,22(12):4126-4135.
    [74]王斌,吴学军,张世阳,等.纤连蛋白(FN)国内研究开发及临床应用新进展[J].基础医学与临床,2012,32(008):964-967.
    [75]沈欣,罗斌.论肾虚痰瘀与糖尿病肾病的关系[J].中国中医基础医学杂志,2010(1):17-17.
    [76]张岩.糖尿病肾病的中医病因病机浅析[J].光明中医,2010(003):406-407.
    [77]于健宁.糖尿病肾病中医研究进展[.J].山东中医杂志,2001,20(11):698-700.
    [78]Somasundaram K, Rao S A M, Santosh V. MicroRNAa (miRNA) AS BIOMARKERS FOR DIAGNOSING DIFFERENT GRADES OF GLIOMAS AND PATHWAYS OF GLIOMA PROGRESSION:U.S. Patent Application 13/076.834[P]. 2011-3-31.
    [79]Yadav S, Pandey A, Shukla A, et al. miR-497 and miR-302b regulate ethanol-induced neuronal cell death through BCL2 protein and cyclin D2[J]. Journal of Biological Chemistry,2011,286(43):37347-37357.
    [80]Zhu W, Zhu D X, Lu S, et al. miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2[J]. Medical Oncology,2012:1-8.
    [81]王锦华,邱如卿.崩漏肾虚血瘀证与子宫内膜病理及细胞凋亡调控基因bcl-2,bax关系的研究[J].福建中医学院学报,2007,17(1).
    [82]严石林,王米渠,吴斌,等.肾虚与补肾的基因研究态势分析[J].中医药学刊,2002,20(5):627-628.
    [83]沈自尹,陈瑜,黄建华,等.以药测证绘制肾虚证两大基因网络调控路线图谱[J].中国中西医结合杂志,2006,26(6):52 1-525.
    [84]马书娟,曹珊,姚建平,等.补肾方对自然衰老大鼠海马CA1区凋亡相关基因Bax, Bcl-2mRNA表达的影响[J].中药药理与临床,2011,27(3):6-7.
    [85]Yan Z, Xiong Y, Xu W, et al. Identification of hsa-miR-335 as a Prognostic Signature in Gastric Cancer[J]. PloS one,2012,7(7):e40037.
    [86]Shephard R J, Shek P N. Cancer, immune function, and physical activity[J]. Canadian Journal of Applied Physiology,1995.20(1):1-25.
    [87]Melief C J M. Cancer:immune pact with the enemy[J]. Nature.2007,450(7171): 803-804.
    [88]陈吴,诸禹平,亓林,等.TGF-β抑制T细胞功能及其相关机制的体外研究[J].中国现代医学杂志,2006,15(21):3244-3247.
    [89]Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune rcsponses[J]. Nature immunology,2004.5(10):987-995.
    [90]秦玉花,Ⅱ型糖尿病肾虚证分布及基因表达谱研究,成都中医药大学,2012,博士论文
    [91]Wilfred B R, Wang W X, Nelson P T. Energizing miRNA research:a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways[J]. Molecular genetics and metabolism,2007,91(3):209.
    [92]Trajkovski M, Hausser J. Soutschek J. et al. MicroRNAs 103 and 107 regulate insulin sensitivity[J]. Nature,2011,474(7353):649-653.
    [93]Tang X. Muniappan L, Tang G. et al. Identification of glucose-regulated miRNAs from pancreatic β cells reveals a role for miR-30d in insulin transcription [J]. Rna, 2009,15(2):287-293
    [94]Fernandez-Valverde S L, Taft R J, Mattick J S. MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications[J]. Diabetes,2011,60(7): 1825-1831.
    [95]Kubista M, Andrade JM, Bengtsson M, et al. The real-time polymerase chain reaction [J]. Mol Aspects Med,2006.27(2-3):95-125
    [1]中华医学会糖尿病分会.中国2型糖尿病防治指南2010版.北京:北京大学医学出版社.2011.
