用户名: 密码: 验证码:
新型换流变压器及其滤波系统对直流输电换相的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国地域幅员辽阔,能源分布和负荷需求发展很不平衡,远距离大容量输电以及区域电网互联势在必行。在此方面,直流输电具有技术上和经济上的独特优势,必将对我国电力工业的可持续发展起到十分重要的作用。
     基于新型换流变压器及其滤波系统的直流输电系统(简称新型直流输电系统)采用了一种全新的滤波方案,称为感应滤波技术。它既有别于传统的无源滤波方式,也有别于现有的有源滤波方式。这项技术在新型换流变压器阀侧绕组的中间抽头处接入特征谐波滤波器,使得大部分谐波电流通过滤波支路短路,而在网侧绕组中流过的部分很小,可以忽略不计。本文的理论分析与现场测试均表明,新型直流输电系统的滤波效果明显优于传统直流输电系统;通过换流变压器网侧绕组的谐波很小,考虑谐波的影响而计入额定容量的设计裕度减小,有利于降低换流变压器的制造成本和运行损耗;此外,新型换流变压器的振动速度下降到传统换流变压器的1/3左右,在减振降噪方面有一定的优势。
     进一步考虑,新型直流输电系统采用感应滤波技术后,对换相会产生什么样的影响?和传统直流输电系统相比,前者在换相方面有什么潜在的优势?针对这些问题,本文主要完成以下几方面的基础研究工作:
     (1)计算直流输电稳态运行参数时,传统的方法要么非常复杂,一旦考虑相关滤波装置,在计算与分析方法上都容易遇到困难;要么过于简化,导致计算误差很大。针对此问题,本文将换流变压器阀侧相电流进行了完全傅里叶分解,并建立了计算直流输电系统运行参数的详细数学模型。模型有利于计入滤波器时的分析与计算,能够十分精确地反映出各种运行参数在稳态运行时的变化规律,而且计算过程特别简单。
     (2)通过深入研究发现,交流系统耦合电抗及换流变压器漏抗的存在是导致直流输电逆变器换相失败的重要因素之一;通过滤波,新型直流输电系统与传统直流输电系统均能消除耦合电抗对逆变器换相的不良影响,但前者能够大大削弱变压器漏抗的消极作用,改善了换相特性,后者却无法避免变压器漏抗对逆变器换相的消极作用。在此基础上,本文进一步分析得出新型直流输电系统能够改善换相的内在原因,即相比于传统直流输电系统,换相电抗大幅减小。
     (3)通过系统研究表明,未接入滤波器时,新型换流变压器换相电抗的计算方法与传统计算方法完全一致,但是接入滤波器后,传统的求解方法不再适用于新型换流变压器换相电抗的计算。因此,本文提出全新的计算换流变压器换相电抗的方法,认为换相电抗的大小与换相电流的基波及谐波分量流通回路的等值电感以及各分量的占有率密切相关。
     (4)传统换流变压器的换相电抗与短路电抗基本相同,主要由换流变压器漏抗决定。因此,换流变压器漏抗必须足够大,以限制短路电流,但又不宜过大,否则无功损耗增加,且造成换相失败。本文研究发现,新型换流变压器及其滤波系统在换相电抗减小的同时,短路电抗并无明显变化,两者并不矛盾。
     (5)可行性研究表明,传统直流输电系统难以应用于弱交流系统,而新型直流输电系统接入滤波器时所需换相压降大幅减小,因而对交流系统的强度要求大大降低,具有应用于弱交流系统的前景。
     本文通过系统而深入的研究,建立了新型直流输电系统在换相特性方面的理论研究体系。新型直流输电系统改善了换相特性,还可能应用到弱交流系统中。它在诸多方面体现出明显的优越性,具有良好的应用前景。
Although our country is vast in territory, the energy distribution and the load demand development is not very balanced. So the remote and high-capacity power transmission systems as well as the interconnected local power networks are imperative. The DC transmission system will certainly play a very vital role on the sustainable development of our country’s power industry for its technical and economical superiority.
