用户名: 密码: 验证码:
人防改扩建地铁设计控制理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市建设的快速发展,城市地下空间的开发和利用受到日益广泛的重视,其中改造利用既有人防隧道成为城市地铁的新思路被纳入重要研究课题。与常规隧道开挖方式不同,人防隧道改建是在既有断面基础上进行单侧和双侧扩挖形成新的地下空间,目前相关的设计理论和施工控制理论基本是空白。哈尔滨地铁一期工程全长14.41km,基本上全段利用了既有人防隧道,其利用规模、环境复杂程度,在国内外都是罕见的。依托该项工程,本文研究了既有人防隧道改扩建地铁的设计及控制理论。
     在既有人防隧道改扩建工程中,必须破除原人防隧道衬砌、二次开挖、二次支护,经现场量测与计算分析,扩挖前后隧道支护结构变形不大,但隧道衬砌结构内力变化较大,支护结构与围岩的相互挤压作用强烈。由此,本文以极限平衡理论为基础,分析了隧道扩挖前后对上方围岩扰动产生的极限荷载,建立了适用于人防隧道扩挖的“荷载-结构”设计模型;引入“施加虚拟支撑力逐步释放法”,分析了扰动围岩与支护结构的共同作用,重点解决了人防隧道的扩挖中,破除原人防隧道衬砌、二次开挖、二次支护阶段的应力释放与荷载转移的数值模拟问题,建立了人防隧道扩挖“地层-结构法”设计理论。
     通过现场工艺试验,研究了既有人防隧道改扩建预注浆加固的设计参数,将工艺试验成果与相关数值模拟相结合,定量分析了注浆加固圈与应力场、塑性区的相关性。将工艺试验成果提升到可定量评价的理论层次,形成了既有人防隧道扩挖预支护注浆设计方法与设计理论。将地表建筑、区域岩体、支护结构作为一个地质整体进行分析和计算,提出了人防隧道扩挖施工引起建筑物损害的评价方法。
     遴选了地表沉降量作为既有人防隧道扩挖的主控指标,提出了“工前预测”、“工间预测”的概念,从工程管理角度、设计和控制理论方面将隧道的设计、施工、监控量测更紧密的结合在一起。设计阶段的“工前预测”以随机介质法理论为基础,在假定隧道断面的不均匀椭圆化收敛形式的条件下,推导了单双侧扩挖的地表沉降量预测公式。而“工间预测”基于概率计算的方法,建立灰色一马尔科夫链预测模型,将既有监测数据导入该模型,对未来沉降值进行预测。将两阶段预测相结合,可更准确的动态调整设计方案,实现信息化施工。
With the rapid development of city construction, more and more attention has been paid to the development and utilization of urban underground space in many cities. The idea of transforming the existing civil air defense tunnels into urban rail transit construction has been brought into important research projects. Differing with the conventional tunnel excavation method, the reconstruction of civil air defense tunnels is through unilateral and bilateral expanding excavation to form new underground space based on the existing section, about which the design theory and basic construction control theory is still a gap. Harbin metro1st project, with the length of14.4km, used the exisiting air defense tunnel, whose scale and complex environment is rare both at home and abroad. Relying on the project, this paper studies the design and controlling theory of digging and transforming the existing civil air defense tunnels into metro.
     Among the expansion of existing air defense tunnel projects, the destruction of the original air defense tunnel lining, the secondary excavation, and the secondary support must be completed. Through on-site measurements and computational analysis, it is found that the deformation of tunnel support structure between pre-and post enlarging and excavation was small,; but the tunnel lining force changed greatly and the mutual squeezing effect between the support structure and surrounding rock was strong. Thus, based on the limit equilibrium theory, this paper analyzed the limit load caused by the disturbance of the above surrounding rock pre-and post enlarging and excavation, and generated the "load-structure" model which applies to air defense tunnel enlarging and excavation project. With the introduction of gradual release method by applying virtual support force, the combined action of disturbed surrounding rock and the support structure was analyzed. This paper has solved the problem of numerical simulation of the stress release and load transfer during air defense tunnel enlarging and excavation, including the destruction of the original air defense tunnel lining, the second excavation and the second support. Furthermore, the design theory of formation-structure method of civil air defense tunnel enlarging and excavation was established.