    [2]Ling, Charlotte, and Leif Groop. "Epigenetics:a molecular link between environmental factors and type 2 diabetes." Diabetes 58.12 (2009):2718-2725.
    [3]Liu L, Li Y, Tollefsbol T O. Gene-environment interactions and epigenetic basis of human diseases[J]. Current issues in molecular biology,2008,10(1-2):25.
    [4]Esteller M. Epigenetics in cancer[J]. New England Journal of Medicine,2008, 358(11):1148-1159.
    [5]Morgan H D, Sutherland H G E, Martin D I K, et al. Epigenetic inheritance at the agouti locus in the mouse[J]. Nature genetics,1999,23:314-318.
    [6]Park J H, Stoffers D A, Nicholls R D, et al. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1[J]. The Journal of clinical investigation,2008,118(6): 2316.
    [7]Ling C, Del Guerra S, Lupi R, et al. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion[J]. Diabetologia,2008, 51(4):615-622.
    [8]Volkmar M, Dedeurwaerder S, Cunha D A, et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients[J]. The EMBO Journal,2012,31(6):1405-1426.
    [9]Zeng Y, Gu P, Liu K, et al. Maternal protein restriction in rats leads to reduced PGC-la expression via altered DNA methylation in skeletal muscle[J]. Molecular medicine reports,2012.
    [10]Switzeny O J, Mullner E, Wagner K H, et al. Vitamin and antioxidant rich diet increases MLH1 promoter DNA methylation in DMT2 subjects[J]. Clinical Epigenetics,2012,4(1):19.
    [11]Pinney S E, Jaeckle Santos L J, Han Y, et al. Exendin-4 increases histone acetylase activity and reverses epigenetic modifications that silence Pdx1 in the intrauterine growth retarded rat[J]. Diabetologia,2011,54(10):2606-2614.
    [12]Rodriguez A, Griffiths-Jones S, Ashurst J L, et al. Identification of mammalian microRNA host genes and transcription units[J]. Genome research,2004,14(10a): 1902-1910.
    [13]Kim V N, Nam J W. Genomics of microRNA[J]. TRENDS in Genetics,2006, 22(3):165-173.
    [14]Pasquinelli A E, Reinhart B J, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA[J]. NATURE-LONDON-, 2000:86-88.
    [15]Bartel D P. MicroRNAs:target recognition and regulatory functions[J]. Cell, 2009,136(2):215-233.
    [16]Kim V N, Han J, Siomi M C. Biogenesis of small RNAs in animals[J]. Nature reviews Molecular cell biology,2009,10(2):126-139.
    [17]Barski A, Jothi R, Cuddapah S, et al. Chromatin poises miRNA-and protein-coding genes for expression[J]. Genome research,2009,19(10):1742-1751.
    [18]Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE et al. A pancreaticislet-specific microRNA regulates insulin secretion. Nature 2004;432:226-230.
    [19]Kloosterman W P, Lagendijk A K. Ketting R F, et al. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development[J]. PLoS biology,2007,5(8):e203.
    [20]Li Y, Xu X, Liang Y, Liu S, Xiao H, Li F et al. miR-375 enhances palmitate-inducedlipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression. Int J Clin Exp Pathol 2010;3:254-264.
    [21]Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P et al. miR-375 maintains normal pancreatic alpha-and beta-cell mass. Proc Natl Acad Sci USA 2009;106:5813-5818.
    [22]Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 2006;281:26932-26942.
    [23]Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 2008;389:305-312.
    [24]Tang X, Muniappan L, Tang G, Ozcan S. Identification of glucose-regulated miRNAs from pancreatic{beta} cells reveals a role for miR-30d in insulin transcription. RNA2009:15:287-293
    [25]Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppressescell death and is required for normal fat metabolism. Curr Biol 2003; 13:790-795.
    [26]Caporali A, Meloni M, Vollenkle C, Bonci D, Sala-Newby GB, Addis R et al. Deregulationof microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 2011; 123:282-291.