     DC transmission system based on the novel converter transformer and its filter system, for short, novel DC transmission system, has adopted a kind of brand new filtering plan, which is named inductive filtering technology. It is not only different from the traditional passive filter way but also different from the existing active filter way. It adds the characteristic harmonic filter into the middle tap place of valve-side winding in the novel converter transformer. So the majority of harmonic current is short-circuited through the filter leg while few part of it can pass through the net-side winding, which can be ignored. Both the theoretical analysis and the field tests in this article indicate that the filtering effect in the novel DC transmission system is much superior to that in the traditional system. The design allowance to its rated capacity can be reduced with considering the influence of harmonics, which is in favor of reducing the manufacturing cost of the converter transformer and the operation loss. What’s more, the vibration velocity of novel converter transformer drops to about one third of traditional converter transformer and the novel DC transmission system has certain superiority in lowering the vibration velocity and noise in the converter transformer.
     Furthermore, how does the novel DC transmission system influence commutation? What potential advantages does the novel system have by contrast with the traditional one? The contents of the paper are as follows:
     (1) Traditional computation method of stable state parameter in DC transmission system is either complex, especially when the related filter considered, or too simple to avoid large calculation error. In view of this question, we carry on Fourier decomposition to phase current of valve-side of converter transformer completely, and then establish a detailed mathematical model to calculate the operation parameters of the DC transmission system. This model will be help of analysis and calculation in the case of the DC system with filter. And it is able to reflect precisely the changing law of various operation parameters in the stable state. The computation process is very simple too.
     (2) Through the thorough research, the coupling reactance of AC system and leakage reactance in the converter transformer can lead to commutation failure. Although both the novel DC transmission system and the traditional system can eliminate the bad effects of coupling reactance to inverter commutation, the former can greatly weaken the negative effects of transformer leakage reactance and improve the commutation characteristic while the later cannot avoid these negative effects. Furthermore, this paper finds out the intrinsic reasons, namely the commutation reactance has greatly reduces in the novel DC transmission system.
     (3) Through systematic study, when filter is not added to the novel DC transmission system, the computation method of commutation reactance is the same as the traditional method. Contrarily, the traditional method is no longer suitable.Therefore, we propose a new computation method and prove that the commutation reactance is related to the loop equivalent inductance of the fundamental and harmonic wave components of commutation current and these components’occupancy.
     (4) The commutation reactance of traditional converter transformer is basically identical with the short circuit reactance and mainly determined by the leakage reactance of the converter transformer. Thus, the leakage reactance should be large enough to limit the short-circuit current, but it should not too oversized. Otherwise, the reactive loss increases and commutation fails. Our research shows that the short-circuit reactance of the novel DC transmission system doesn’t change obviously while the commutation reactance reduces.
     (5) The feasibility studies prove that it is difficult for the traditional DC transmission system to be applied to the weak AC system, but the novel system has a certain application prospect. The commutation voltage required in the novel system has been greatly reduced and the intensity of the AC system reduces as well.
     This paper analyzes the fundamental theory about the commutation characteristic in the novel DC transmission system. Results show that the novel system can better the commutation and probably be used to the weak AC system. It has great advantage and wide application prospect.