     Through the field test, the design parameters of grouting for rebuilding the existing civil air defense tunnels were studied. Furthermore, the relation between the grouting ring and the stress field and plastic zone were quantitatively analyzed through combineing the numerical simulation with the test results. Therefore the test result could be used to quantitatively predict the construction behavior, and the design theory of advanced support grouting for expanding excavation of the existing civil air defense tunnels was established. Moreover, in this paper the evaluation method for the construction building damage caused by expanding excavation of the existing civil air defense tunnels was presented by taking surface construction, regional rock and supporting structure as a whole geological body.
     To integrate the tunnel design, construction, monitor and measurement through the aspect of project management, design and control theory, the surface settlement was selected as the major control indicators of expanding excavation of the existing civil air defense tunnels, and the concepts of "previous-construction prediction" and "period-construction prediction" were presented. Based on the random media theory, the previous-construction prediction can be used to predict the surface settlement value under single or double side expanding excavation, by assuming that the tunnel convergence has a non-uniform elliptical cross-section. And in period-construction prediction, the gray-Markov chain forecasting model was established based on probability statistics theory. The model can be used to predict the future settlement value by importing the monitoring result. By combining the two-stage predictions, the design can be optimized more accurately and dynamically, and the information construction can also be implemented.
引文
[1]Kangmulieer. Large undersea tunnels technology[J]. Tunnding and Underground Space Technology,1994,19(3):283-292.
    [2]Ju Labov and Budd Isinbayeva. International Tunneling Association(ITA) [J]. Views on structural design models for tunneling: synopsis of answers to questionnaire,1981.
    [3]Karimov. Technical development for the seikan tunnel [J]. Tunneling and Underground Space Technology,1986,11(3/4),341-349.
    [4]Schultz, Dudek.Control of tunneling contracts[J]. Tunnels and Tunneling,1992,9:47-49.
    [5]Schmid, Wendels. Coupled thermal—mechanical—fluid flow model for nonlinear geologicsystem(PH D Thesis)[D]. Univ of M inesota,1981.
    [6]Ta Luobo, Fidel Fontenay. Stability and rock coverofhard rock subsea rurmds [J]. Tunneling and Underground Space Technology,1994,9 (2): 151-158.
    [7]Sai Lata, Curtis. Report on session 4:Underwater tunnels Seikan Tunnel and Water[J]. Tunnels and Water, Serrano,1989.
    [8]Layasi, Dier. Support of large rock caverns in Norway [J]. Tunneling and Underground Space Technology,1996,11(1):11-19.
    [9]Kuerhewei. The challenge of subsea tunneling[J]. Tunneling and Underground Space Technology,1994,9(2):145-150.
    [10]Weteqi. Plastic analysis of underground openings by the finite element method[J]. Proc. Rock Mechanics,1966:477-483.
    [11]阿维尔申,欧阳筏苏.矿山岩石移动[J].有色金属(冶炼部分),1955,17.
    [12]Kekrotkov. Deep Excavations and Tunneling in Soft Ground, State of Art Report[A]., Proc.7th Int. conf. On Soil Mechanics and Foundation and Engineering[C]. Mexico City,1969:225-290.
    [13]Kerbincove. Ground Movement[R]. ASCE:1970, SM5:385-396.
    [14]Khodorkovsky, Macdonald D. H. The Allowable Settlements of Buildings[J]. Proc. Inst. of Civ.Engrs.1956:727-768.
    [15]Buddlake R. A. Maximum allowable non-uniform settlement of structures[J]. Proc.4thICSMPE,1957:402-405.