    [27]Dovey O M, Foster C T, Conte N, et al. Histone deacetylase (HDAC) 1 and 2 are essential for normal T cell development and genomic stability in mice[J]. Blood, 2013.
    [28]Mutskov V, Raaka B M. Felsenfeld G, et al. The Human Insulin Gene Displays Transcriptionally Active Epigenetic Marks in Islet-Derived Mesenchymal Precursor Cells in the Absence of Insulin Expression[J]. Stem Cells,2007,25(12):3223-3233.
    [29]Andrali S, Sampley M, Vanderford N, et al. Glucose regulation of insulin gene expression in pancreatic beta-cells[J]. Biochem. J,2008,415:1-10.
    [30]Haumaitre C, Lenoir O, Scharfmann R. Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors[J]. Molecular and cellular biology,2008,28(20):6373-6383.
    [31]Kume S, Uzu T, Kashiwagi A, et al. SIRT1, a calorie restriction mimetic, in a new therapeutic approach for type 2 diabetes mellitus and diabetic vascular complications[J]. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Dru,2010,10(1):16-24.
    [32]Liang F, Kume S, Koya D. SIRT1 and insulin resistance[J]. Nature Reviews Endocrinology,2009.5(7):367-373.
    [33]Haigis MC, Sinclair DA. Mammalian sirtuins:biological insights and disease relevance.. Annu Rev Pathol.2010;5:253-95.
    [34]Miao F, Gonzalo I G, Lanting L, et al. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions[J]. Journal of Biological Chemistry,2004,279(17):18091-18097.
    [35]Katz DJ, Edwards TM, Reinke V, Kelly WG..A C. elegans LSD1 Demethylase Contributes to Germline Immortality by Reprogramming Epigenetic Memory, Cell.2009 Apr 17;137(2):308-20.
    [36]郭晓强,陆菁潇,桂耀庭,等.组蛋白H3K27去甲基化酶与肿瘤发生[J].Chinese Journal of Biochemistry and Molecular Biology,2011,8:706-711.
    [37]Ihnat M A, Thorpe J E, Ceriello A. Hypothesis:the'metabolic memory', the new challenge of diabetes[J]. Diabetic medicine,2007,24(6):582-586.
    [38]Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, BakerEK, Calkin AC, Brownlee M, Cooper ME, El-Osta A. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylaseenzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58: 1229-1236,2009.
    [39]Ingrosso D, Perna A F. Epigenetics in hyperhomocysteinemic states. A special focus on uremia[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2009, 1790(9):892-899.
    [40]Villeneuve L M, Reddy M A, Lanting L L, et al. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes[J]. Proceedings of the National Academy of Sciences,2008, 105(26):9047-9052.
    [41]Brasacchio D, Okabe J, Tikellis C, et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail[J]. Diabetes,2009, 58(5):1229-1236..
    [42]El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia[J]. The Journal of experimental medicine,2008,205(10):2409-2417.
    [43]Bhandare R, Schug J, Le Lay J, et al. Genome-wide analysis of histone modifications in human pancreatic islets[J]. Genome research,2010,20(4):428-433.
    [44]陆以信,李迪元,陈贤妙,等.人血浆中血管紧张素Ⅱ放射免疫直接测定法[J]Acta Biochimica et Biophysica Sinica,1978.
    [45]施赛珠,沈自尹,陈泽霖.等.肾阳虚病人下丘脑,垂体,肾上腺皮质系统功能的观察[J].上海中医药杂志,1978,1:010.
    [46]戴薇薇,金国琴,张学礼.左归丸,右归丸对老年大鼠海马糖皮质激素受体mRNA表达的影响[J].中药药理与临床,2003,19(1):1-3.
    [47]宋春风,尹桂山,孙素菊,等.右归饮对肾阳虚大鼠下丘脑-垂体-肾上腺轴钙调素mRNA表达的影响[J].中国中医基础医学杂志.2001.7(3):20-22.
    [48]宋春风,尹桂山,赵建宏,等.补肾中药对肾阳虚大鼠下丘脑-垂体-肾上腺轴CaMPKⅡ的影响[J].中国中医基础医学杂志,2001,7(8):45-47.