引文
[1]赵国梁,吴涛. HVDC技术的发展应用情况综述[J].华北电力技术, 2006, 8: 28-30
    [2]黄俊,王兆安.电力电子变流技术[M].北京:机械工业出版社, 1996
    [3] Nozari F, Patel H S. Power electronics in electric utilities: HVDC power transmission systems[J]. Proceedings of the IEEE, 1988, 76(4): 495-506
    [4] Tanabe S, Irokawa S. Recent technical advancement of thyristor valve for HVDC transmission system[J]. Energy Management and Power Delivery, Proceedings of EMPD, 1995, 1: 394-398
    [5]侯慧,游大海,尹项根.轻型高压直流输电技术的发展与应用[J].电力建设, 2005, 26(11): 28-30
    [6]吕鹏飞,李庚银,李广凯.轻型高压直流输电技术简介[J].华中电力, 2002, 15(5): 69-73
    [7]李永坚,周有庆,宋强.轻型直流输电(HVDC Light)技术的发展与应用[J].高电压技术, 2003, 29(10): 26-28
    [8]文俊,张一工,韩民晓,肖湘宁.轻型直流输电—一种新一代的HVDC技术[J].电网技术, 2003, 27(1): 47-51
    [9] Andersen B R. HVDC transmission-opportunities and challenges[J]. AC and DC Power Transmission, The 8th IEE International Conference on 28-31 March 2006: 24–29
    [10]万达.三峡直流输电对江苏电网设备影响的试验研究[J].华东六省一市电机工程(电力)学会输配电技术研讨论文集(江苏分册), 2004, 69(4): 1-23
    [11]郭华,张文豪,赵慧娜.高压直流输电系统中线路结构的研究与实现[J].河南机电高等专科学校学报, 2006, 14(6): 10-12
    [12] Adamson K A, Lasseter R A, Melvold D J, et al. DC Side Filtering Studies for the Pacific HVDC Intertie Voltage Upgrading[J]. IEEE Transactions on Power Apparatus and Systems, 1983, 102(5): 1061-1069
    [13] Enright W, Arrillaga J, Wood A R, et al. The smoothing transformer,a new concept in DC side harmonic reduction of HVDC schemes[J]. Power Delivery, IEEE Transactions , 1996,11(4): 1941–1947
    [14]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社, 2004
    [15]浙江大学发电教研组.直流输电[M].北京:水利电力出版社, 1985.
    [16]关键.高压直流(HVDC)输电系统应用分析[J].云南电业, 2003, 10: 31-33
    [17] Billinton R, Aboreshaid S, Fotuhi-Firuzabad M. Well-being analysis for HVDCtransmission systems[J]. Power Systems, IEEE Transactions, 1997, 12(2): 913–918
    [18]陈红军,孟庆东.高压直流输电技术的发展及其在电网中的应用[J].中国电力, 2001, 34(12): 68-71
    [19]程江.高压直流输电技术的特点及其在我国的发展前景[J].江西电力职业技术学院学报, 2005, 18(2): 24-25
    [20]赵美莲,梁小冰.直流输电的技术优势及对电力设备的负面影响[J].广西电力, 2004, 6: 36-38
    [21]陈士军.直流输电的优势与前景[J].水电站设计, 2003, 19(3): 78-79
    [22]张文亮,胡毅.发展特高压交流输电_促进全国联网[J].高电压技术. 2003, 29(8): 20-22
    [23]段立诚.高压直流输电的应用和发展[J].陕西水力发电, 1994, 10(1): 59-61
    [24] Hingorani N G.. High-voltage DC transmission: a power electronics workhorse[J]. Spectrum, IEEE, 1996,33(4): 63–72
    [25] Bahrman M P. Overview of HVDC transmission[J]. Power Systems Conference and Exposition, 2006: 18-23
    [26]杨勇.高压直流输电技术发展与应用前景[J].电力自动化设备, 2001, 21(9): 58-60
    [27]郭占国.直流输电[J].技术物理教学, 2006, 14(3): 45-47
    [28]陈亮.超高压输电在输变电工程中的应用探讨[J].南昌水专学报, 2001, 20(4): 26-30
