用户名: 密码: 验证码:
五种中药醇提物抗惊厥作用的药效学比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的比较五种单味中药醇提物(全蝎SP、僵蚕SS、地龙LB、蝉衣CS、蜈蚣CP)的抗惊厥作用,并探讨其作用机制。
     方法①采用最大电休克惊厥模型,分析灌胃(ig)小鼠各药的量效和时效关系,比较其效价强度和效能;②采用戊四唑惊厥模型,比较ig小鼠各药的惊厥潜伏期、抗惊厥率和死亡率;③采用药效法,运用数学模式及参数来模拟各药在体内的药效动力学过程;④制备大鼠皮层定位注射青霉素点燃模型,采用RM6240C型多道生理信号采集处理系统记录脑电图,比较ig各药对痫性发作潜伏期及发作程度、痫性放电潜伏期、痫波发放频率及最高波幅的影响;⑤采用HPLC法测定海马区癫痫相关递质的含量,比较各药对Glu、Asp、Gly、GABA的影响。
     结果及结论(1)五种受试中药醇提物对MES模型均有对抗作用,量效均呈正相关性,效能从大到小依次为:全蝎、僵蚕、地龙、蝉衣、蜈蚣;效价强度由大到小依次为:全蝎、蝉衣、僵蚕、蜈蚣、地龙。(2)五种受试中药醇提物中除蜈蚣外,其余四种提取物均可对抗MET发作,按各药的ED95给药,MET惊厥潜伏期延长数值从大到小排列依次为:僵蚕、全蝎、蝉蜕、地龙,其中僵蚕的作用优于拉莫三嗪(LTG)。(3)五种受试中药醇提物均在给药后30min起效,平均1h左右达峰,蜈蚣组作用持续时间最短仅达2h,全蝎组作用持续时间最长,达7h。从体存药效动力学研究所得结果可以推测出,五种提取物均属于短半效期制剂。(4)全蝎是对抗青霉素点燃惊厥发作最有效的药物,而且对该模型的对抗作用与拉莫三嗪相当;僵蚕、蝉蜕和地龙对该模型也有较好的对抗作用,而蜈蚣则无效。(5)全蝎和地龙的抗惊厥作用机制主要是通过显著增加大鼠海马GABA的含量、提高GABA能神经功能而实现的;蝉蜕通过降低Glu的含量,限制Glu兴奋系统功能而发挥抗惊厥作用;僵蚕即可以增加GABA的含量,又能降低Glu的含量,其抗惊厥作用可能与增强GABA能神经抑制功能和/或抑制Glu兴奋功能有关。而蜈蚣对大鼠海马区Glu、GABA等癫痫相关递质的含量变化没有显著影响。
Objective To compare the pharmacodynamics of five alcoholic extractives(Scorpion,SP、Centipede,CP、Stiff Silkorm,SS、Lumbricus,LB、Cicada Slough,CS)on anticonvulsion,and explore their mechanism of anticonvulsant action. MethodsⅠMaximal electroshock seizure(MES) was adopted to analyse the relative of dose and effect, relative of time and effect, including maximal efficacy and potency of these five extractives in mice given by ig administration.ⅡMetrazol seizure test(MET) was used to compare seizure latency, anticonvulsant rate and mortality of mice with every extractives.ⅢPharmacodynamic parameters of five alcoholic extractives were assayed by means of Pharmacological Effective Method.ⅣUsing the model of seizure rats induced by penicillin localized injected in cortex,we studied the effect of extractives on seizure latency, frequency of epileptiform discharge, highest wave of hippocampus EEG(Recoded by RM6240C multichannel physiological signal collection and analysis recorde), the changes of convulsant behaviors and the latency of seizure.ⅤThe neurotransmitters content related to epilepsy in brain were determined by high performance liquid chromatography(HPLC) in order to compare the effect of extractives on Glu, Asp, Gly and GABA of hippocampus. Results and conclusionsⅠall the five extractions could dose-dependently antagonize MES in mice. Maximum efficacy of extractions ranged from maximum to minimum were SP, SS, LB, CS, CP, and the sequence of potency were SP, CS, SS, CP, LB.ⅡExcept for CP, all the other four extractions could prolong latent period on MET in mice, and the sequence from maximum to minimum were SS, SP, CS, LB, CP, at the same time, The effect of SS was better than that of LTG.ⅢThe effect of these extractions produced after 30min ig, and peaked after about 1h on average, however, persistent time of them was different. Persistent time of CP was 2h, but that of SP lasted for about 7h. It could be conjectured that all of the five alcoholic extractives belong to short-half period preparations studied by Pharmacological Effect Method.ⅣSP was the most effective extraction to antagonize the penicillin-induced seizure. Anticonvulsant properties of SP resembled LTG, SS, CS, LB also had effect in penicillin-kindling model, but CP hadn’t.ⅤThe anticonvulsant mechanism of SP and LB was probably due to increasing the level of GABA, however, CS was related to decreasing Glu level. The anticonvulsant mechanism of SS might have relationship with the two mentioned aspects. While CP had no obvious effect on neurotransmitters content related to
引文
[1] Jallon P. Epilepsy in developing countries. [J] Epilepsia.1997 Oct; 38 (10):1143-51
    [2] Kotsopoulos IA. Van Merode T. Kessels FG. et. al. Systematic Review and meta- analysis of incidence studies of epilepsy and unprovoked seizures. Epilepsia. 2002 Nov; 43 (11): 1402-9.Review
    [3] Wang WZ. Wu JZ. Wang DS. et. al. The prevalence and treatment gap in epilepsy in China: an ILAE/IBE/WHO study. Neurology. 2003 May 13; 60 (9):1544-5
    [4] 盛文利. 抗癫痫的最新药物研究进展. 实用医学杂志,2001,17(12):1137-1138.