    [49]宋春风,郑师陵,吕佩源,等.补肾中药对肾阳虚大鼠下丘脑-垂体-肾上腺轴,血淋巴细胞Ca~(2+)和血清钙的影响[J].中国中医基础医学杂志.2002,8(5):34-36.
    [50]许翠萍,李震,宋洁,等.补肾中药对肾阳虚小鼠肾上腺细胞形态学的影响[J].山东大学学报(医学版),2011,49(2).
    [51]李波,安睿,王新宏.淫羊蕾苷和补肾复方对肾阳虚大鼠下丘脑CRH基因和垂体POMC基因表达的影响[J].中成药,2008,30(1):132-134.
    [52]陈梅芳,张庆怡,吴志英.尿毒症肾虚与内分泌及免疫状态的关系[J].中西医结合杂志,1983,3(6):328-328.
    [53]秦路平.蛇床子素和蛇床子总香豆素对肾阳虚大鼠血清甲状腺[J].中国中西医结合杂志,1996,16(9).
    [54]郭凯,徐蓉,俞伟,等,金匮肾气丸对肾阳虚动物模型影响的拆方研究[J].中医药学报,2003,31(1):20.
    [55]岳仁宋,吴施国,谭毅明,等.参附注射液对甲状腺机能减退症肾阳虚型小鼠血清甲状腺激素的影响[J].中国中医急症,2006,14(11):1094-1095.
    [56]许兰芝,蒋淑君.肾阳虚大鼠下丘脑-垂体-甲状腺轴内分泌及钙调蛋白基因表达与淫羊藿总黄酮的干预[J].中国临床康复,2006,11(10):138.
    [57]沈自尹,黄建华,陈伟华.以药测证对肾虚和肾阳虚大鼠基因表达谱的比较研究[J].中国中西医结合杂志,2007,27(2):135
    [58]宋洁.“劳倦过度,房室不节”致肾阳虚及补肾阳对小鼠甲状腺轴及睾丸基因表达谱的影响[D].山东中医药大学,2010.
    [59]宋春风,马洪骏,吕佩源,等.补肾中药对肾阳虚大鼠垂体一睾丸超微结构的影响.中医药研究,2001,17(4):45
    [60]蔡连香,李宏广.养血补肾片对阳虚证动物模型卵巢功能的影响[J].中国中西医结合杂志,1998,18(10):620-622.
    [61]廖进民,李青南.羟基脲致“阳虚”大鼠代训变化的实验研究[J].广东解剖学通报,1994,16(1):24-28.
    [62]张炬.张绍先.中医“肾”实质的研究[J].浙江中医杂志.1980,4:157-158.
    [63]李欣,颜勇.肾阳虚大鼠睾丸生精细胞增殖与凋亡的变化[J].承德医学院学报,2007,24(001):1-2.
    [64]李震,刘黎青,颜亭祥,等.“劳倦过度,房室不节”肾阳虚模型小鼠睾丸乳酸脱氢酶-X活性的测定[J].天津中医药,2008,25(2):136-138.
    [65]丁维俊,王米渠,严石林,等.家族性肾阳虚证转录组研究:理论基础探讨[J].中国中医基础医学杂志,2007,13(8):565-567.
    [66]沈自尹,黄建华,林伟,等.从整体论到系统生物学进行肾虚和衰老的研究[J].中国中西医结合杂志,2009(6):548-550.
    [67]谭从娥,李炜弘,汤朝晖,等.肾阳虚证发生与免疫功能类基因的关联性研究[J].江苏中医药,2009,41(2):22-24.
    [68]刘明,丁维俊,蔡欣,等.家族性肾阳虚的基因功能富集分析[J].中国生物化学与分子生物学报,2009.25(8):747-752.
    [69]谭从娥,王米渠.肾阳虚证免疫功能相关基因筛选及其表达分析[J].现代中西医结合杂志,2011,20(22):2731-2732.