    [29]周乐荣.高压直流输电的现状及发展[J].广东电力, 1997, 5: 1-5
    [30]舒印彪.中国直流输电的现状和展望[J].高电压技术, 2004, 30(11): 1-2
    [31]李治.自主创新与对外合作相结合,加快高压输变电设备的自主发展[J].电力设备, 2004, 5(3): 1-3
    [32]常浩.我国高压直流输电工程国产化回顾及现状[J].高电压技术, 2004, 30(11): 3-4
    [33]黄磊.直流输电技术的特点及应用[J].中州煤炭, 2006, 141(3): 64-65
    [34]赵杰.高压直流输电的前沿技术[J].中国电力, 2005, 38(10): 1-6
    [35] Valiquette R A. HVDC life extension for Nelson River HVDC system[J]. Power Engineering Society Winter Meeting, IEEE, 2: 1059-1062
    [36]李立浧.直流输电技术的发展及其在我国电网中的作用[J].电力设备, 2004, 5(11): 1-3
    [37]金瑞明.我国环境污染的现状及对策[J].攀枝花学院学报, 2002, 19(6): 15-18
    [38] [加] Vijay K Sood,徐政译.高压直流输电与柔性交流输电控制装置-静止换流器在电力系统中的应用[M].北京:机械工业出版社, 2006
    [39]张益,黄家裕.直流输电系统的换相失败及其对策[J].华东电力, 1997, 11: 6-9
    [40]林凌雪,张尧,钟庆,等.多馈入直流输电系统中换相失败研究综述[J].电网技术, 2006, 30(17): 40-46
    [41] Rahimi E, Gole A M, Davies J B, et al. Commutation failure in single- and multi-infeed HVDC systems[J]. AC and DC Power Transmission, The 8th IEE International Conference, 2006: 182-186
    [42]罗隆福,李勇,许加柱等.基于自耦补偿与谐波屏蔽换流变压器的直流输电系统仿真研究[J].电网技术, 2007, 31(1): 32-35
    [43]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社, 2000
    [44] Kimura N, Funaki T, Li A., et al. Dynamic behavior of forced commutation static var compensator applied for reactive power compensation of hvdc converter[J]. Power Conversion Conference, 1993: 593–598
    [45]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社, 2004.
    [46]任震,何畅炜,高明振. HVDC系统电容换相换流器特性分析(I):机理与特性[J].中国电机工程学报, 1999, 19(3): 55-58
    [47]任震,何畅炜,高明振. HVDC系统电容换相换流器特性分析(II):无功功率特性.中国电机工程学报, 1999, 19(4): 4-8
    [48]项玲,胡敏强,郑建勇.电容换相逆变器换相失败的研究[J].电力自动化设备, 2007, 27(10): 56-58
    [49] Tanaka T, Nakazato M, Funabiki S. A new approach to the capacitor-commutated converter for HVDC-a combined commutation-capacitor of active and passive capacitors[J]. Power Engineering Society Winter Meeting, IEEE, 2001, 2(1): 968-973
    [50]徐政,陈海荣.电压源换流器型直流输电技术综述[J].高电压技术, 2007, 33(1): 1-9
    [51] Luo Longfu, Li Yong, Xu Jiazhu, et al. A new converter transformer and a corresponding inductive filtering method for HVDC transmission stystem[J], IEEE Trans. Power Delivery, to be published.
    [52] Longfu Luo, Jiazhu Xu, Ji Li, et al. A novel method of harmonic suppression in the AC/DC transmission system based on novel converter transformer[J]. 2006 International Conference on Power System Technology, Chongqing, 2006
    [53]罗隆福,刘福生.自耦补偿和谐波屏蔽换流变压器及其应用前景[J].大众用电, 2005, 21(7): 26-28
    [54]李勇,罗隆福,尚荣艳,等.新型直流输电系统阀侧绕组无功补偿特性分析[J].电力系统自动化, 2007, 31(8): 52-55
    [55]罗隆福,李季,许加柱,等.基于新型换流变压器的谐波治理研究[J].高压电器, 2006, 42(2): 96-98.