    [5] Bazil, Carl W. MD, phD. New Antiepileptic Drugs. The Neurologist,2002, 8 (2):71-81
    [6] 王薇薇,吴逊. 新型抗癫痫药. 中国临床药理学杂志. 1999,15(3):212-215
    [7] 解学孔,癫痫病学,第一版,北京:人民卫生出版社,1995,249
    [8] Lai CW. Lai YH. History of epilepsy in Chinese traditional medicine. Epilepsia. 1991 May-Jun;32(3):299-302
    [9] 侯田臻,孙半润. 抗癫痫中药处方的统计分析. 中国医院统计 2001,8(1):44-45
    [10] 刘燕,廖卫平,张横柳. 中药抗癫痫作用的实验研究概况. 中药新药与临床药理. 2001, 12(1):58 –60
    [11] Blair RE. Changes in gene expression in hippocampal neuronal culltture model ofrecurrent spontaneous seizures, Epilepsy: Basic mechanisms. Society for Neuroscience. 1995, 21:1474-79
    [12] Bcar J. Responses of chesuperficfial cocarhial corcex in epileptic rats. J Neurophysiol 1996, 76(5): 2928-33
    [13] Swinyard EA, Woodhead JH, White HS, et al. Experimental selection, uantification and evaluation of AntiConvulsants. Antiepileptic Drugs, Raven press, New York, 1989:85-102
    [14] 林志彬,金有豫主编. 医用药理学基础,第一版. 北京:世界图书出版社,1994
    [15] 翁维良主编.中药临床药理学.人民卫生出版社,第一版,2002
    [16] Konig JFR, Klippel RA. eds. The Rat Brain, A Stereotaxic Atlas of the Forebrainand Lower Part of the Brain Stem. Baltimore: Williams and Wilkins Co., 1963
    [17] Racine RJ. Modification of seizure activity by electrical stimulation:Ⅱ,Motor Seizure. Electroencephalogr Clin Neurophysiol, 1972,32:281-7
    [18] 孟景春,周仲瑛主编. 中医学概论.北京:人民卫生出版社,1987,407
    [19] 刘崇铭,高殿振,周新华等.东亚钳蝎毒及其成分抗癫痫肽的抗惊厥作用. [J]. 沈阳药学院学报;1988,5(2):110-111
    [20] 李冬冬,宫瑾,李雪飞等.全蝎抗癫痫发挥敏感性的阿片肽机制.[J].中国微生态学杂志,1999,11(2):75-77
    [21] 姜春玲,张万琴.蝎毒诱导红藻氨酸癫痫大鼠海马内 GABA 释放的免疫组化观察[J]. 生理学报,1999,51(6):609-614
    [22] 邢少华,刘树民.动物病理产物药的药用价值初探.中国药学报,1990,(9):40
    [23] 徐国均,何宏贤,徐珞珊等. 中国药材学. 北京,中国医药科技出版社 1996-1997
    [24] 毛鋐德. 白僵蛹中白僵菌素的分离和鉴定. 中草药,1985,(7):5-6
    [25] 张横柳,李巨奇. 益气熄风化痰药抗癫痫的机理研究. 中国新药与临床药理 2003,14(4):237-240
    [26] 李勇文. 地龙的研究进展. 广西医学,2004,26(5):699-700
    [27] 何国兴. 蚯蚓的药理研究与临床应用概况. 中医理论与临床研究进展. 黑龙江科技技术出版社,1990,202
    [28] 王喜山等. 蝉蜕炮制的研究. 湖北中药学院附属医院学术论文汇编,1986,139
    [29] 吴葆金等. 蝉蜕醇提取物中枢药理作用的研究. 中草药,1986,17(11):21
    [30] 崔国印,周成明,王兴成. 蛤蚧、斑蝥、僵蚕和蝉蜕微量元素分析初报中药材,1991,(2):14
    [31] 宋建微,孟祥琴,王永利. 蜈蚣提取物中枢抑制作用及急性毒性. 河北医学院学报. 1995,16(2):91
    [32] 毛小平,陈子君,毛晓健. 蜈蚣的部分药理研究[J].云南中医学院学报. 1999,22(3):1-3
    [33] 蔡际群,秦迎松,何苗等. 蜈蚣等中药对 γ-丁内酯诱发的大鼠癫痫小发作的作用.中华临床医药与护理. 2003,(1):59-61.