    [70]李炜弘,雍小嘉,范怀昌,等.老龄肾阳虚证的差异表达基因谱分析[.J].时珍国医国药,2009,20(5):1210-1210.
    [71]黄禹峰,李炜弘,汤朝晖,等.老龄冠心病心肾阳虚证的差异表达基因谱分析[J].辽宁中医杂志,2010,37(012):2283-2286.
    [72]李炜弘,范怀昌,丁维俊,等.运用基因芯片技术分析老龄肾阳虚证与Wnt/β-catenin信号通路的相关性[J].四川中医,2009(012):15-17.
    [73]姜春燕,谭勇,王秀娟,等.大鼠肾阳虚证的代谢组学研究[J].国际中医中药杂志ISTIC,2009,31(6).
    [74]邹忠杰,龚梦鹃,谢媛媛,等.氢化可的松诱导的肾阳虚大鼠尿液代谢组学研究[J].中国实验方剂学杂志,2012,18(008):133-136.
    [75]董飞侠,黄迪,何立群,等.Ⅲ期慢性肾病肾阳虚证患者尿液代谢组学特征的研究[J].中华中医药杂志,2009,23(12):1109-1113.
    [76]郑海生,蒋健,贾伟,等.慢性心力衰竭肾阳虚证患者代谢组学研究[J].中华中医药杂志.2010(2):198-201.
    [77]唐利华,卢德赵,沃兴德,等.肾上腺切除的肾阳虚大鼠肝组织蛋白质双向电泳图谱的建立与分析[J].浙江中医学院学报,2005,29(5):51-54.
    [78]卢德赵,沃兴德,沃立科,等.甲状腺切除的肾阳虚大鼠肝线粒体蛋白质组的研究[J].中医药学报,2008,36(4):11-15.
    [79]张杰.李涢,彭锦,等.基于右归饮与肾阳虚证方证相应关系探寻肾阳虚证 标志蛋白质的初步研究[J].Chinese Journal of Basic Medicine in Traditional Chinese Medieine,2008,14(3),
    [80]陈津岩,李志强,何赞厚,等.右归丸对肾阳虚证大鼠激素水平变化的影响[J].中外健康文摘:医药月刊,2008,5(4):44-46.
    [81]许小强,黄敬耀,赵涛,等.二精丸总多糖抗长期应激大鼠学习记忆障碍的作用机制[J].江西中医学院学报,2007,19(4):54-57.
    [82]潘琳娜,肖百全,黄敬耀,等.二精丸影响肾阴虚动物记忆障碍机制的实验研究[J]Blood,2003,102(8):2741.
    [83]邢薇薇,张宏,吴锦忠,等.二至丸对肾阴虚骨质疏松大鼠的影响[J].福建中医药,2009,39(6):45-47.
    [84]凌庆枝,高莉莉,敖宗华,等.六味地黄汤对肾阴虚型生精障碍大鼠生殖系统的影响[J].中成药,2009,31(5):688-691.
    [85]何泽云,徐元美.六味地黄汤治疗肾阴虚型慢性肾小球肾炎的临床研究[J].湖南中医学院学报,2004.24(]):35-37.
    [86]陈科.益肾调补阴阳治疗肾结石98例[J].陕西中医,2008,29(4):414-416.
    [87]芮其根.耳聋左慈丸加减治疗肾虚性耳鸣耳聋86例[J].中医药临床杂志,2007,19(3):280-280.
    [88]杨颖林.辨证论治老年耳鸣68例[J].陕西中医.2009(5):584-584.
    [89]王彩云.聪耳止鸣丸治疗肾虚型耳鸣耳聋的临床观察[J].中国中西医结合耳鼻咽喉科杂志,2007,10(15):353-354.
    [90]施茵,徐文斐,尹小君等.益肾中药加针刺治疗肾阴虚型多囊卯巢综合征的临床研究[J].上海中医药杂志,2009,43(10):33-35.