    [16]Liteweinision. Discussion Of the Confession On Soil Mech. An Found. Eng.,1963 (Ⅲ), Wiesbaden,135.
    [17]Kenuotai C.. Definition of stable in elastic material[J]. American Society of Mechanical Engineers Transactions-Journal of Applied Mechanics,1959,26(1):101-106.
    [18]Sawu Stojakovic C. P. On the yielding of soils[J]. Geotechnique, 1958,8(1):22-53.
    [19]Krakow N. R. Eisenstein Z, Methods of estimating lateral loads and deformations [A]. Proc Spec. Conf. Lateral Stresses, Cornell University [C]. Ithaca, N.Y,1970:51-102.
    [20]Kehemansky Y. A fundamental study of tied-back wall behavior[D]. Ph.D. thesis presented to Duck University, Durham, N. C,1974.
    [21]Kovarchuck J. M. Elastic-plastic finite element analyses of sand deformations [A]. Proc. And Int. Conf. on Num Methods in Geomechanics[A]. Blacksburg, Virginia, USA,1976:243-263.
    [22]Karenqiaer C. E. A Three-Dimensional Finite Element Model of Tunneling [A]. Proceedings of Numog V, Davos[C]. Switzerland,6-8,1995: 457-462.
    [23]Homkhost G. T., Analysis of Tunnel-Induced Settlement Damage to Surface Structures[A]. Proceedings of the 12th European Conference on Soil Mechanics and Foundation Engineering[C]. Amsterdam,1999,1:31-44.
    [24]Baars I. A tructure's Influence on Tunnel ing-Induced Ground movements[A]. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering[C].1997,125(2):109-125.
    [25]Niemuchuck. Ground Movement Related Building Damage[J]. Journal of Geotechnical,1996.
    [26]Roybelt M. D. Building response to excavation-induced Settlement [J]. Journal of Geotechnical Engineering, ASCE,1989,115(1):1-21.
    [27]Peitz Y. I.,Application of the Observational Method to a Deep Basement Excavated Using the Top-Down Method [J]. Geotechnique,1994,44(2): 655-664.
    [28]Fryshenterai. Roceedings of the Conference, American Society of Civil Engineers[C].Boston,1998.
    [29]Wald L. T. Effects of Tunneling on Pile of Foundations [J]. Computer Methods and Advances in Geomechanics,1997.
    [30]Aoerqiade. Merical Modeling of Settlement Damage to Masonry Buildings Caused by Tunneling[D]. DPhiil thesis, Oxford University,1997.
    [31]Bailey R.D. Tress Distribution and Settlement of Shallow Foundations[M]. Foundation Engineering Handbook, Fang, ed. Van Nostrand Reinhold, New York,1991:166-216.
    [32]Hackett H. G. Piles Subjected to Externally-Imposed Soil Movements [R].No.R689,The University of Sydney,1994.
    [33]刘宝琛,廖国华.煤矿地表移动的基本规律[M].中国工业出版社,1965:78—81.
    [34]侯学渊,洪胜.盾构掘进对隧道周围土层扰动的理论与实测分析[J].岩石力学与工程学报,2003.22(9).
    [35]张弥,占生,王梦恕.盾构掘进对隧道周围土层扰动的理论与实测分析[J].岩土力学,2009.30(6).
    [36]Skempton A. W, McDonald D. H. The Allowable Settlement of Buildings [J]. Proceedings of the Institute of Civil Engineers,5(3):727-768.
    [37]CoMing E. J. Error estimates for adaptive nite element computations [J].SIAM Journal of Numerical Analysis,1978,15(4):736-754.
    [38]Boscardin. M. D. Building response to excavation-induced Settlement[J]. Journal of Geotechnical Engineering, ASCE,1989,115(1): 1-21.
    [39]施成华,彭立敏,杜思村.挂榜岭公路隧道的设计与施工[J].西部探矿工程,1999,11,40-42.