    [56]许加柱,罗隆福,李季,等.自耦补偿与谐波屏蔽换流变压器的接线方案和原理研究[J].电工技术学报, 2006, 21(9): 44-50
    [57] Huang H, Ramaswami V. Design of UHVDC Converter Station[J]. Transmission and Distribution Conference and Exhibition: Asia and Pacific, IEEE, 2005: 1–6
    [58]韩晓东,翟亚东.高压直流输电用换流变压器[J].高压电器, 2002, 38(3): 5-6
    [59]孙优良,王清璞,李文平,等.±800kV直流输电工程用换流变压器的研发[J].电力设备, 2006, 7(11): 17-20
    [60]李文平,陈志伟,宋秀生,等.±800kV直流输电工程用换流变压器主绝缘结构的研究[J].电力设备, 2007, 8(3): 5-6
    [61] Elliott F E, Lavier B E, Kuehn W P, Kuechler A. FEM-study on converter transformer failures in the Celilo HVDC converter station. Power Engineering Society 1999 Winter Meeting, IEEE, 1999, 2:1047-1052
    [62] Grant D H, McDermid W. Assessment of thermal aging of HVDC converter transformer insulation[J]. Electrical Insulation, Conference Record of the 2004 IEEE International Symposium, 2004: 230–232
    [63]王烜,曹晓珑.特高压换流站输电设备概述[J].电气技术, 2006, 5: 9-14
    [64] Frank Engelskirchen, Peter Heinzig. HVDC换流变压器技术及现场维修情况[J]].电力设备, 2005, 6(12): 93-95
    [65] Subbarao T, Reeve J. Harmonics caused by imbalanced transformer impedances and imperfect twelve-pulse operation in HVDC conversion[J]. Power Apparatus and Systems, IEEE Transactions, 1976, 95(5): 1732-1737
    [66]李慧杰,李啸骢,刘超,等.高压直流输电系统交流侧谐波分析及滤波配置的探讨[J].继电器, 2005, 33(6): 70-72
    [67]郝江涛,刘念,幸晋渝,等.电力系统间谐波分析[J].电力自动化设备, 2004, 24(12): 36-39
    [68]李名贤.电网谐波的产生与治理[J].轻金属, 1998, 1: 1-7
    [69]肖燕彩,文继锋,袁源,等.超高压直流系统中的换流变压器保护[J].电力系统自动化, 2006, 30(9): 91-94
    [70] Forrest J A C. Harmonic load losses in HVDC converter transformers[J]. Power Delivery, IEEE Transactions, 1991, 6(1): 153-157
    [71]韩光.换流变压器直流偏磁现象及其影响的研究[D].西安:西安交通大学, 2002
    [72]王寿民.电力变压器直流偏磁现象的实验研究[D].沈阳:沈阳工业大学, 2000
    [73]姚缨英.大型电力变压器直流偏磁现象的研究[D].沈阳:沈阳工业大学, 2000
    [74] Dawalibi F P, Li Y, Li C, Liu J. Mitigation of Transformer Saturation Due To Neutral HVDC Currents[J]. Transmission and Distribution Conference and Exhibition: Asia and Pacific, IEEE, 2005: 1–6
    [75] Chen S, Wood A R, Arrillaga J. HVDC converter transformer core saturation instability: a frequency domain analysis[J]. Generation, Transmission and Distribution, IEE Proceedings, 1996,143(1): 75-81
    [76]马为民.换流变压器中直流偏磁电流的计算[J].高电压技术, 2004, 30(11): 48-49
    [77] Werner Ritz.高压直流输电用变压器[J].国际电力, 1999, 4: 29-31
    [78] McDermid W, Grant D H, Glodjo A, et al. Analysis of converter transformer failures and application of periodic on-line partial discharge measurements[J]. Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Conference, 2001: 577-582
    [79] McDermid W, Glodjo A, Bromley J C. Analysis of winding failures in HVDC converter transformers[J]. Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Conference, 1999: 653–657
    [80]马书杰,张玲俊,于会民,杨俊杰.超高压换流变用变压器油[J].电力设备, 2004, 5(11): 79-84
    [81]许加柱.新型换流变压器及其滤波系统的理论与应用研究[D].长沙:湖南大学, 2007
    [82] Kundur P.电力系统稳定和控制[M].北京:中国电力出版社, 2002
    [83]同济大学数学教研室.高等数学(下册)[M].北京:高等教育出版社, 2001
    [84] [奥]Geroge J Wakileh,徐政译.电力系统谐波-基本原理,分析方法和滤波器设计[M].北京:机械工业出版社, 2003