    [91]王兴娟,戴婷,贾丽娜.肾虚型多囊卵巢综合征与血清T,LH的相关性研究[J].上海中医药杂志,2006,40(008):40-41.
    [92]完颜亚丽.清骨散治疗围绝经期综合征肾阴亏虚型的临床观察[J].浙江中医药大学学报,2008,32(6):764-765.
    [93]王秋梅,关秋云,马丽爽.益肾清心汤治疗肾阴虚型围绝经期综合征35例疗效观察及对生殖激素的影响[J].河北中医,2010,32(011):1618-1620.
    [94]李丽.肾阴虚型围绝经期综合征妇女外周血IL-6 TNFa的变化及大补阴煎 加味治疗的临床观察[J].辽宁中医药大学学报,2010,12(3):136-137.
    [95]马爱华,吴玉联.熟地山萸汤治疗肾阴虚型绝经过渡期崩漏临床观察[J].北京中医药,2010,29(003):201-203.
    [96]成玉斌,罗仁,薛耀明.肾虚型DN与ACE基因多态性相关研究[J].中国中医基础医学杂志,2002,8(5):29-30.
    [97]谢丽华,赵毅鹏,陈可,等.绝经后骨质疏松肾阴虚证相关基因的信息学分析[C].中华医学会第三次骨质疏松和骨矿盐疾病中青年学术会议论文汇编.2011.
    [98]魏敏,赵晓山,孙晓敏,等.肾阴虚证患者的基因差异表达[J].广东医学,2010,31(023):3017-3020.
    [99]魏敏,赵晓山,孙晓敏,等.肾阴虚证患者的基因差异表达[J].广东医学,2010,31(023):3017-3020.
    [100]沃兴德,丁慧登,卢德赵,等.甲亢型肾阴虚大鼠肝线粒体蛋白质组的研究[J].中华中医药学刊.2009,27(012):2469-2473.
    [101]李俊丽,李涢,刘铭福,等.基于方证相应学说探寻肾阴虚证的标志蛋白质[J].中国中医基础医学杂志,2011,17(10):1084-1088.
    [102]孙永宁,刘忠,冯雯.糖尿病肾阴虚证模型大鼠尿液的代谢组学研究[J].成都中医药大学学报,2009(002):69-71.
    [103]孙永宁,冯雯,刘忠.糖尿病肾阴虚证模型大鼠血液标本的代谢组学研究[J].山东中医药大学学报,2010(001):80-82.
    [104]张进,徐志伟,杜少辉,等.“精”学说与干细胞辨识[J].中医药学刊,2004,22(7):1198.
    [105]陈薇,曾和平,王春艳,等.中药龟板提取物化学成分及其调控鼠骨髓间充质干细胞(MSCs)增殖活性的实验研究[J].化学学报,2007,65(3):265.
    [106]郑良朴,李楠,王和鸣.补骨合剂对体外培养骨髓基质细胞分化影响的观察[J].福建中医学院学报,2003,13(6):33.
    [107]王和鸣,王力,李楠.巴戟天对骨髓基质细胞向成骨细胞分化影响的实验研究[J].福建中医学院学报,2004,14(3):16.
    [108]曾意荣,樊粤光,刘红,等.补肾活血中药对大鼠骨髓间充质干细胞体外增殖的影响[J].中药新药与临床药理,2007,18(2):93.
    [109]马慧萍,贾正平,张汝学,等.淫羊藿总黄酮含药血清促进骨髓间充质干细胞增殖与成骨性分化[J].中国骨质疏松杂志,2004,10(4):420.
    [110]肖鲁伟,武中庆,季卫锋,等.右归饮诱导胎兔骨髓基质细胞向软骨细胞分化的实验研究[J].中国中医药科技,2005,12(3):154.
    [111]张荣华.补肾活血中药对免疫介导再障小鼠骨髓CD45+细胞影响[J].中国病理生理杂志,2000,16(7):633.
    [112]张新华,黄有文,王荣新,等.益髓生血灵对小鼠骨髓造血干/祖细胞的影响[J].浙江中医杂志,2002,37(10):448.