    [34] 韩双红. 蜈蚣的研究进展. 天津药学,2002,14(5):13-15
    [35] 陶成,张士善.抗惊厥药物实验法. 见:徐叔云,卞如濂,陈修,主编. 药理实验方法学.第三版.北京:人民卫生出版社,2002.862-865
    [36] 谢秀琼主编. 中药新制剂开发与应用. 人民卫生出版社,第一版,1994
    [37] 陈琅,邹漳钰,陈新等. PTZ 致痫大鼠海马区神经元损伤的研究. 脑与神经疾病杂志.2005,13(3):200-203.
    [38] Adams, Victor. Adams and Victor’s Principles of Neurology. 7th edition. 北京:科学出版社,2001, 344~345.
    [39] Antoniadis A, müller WE, Wollert U. Inhibition of GABA and benzodiazepine receptor binding by penicillins [J] Neurosci, Lett, 1980,18: 309~12.
    [40] Zhang,Yong-Quan; Zhou,Yuan-Cong; Shen,Guo-Guang. [beta]-Agkistrodotoxin inhibit- tion of Ca2+-dependent release of glutamate, aspartate,glycine and [gamma]-aminobutyric acid from cerebrocortical synaptosomes following its binding to synaptic membrance. Neuroreport, 2002, 13 (17): 2313~1317
    [41] Wang SJ, Sihra TS, Gean PW. Lamotrigine inhibition of glutamate release from isolatedcerebrocotical nerve terminals (synaptosomes) bysuppression of voltage-activated calcium channel activity. Neuroreport, 2001, 12 (10): 2255~2258
    [42] Morley P, Hogan MJ, Hakin AM. Calcium-mediated mechanisms of ischemic injury and protection [J]. Brain Pathol, 1994, 4: 37~45
    [43] Meldrum BS. The role of glutamate in epilepsy and other CNS disorders [J].Neurology 1994, 44: S14~23
    [1] Maragakis,Nicholas J. MD; Rothstein,Jeffrey D. MD,PhD. Glutamate transporters in Neurologic Disease. 2001, 58(3):365-370.
    [2] Gegelashvivi G, Schousboe A. Cellular distribution and kinetic properties of high- affinity glutamate transporter [J]. Brain Res Bull, 1998, 45:233-238.
    [3] Lehre KP, Levy LM, Ottersen OP, et al. Differential expression of two glial glutamate transporters in the rat brain:quantitative and immunocy-tochemical observations. J Neuroscience, 1995,15(3):1835-1853.
    [4] Cheng C, Glover G, Banker G, et al. A novel sorting motif in the glutamate transporter excitatory amino acid transporter 3 directs its targeting in hippocampal neurons and kidney cells [J]. Neuroscience, 2002, 22(24):10643-10652.
    [5] Rothstein, Jeffrey D.MD,PhD. Excitotoxicity hypothesis. Neurology, 1996, 47(4):19-26.
    [6] Sarthy,Vijay p.CA;Marc,Robert E1;Pignataro,Leonardo,et al. Contribution of a glial glutamate transporter to GABA synthesis in the retina. Neuroreport, 2004, 15 (12): 1895-1898.
    [7] Zhang Y, Bendahan A, ZarbioR, et al. Molecular determinant of ion selectivity of a (Na+-K+)-coupled rat brain glutamate transporters [J].Pro Nati Acad Sci USA, 1998, 95(6):751-754.
    [8] Proper EA, Hoogland G, Lcappen SM,et al. Distribution of GluTs in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy [J]. Brain, 2002,125,32-34.
    [9] Bjoras M, Gjesdal O, Erickson JD,et al. Cloning and expression of a neuronal rat brain glutamate transporter, Brain Res Mb 1 Brain Res, 1996, 36(1):163-168.
    [10] Gaal L, Roska B, Picand SA, et al. Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors [J], J Neurophysio l. 1998, 79:190-186.