    [85] Rice, D.E. A detailed analysis of six-pulse converter harmonic currents[J]. Petroleum and Chemical Industry Conference, 1992: 153–163
    [86]金福德. HVDC系统换相失败故障对交流侧保护的影响[D].杭州:浙江大学, 2005
    [87]黄玉东.高压直流输电换相失败的研究[D].北京:华北电力大学, 2006
    [88]何朝荣,李兴源,金小明,等.高压直流输电系统换相失败判断标准的仿真分析[J].电网技术, 2007, 31(1): 20-24
    [89]何朝荣,李兴源,金小明,等.高压直流输电系统换相失败的判断标准[J].电网技术, 2006, 30(22): 19-23
    [90]欧开健,任震,荆勇.直流输电系统换相失败的研究(一)-换相失败的影响因素分析[J].电力自动化设备, 2003, 23(5): 5-8
    [91]陈树勇,李新年,余军,等.基于正余弦分量检测的高压直流换相失败预防方法[J].中国电机工程学报, 2005, 25(14): 1-6
    [92]项玲,郑建勇,胡敏强.多端和多馈入直流输电系统中换相失败的研究[J].电力系统自动化, 2005, 29(11): 29-33
    [93] C. V. Thio, J. B. Davies, K. L. Kent. Commutation Failures in HVDC Transmission Systems[J]. IEEE Transactions on Power Delivery, 1996, 11(2): 946-957
    [94]荆勇,欧开健,任震.交流单相故障对高压直流输电换相失败的影响[J].高电压技术, 2004, 30(3): 60-62
    [95] Sun Y Z, Ling Peng, Feng Ma, et al. Design a Fuzzy Controller to Minimize the Effect of HVDC Commutation Failure on Power System[J]. Power Systems, IEEE Transactions, 2008, 23(1): 100–107
    [96]欧开健,任震,荆勇.直流输电系统换相失败的研究(二)-避免换相失败的措施[J].电力自动化设备, 2003, 23(6): 6-9
    [97]靳希,郎鹏越,杨秀.多馈入高压直流输电系统中的换相失败浅析[J].上海电力学院学报, 2006, 22(1): 39-42
    [98]罗隆福,李勇,许加柱,等.基于新型换流变压器的直流输电系统滤波装置的综合设计[J].电工技术学报, 2006, 21(12): 108-115
    [99] Nishimura F, Watanabe A, Fujii N, et al. Constant power factor control system for HVDC transmission[J]. Power Apparatus and Systems, IEEE Transactions, 1976, 95(6): 1845–1853
    [100] Machida T, Yoshida Y. A Method to Detect the Deionization Margin Angle and to Prevent the Commutation Failure of an Inverter for DC Transmission[J]. IEEE Transactions on Power Apparatus and Systems, 1967, 86(3): 259-262
    [101] Padiyar K R. HVDC power t ransmission system: Technology and system interactions[M]. New York : John Wiley & Sons , 1990.
    [102]郝跃东,倪汝冰. HVDC换相失败影响因素分析[J].高电压技术, 2006, 32(9): 38-41
    [103] Hansen A, Havemann H. Decreasing the commutation failure frequency in HVDC transmission systems[J]. Power Delivery, IEEE Transactions, 2000, 15(3):1022– 1026
    [104] Tian H Y, Sng E K K. A novel solution to restore a three-phase thyristor inverter from commutation failure due to voltage dip[J]. Power Electronics Specialists Conference, IEEE, 2004, 2: 906-912
    [105] Lidong Zhang, Dofnas L. A novel method to mitigate commutation failures inHVDC systems[J]. Power System Technology, PowerCon 2002, 2002,1: 51-56
    [106]黎敬霞,钱晶.减少HVDC换相失败的探讨[J].云南水力发电, 2003, 18(2): 26-29
    [107]魏建炜,林莉,成涛,等.直流输电系统中逆变器换相失败的因素分析[J].重庆大学学报(自然科学版), 2006, 29(5): 16-18
    [108]沈阳铝镁设计研究院电力室.硅整流所电力设计[M].北京:冶金工业出版社, 1983
    [109]中国国家标准JB/T 8636-1997.电力变换变压器.北京:中国标准出版社, 1997
    [110]许加柱,罗隆福,李季,等.新型换流变压器及其滤波系统的换相电抗的分析计算[J].电工技术学报, 2007, 22(10): 49-54
    [111] [苏]C.B.瓦修京斯基著,崔立君,杜恩田等译.变压器的理论与计算[M].北京:机械工业出版社, 1983
    [112]马丁, J希思科特.变压器实用大全[M].北京:机械工业出版社, 2004
    [113]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社, 1998
    [114]韩祯祥,吴国炎.电力系统分析[M].杭州:淅江大学出版社, 2002.