    [113]陈志雄,曹克俭,薛恺睿,等.活髓片对环磷酰胺造模小鼠骨髓骨髓细胞DNA含量及细胞周期的影响[J].中医杂志,1999,40(11):686.
    [114]梁毅,陈志雄,丘和明.活髓片与四物汤对再生障碍性贫血小鼠骨髓基质细胞的影响比较[J].中国中西医结合急救杂志,2002,9(6):327-330.
    [115]陈东风,杜少辉,李伊为,等.龟板对局灶性脑缺血后神经干细胞的作用[J].广州中医药大学学报,2001,18(4):328-331.
    [116]闫醒予,王德山,单德红.定志小丸对雌性抑郁大鼠雌二醇和齿状回神经干细胞的影响[J][J].中国实验方剂学杂志,2007,13(6):43-45.
    [117]祝慧凤,万东,罗勇,等.梓醇上调GAP-43表达伴随局灶脑缺血大鼠神经功能恢复[J].中国药理学通报,2007,23(9):1231-1231.
    [118]王文,黄文婷,艾厚喜,等.中药诱导脑成体神经干细胞的增殖分化[J].中国康复理论与实践.2007,13(1):26-28.
    [119]宫洪涛.肾精亏虚是血管性痴呆发生的根本[J].浙江中医杂志,2006,40(11):470-472.
    [120]苏芮,韩振蕴.范吉平.阿尔茨海默病中医病因病机探讨[J].中华中医药杂志,2010(5):743-744.
    [121]陈斌华,夏泳,苏雪倩,等.58例老年人轻度认知功能损害的中医证候对照研究[J].浙江中医药大学学报,2010,4:021.
    [122]苗迎春,田金洲,时晶,等.遗忘型轻度认知损害的中医证候特征[J].中医杂志,2009(3):244-247.
    [123]安红梅,胡兵,靳淼,等.顾明昌教授从虚论治神经精神系统疾病经验[J].中国 中医急症,2006,15(10)1119-1120.
    [124]张吉仲,彭成.益智五海胶囊对痴呆大鼠大脑皮层单胺类递质和海马氨基酸的影响[J].西南师范大学学报:自然科学版,2010,35(002):148-152.
    [125]赵玉堂,刘凯军,李金花,等.骨矿含量与肾虚,肾主骨关系的研究[J].中国骨质疏松杂志,1996,2(3):19-21.
    [126]王斌,胡年宏,罗毅文.从中医“肾主骨”“髓生骨”理论出发防治骨质疏松[J].辽宁中医药大学学报,2008,10(3):3-4.
    [127]刘梅洁,鞠大宏,赵宏艳,等.“肾主骨”的机理研究—左归丸含药血清对破骨细胞分化调控因子OPG, RANKL蛋白表达的影响[J].中国中医基础医学杂志,2009(3):184-187.
    [128]林文川.“温肾填精,强筋壮骨”针法治疗腰椎间盘突出症[J].光明中医,2012,27(8).
    [129]王剑,郑洪新,刘瑞辉,等.糖皮质激素影响成骨细胞分化及补肾中药的调节机制[J].实用中医内科杂志,2012.]:001.
    [130]蒋涛.基于“肾主骨生髓”理论的补肾中药联合BMP-2诱导人脐血MSCs体外成骨分化的研究[D].南京中医药大学,2012.
    [131刘蓬,邱宝珊.强的松豚鼠肾虚模型的听力观察[J].广州中医药大学学报,1999,16(001):1-4.
    [132]卢标清,刘蓬,邱宝珊,等.肾阳虚动物对KM耳毒性的易感性及其机理研究[J].中华中医药杂志,2010(z1):34-37.
    [133]骆华伟,顾旭东.“肾开窍于耳”理论的临床电生理检测评价[J].浙江中西医结合杂志,2006,16(6):344-345.
    [134]董杨,施建蓉.中医肾主耳理论的现代生物学研究进展与思路[J].中西医结合学报,2012,10(2):128-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700