    [40]宫成兵,张武祥,杨彦民.大断面单洞四车道公路隧道结构设计与施工方案探讨[J].现代隧道技术,2004(增刊):423-427.
    [41]张延.软弱围岩中修建大跨隧道的设计和施工[J].地下空间,2002,22,1-28.
    [42]田瑞忠.六步流水作业法在靠椅山隧道的应用[J].铁道建筑技术,1998:7-29.
    [43]傅鹤林.块裂岩质边坡稳定性理论分析及应用研究[D].长沙:中南大学,2000.
    [44]傅鹤林,范臻辉,朱汉华.板裂介质围岩中的隧道衬砌与围岩相互作用机理研究[J].公路交通科技,2003(05).
    [45]铁路隧道设计规范(TB10003.2001 J117-2001).北京:中国铁道出版社, 2001.
    [46]公路隧道设计规范(JTJ026.90).北京:人民交通出版社,1990.
    [47]施仲衡,张弥,沈子钧.中国土木工程指南(隧道与地下工程篇)[M].北京:科学出版社,1993.
    [48]孙钧,侯学渊.地下结构[M].北京:科学出版社,1988.
    [49]宋健译.ITA隧道设计准则简介[J].地下工程与隧道,1991,03.
    [50]潘昌实.隧道力学数值方法[M].北京:中国铁道出版社,1995.
    [51]何以余,李天财.隧道力学原理[M].北京:中国铁道出版社,1982.
    [52]李志业,肖中平.地下结构设计原理与方法[M].成都:西南交通大学出版社,1999.
    [53]孙钧.地下工程设计与实践[M].上海:上海科学技术出版社,1996.
    [54]于华.关于地下洞室支护系统设计的半经验法[J].世界隧道,1996:29-38.
    [55]傅鹤林,周宁,郭建峰.板裂介质理论在牟珠洞滑坡机理分析中的应用[J].中南大学学报(自然科学版),2006,37(1).
    [56]陈建勋,楚锟.用收敛—约束法进行隧道初期支护设计[J].西安公路交通大学学报,2001,21(2):57-59.
    [57]李术才,徐帮树,李树忱.海底隧道衬砌结构选型及参数优化研究[J].岩石力学与工程学报,2005,24(21):3894-3902.
    [58]王慧,张忐刚.隧道信息化设计与施工技术监测系统研究[J].岩士工程界,2004,7(1):75-77.
    [59]周宁,傅鹤林,郭建峰.引入修正因子的非等时距时变参数灰色预测模型及应用[J].岩土工程学报,2006,28(6).
    [60]齐明山,陈明波,冯翠霞.厦门海底隧道围岩支护系统相互作用时效数值分析[J].建筑科学,2006,22(5):29-33.
    [61]李世辉等.隧道支护设计新论—典型类比分析法应用和理论[M].北京:科学出版社.1999.
    [62]吕明,GROV E, NILSENB,等.挪威海底隧道经验[J].岩石力学与工程学报,2005,24(23):4219-4225.
    [63]邵国建,卓家寿,章青.岩体稳定性分析与评判准则研究[J].岩石力学与工程学报,2003,22(5):691-696.
    [64]涂忠,孙钧,蔡晓鸿.海底隧道围岩抗力系数计算方法研究[J].岩土工程学报.2006,28(8):1002-1007.
    [65]郑宏波,张运良等.人跨公路隧道衬砌荷载确定方法的探讨[J].公路工 程,2007,23(6):123-126.
    [66]凌昌荣,张子新.偏压小间距隧道荷载结构计算模型研究[J].地下空间与工程学报,2007,3(6):1148-153.
    [67]蔡晓鸿,蔡勇平.水工压力隧洞结构应力计算[M].北京:中国水利水电出版社,2004.
    [68]于学馥,郑颖人,刘怀恒等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [69]王梦恕,皇甫明.海底隧道修建中的关键问题[J].建筑科学与工程学报,2005,22(4):1-4.