    [11] Miller HP, Levey AI, Rothstein JD,et al. Alterations in glutamate transporter protein levels in kindling-induced epilepsy. J Neurochem, 1997,68(4):1564-1570.
    [12] Akbar MT, Rottray M, Williams RJ, et al. Reduction of GABA and glutamate transporter messenger RNAs in the severe-seizure genetically epilepsy-prone rat. Neuroscience, 1998, 85(4):1235-1251.
    [13] Gorter JA, Vair Niet EA, Proper EA, et al. GluT salterations in the reorganizing dentate grus are associated with progressive seizure activity in chronic epileptic rats [J], J Comp Neurol. 2002,442(4):365-377.
    [14] Veda Y, Doi T, Tokumaru T, Collapse of extracellular GLU regulation during epileptog- enesis:down-regulation and functional failure of GluTs function in rats with chronicseizure induced by kainie acid [J], Neurochem, 2001,76(3):892-900.
    [15] Simantov R, Crispino M, Hoe W, et al. Changes in expression of neuronal and glial gluamate transporters in rat hippocampus following kainate-induced seizure activity, Mol Brain Res, 1999,65(1):112-123.
    [16] Mathern GW, Meudoza D, Lozada A, et al, Hippocampal GABA and glutamate transpo- rter immunoreactivity in patients with temporal lobe epilepsy. Neurology, 1999,52(3): 453-472.
    [17] Sepkuty JP, Cohen AS, Eules S, et al. A neuronal GluTs contributes to neurotransmitter GABA synthesis and epilepsy [J], J Neurosci, 2002,22(15):6372-6379.
    [18] Tanaka K,Watase K, Manabe T,et al.Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT1, Science, 1997,276(5319):1699-1702.
    [19] Michael Demarque, Nathalie Villeneuve, Jean-Bernard Manent,et al. Glutamate transp- ortera prevent the generation of seizures in the developing rat neocortex. Neuro- science, March 31,2004,24(13):3289-3294.
    [20] Shinozaki H, Ishida M, Shimamoto K, Ohfune Y, Potent NMDA-like actions and potent- iation of glutamate responses by conformational variants of a glutamate analogue in rat spinal cord. Br J Pharmacol,1989;98(4):1213-24.
    [21] Bridges RJ, Stanley MS, Anderson MW.et al. Conformationally defined neurotrans mitter analogues.Selective inhibition of glutamate uptake by one pyrrolidine-2,4-dicarboxylate diastereomer. J Med Chem, 1991;34(2):717-25.
    [22] Lletcher EJ, Mewett KN, Drew CA,et al. Inhibition of high affinity L-glutamic acid upt- ake into rat cortical synaptosomes by the conformationally restricted analogue of glutamate acid:cis-1-aminocydobutance-1,3-dicarboxylic acid. Neurosci Lett, 1991, 121 (1-2):133-5.
    [23] Bridges RJ, Lovering FE, Kock H et al. A conformationally constrainsed competitive inhibitor of the sodium-dependent glutamate transporter on forebrain synap- tosomes: L-anti-endo-3,4-methanopyno lidine dicarboxylate. Neurosci Lett, 1994; 174(2):193-7.
    [24] McBean GJ, Robert PJ. Neurotoxicity of L-glutamate and D,L-threo-3- hydroxyaspartatein the rat striatum. J Neurochem, 1985;44(1):247-54.
    [25] Rothstein JD, Jin L, Dykes-Hoberg M, Kunal RW. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Watl Acad Sci USA, 1993; 90 (14):6591-5.
    [26] Tan J, Zelenaia O, Correale D, et al. Expression of the GLT1 subtype of Na+-dependent glutamate transporter: pharmacological characterizatic and lack of regulation by protein kinase C,J, Pharmocol ExpThr, 1999,289(3):1600-1610.
    [27] Kim, Jin-Hee, Lim,Young-Jin, Ro,Young-Jin, et al. Effects of ethanol on the rat glutamate excitatory Amino acid transporter type 3 expressed in Xenopus Oocytes:Role of protein Kinase C and phosphatidylinositol 3-kinase, Alcoholism, 2003,27(10)1548- 1553.
    [28] Van del Hel,WS, MSc, Notenboom,RGE,PhD, Bos,IWM,MSc, et al. Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy, Neurology, 2005,64(2):326-333.
    [29] Rothstein JD, Patel S, Regan MR, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature,2005 Jan 6; 433(7021)73-7.
    [30] Campiani G, Fattorusso C, Dc Angelis I,et al. Neuronal high-affinity sodium – dependent glutamate transporters(EAATs): targets for the development of novel therapeutics against neurodegenerative diseases,Curr Pharm Des 2003;9(8):599-625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700