    [115]徐政.联于弱交流系统的直流输电特性研究之一——直流输电的输送能力[J].电网技术, 1997, 21(1): 12-16
    [116] Turner A B. Modelling Techniques for the Study of HVDC Infeeds to Weak AC Systems[J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(7): 3461-3467
    [117]李兴源.高压直流输电系统的运行和控制[M].北京:科学出版社, 1998
    [118] Gavrilovic A. AC/DC system strength as indicated by short circuit ratios[J]. AC and DC Power Transmission, International Conference, 1991: 27-32
    [119] Gonzalez J W, Weindl C, Herold G, et al. Feasibility of HVDC for Very Weak AC Systems with SCR below 1.5[J]. Power Electronics and Motion Control Conference, 2006: 1522-1527
    [120] Tam Kwa-sur, Lasseter Robert. Imtplementation of the Hybrid Inverter for HVDC/Weak AC System Interconnection[J]. Power Delivery, IEEE Transactions, 1986, 1(4): 259–268
    [121] Nyati S, Atmuri S R, Gordon D, et al. Comparison of voltage control devices at HVDC converter stations connected to weak AC systems[J]. Power Delivery, IEEE Transactions , 1988, 3(2): 684-693
    [122] Andersson G, Liss G.. Improving voltage stability in power systems with HVDC converters[J]. Advances in Power System Control, Operation and Management,1991, 2: 698-703
    [123] Franken B, Andersson G. Analysis of HVDC converters connected to weak AC systems[J]. Power Systems, IEEE Transactions, 1990, 5(1): 235–242
    [124] Rumpf E, Ranade S. Comparison of Suitable Control Systems for HVDC Stations Connected to Weak ac Systems Part II: Operational Behaviour of the HDVC Transmission[J]. IEEE Transactions on Power Apparatus and Systems, 1972, 91(2): 555-564
    [125]杨秀,郎鹏越,靳希.高压直流输电系统功率/电压静态稳定性的建模与分析[J].华东电力, 2006, 34(3): 16-19
    [126]郝巍,李兴源,金小明,等.直流输电引起的谐波不稳定及其相关问题[J].电力系统自动化, 2006, 30(19): 94-99
    [127] Bodger P S, Irwin G D, Woodford D A. Controlling harmonic instability of HDVC links connected to weak AC systems[J]. Power Delivery, IEEE Transactions, 1990, 5(4): 2039-2046
    [128] Jovcic D, Pahalawaththa N, Zavahir M. Inverter controller for HVDC systems connected to weak AC systems[J]. Generation, Transmission and Distribution, IEE Proceedings, 1999, 146(3): 235-240
    [129]余秀月.提高受端为弱系统的HVDC/AC系统稳定性的逆变侧控制方法研究[D].南宁:广西大学, 2003
    [130] Nayak O B, Gole A M, Chapman D G, Davies J B. Dynamic performance of static and synchronous compensators at an HVDC inverter bus in a very weak AC system[J]. Power Systems, IEEE Transactions, 1994, 9(3): 1350-1358
    [131]黄绍平,彭晓,浣喜明. TSC无功补偿装置的设计[J].高压电器, 2003, 39(6): 33-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700