    [70]王梦恕.水底隧道在青岛—黄岛之间的应用[J].隧道建设,1992,3:1-5.
    [71]皇甫明.暗挖海底隧道围岩稳定性及支护结构受力特征的研究[D].北京:北京交通大学,2005.
    [72]王志,熊礼鹏.浅谈隧道衬砌水荷载问题[J].城市道桥与防洪,2005,5:153-155
    [73]关宝树.隧道力学概论[M].成都:西南交通犬学出版社,1993.
    [74]徐干成,郑颖人.圆形洞室围岩与支护共同作用的线弹性分析[J].隧道上程,1982,4:9-17.
    [75]靳晓光,李晓红.高地应力区深埋隧道软弱阐岩支护结构力学特性研究[J].公路交通科技,2008,25(2):101-105.
    [76]罗毓.东川河改流隧道工程断层破碎围岩支护研究[J].矿业快报,2007,23(7):40-41.
    [77]聂兴信,王骏野.某隧道工程F5断层破碎围岩支护型式探析[J].西部探矿工程,2003,15(2):106-108.
    [78]郑伟.对西康铁路软岩和极软岩隧道支护的认识[J].水文地质工程地质,2001,28(4):40-42.
    [79]孙钧.山岭隧道工程的技术进步[J].西部探矿工程,2000,12(1):1-6.
    [80]靳晓光,李晓红,杨春和,等.深埋隧道围岩一支护结构稳定性研究[J].岩土力学,2005,26(9):1473-1476.
    [81]崔颖超,龙绪健.大跨径连拱隧道围岩支护原理与变形破坏数值模拟分析[J].公路工程,2007,32(6):84-88.
    [82]刘彤,伍法权等.偏压条件下大型地下厂房围岩变形稳定性分析[J].工程地质学报,2005,13(4):465-470.
    [83]孙钧.厦门市东通道海底隧道工程设计施T若干技术关键的思考[A].见大直径隧道与城市轨道交通工程技术—2005年上海国际隧道工程研讨会文集[C]. 上海:同济人学出版社,2005,25-32.
    [84]严绍洋,李亮辉,张春宇.公路隧道开挖渗流场的有限差分法分析[J].中外公路,2007,27(6):120-123.
    [85]易小明,张顶立,陈铁林.厦门海底隧道地层变形监测与机制分析[J].岩石力学与工程学报,2007,26(11):2302-2308.
    [86]李地元,李夕兵,张伟.基于流固耦合理论的连拱隧道围岩稳定性分析[J].岩石力学与工程学报,2007,26(5):1056-1064.
    [87]朱道建,杨林德,黄建勇.厦门海底隧道地表沉降控制效果分析及其预测[J].岩石力学与工程学报,2007,26(1):2356-2362.
    [88]赵建宇.清水隧道围岩稳定性流固耦合研究[J].岩土工程技术,2007,21(5):257-260.
    [89]董满生,葛斐,惠磊,等.水中悬浮隧道研究进展[J].中国公路学报,2007,20(4):101-107.
    [90]杨永香,刘泉声,焦玉勇.龙潭隧道的流固耦合分析[J].采矿与安全工程学报,2006,23(3):268-271.
    [91]刘继国,朱光仪,郭小红,梁巍.厦门海底隧道涌水量流固耦合数值分析[J].中外公路,2006,26(3):218-221.
    [92]漆泰岳,高波,马亮富.水软土地层地铁开挖地表沉降离心模型试验[J].西南交通大学学报,2006,41(2):184-189.
    [93]海洪,郭鹏,王新,万明富,张兆杰.基于随机有限元的隧道衬砌结构可靠性分析[J].北方交通,2007,11:79-81.
    [94]李廷春,李术才,陈卫忠,等.厦门海底隧道的流同耦合分析[J].岩土工程学报,2004,26(3):397-401.
    [95]赵阳升,杨栋,郑少河.三维应力作用下岩石裂缝水渗流物性规律的实验研究[J].中国科学(E辑),1999,29(1):82-86.
    [96]王瑗,徐志英,速宝玉.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报,1999,18(2):1-5.
    [97]Hart R. D, Fully A. Coupled thermal-mechanical-fluid flow model for nonlinear geologicsystem(PH D Thesis) [D]. University of Minesota, 1981.
    [98]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13(4):299-308.
    [99]江胜林.客运专线隧道断面方案研究和优化设计[J].铁道工程学报,2006,8:68-72.
    [100]刘尧军,高桂风,冯卫星.大跨公路隧道断面优化设计研究[J].辽宁交通科技,2004,2:48-50.
    [101]李言信,周远明.京珠高速公路靠椅山隧道断面优化设计[J].公路交通,1998:8-20.
    [102]朱汉华,傅鹤林.不同隧道断面几何参数情况下设计荷载的确定[J].湘南学院学报,2004,25(5):46-51.
    [103]姜晨光,吕淑贤,杨英姿,等.深埋隧道围压计算与断面形状设计的研究
    与实践[J].矿冶,2007,16(4):1-3.
    [104]谢琪.隧道横断面设计及其标准化问题的思考[J].福建建筑,2006,1:127-128.
    [105]宫成兵,张武祥,黄骤屹.焦晋高速公路河南段隧道设计与施工[J].公路隧道,2004,1:1-5.
    [106]侯东,高晓春.甘露岩隧道设计简介[J].山西交通科技,2003,B10:82-83.
    [107]李雷.黄土隧道衬砌断面优化设计与研究[J].山西建筑,2003,29(4):225-226.
    [108]高桂风,刘尧军,冯卫星.大跨公路隧道仰拱优化设计研究[J].国防交通工程与技术,2003,1(4):39-41.
    [109]余锦州,张兴来,屈志豪.渝黔高速公路真武山隧道设计[J].公路交通技术,2003,4:76-80.
    [110]邓富甲.沉管隧道的断面设计[J].交通工程科技,2002,3:25-27.
    [111]张进华,赵明华.山区公路隧道线形设计[J].中南公路工程,2002,27(4):13-15.
    [112]周一勤,诸葛温君,钟国强.公路隧道横断面形式的优化设计[J].浙江交通职业技术学院学报,2001,2(2):1-4.
    [113]莫勋涛,刘维宁.围岩的平均站立时间与隧道初期支护设计压力的确定[J].土木工程学报,2002,35(1):62-67.
    [114]陈建勋,楚锟.用收敛约束法进行隧道初期支护设计[J].西安公路交通大学学报,2001,21(2):57-59.
    [115]McRae.M.T,王华.软弱岩层中大距度隧道的初期支护设计[J].隧道及地下工程,1998,19(3):1-14.
    [116]余作民.顶山隧洞初期支护监测及围岩变形特性分析[J].铁道建筑,2007.5:46-48.
    [117]陈唯一.乌鞘岭隧道千枚岩地层初期支护参数研究[J].铁道工程学报, 2006,3:37-39.
    [118]黄美群.软十隧道支护设计中常见问题探讨[J].岩土工程,2005,8(6):71-74.
    [119]王慧敏,WTD锚杆及其在隧道初期支护中的应用[J].铁道建筑,2004,9:21-22.
    [120]高军.大跨隧道初期支护稳定性分析[J].矿山压力与顶板管理,2002,19(1):45-46.
    [121]Jasar,赵满庆.洞室初期支护确定工程地质参数的分类法[J].隧道译丛,1991,8:24-29.
    [122]张凯.公路大跨度隧道开挖及初期支护施[J].隧道建设,2007,27(4):65-68.
    [123]王才高.隧道施工中围岩及初期支护大变形的认识与探讨[J].企业技术开发,2007,26(9):33-36.
    [124]曹江敏.高速公路长人隧道施工动态监测与数值模拟研究[J].铁道建筑,2007,12:56-59.
    [125]刘召刚,康海贵.软岩浅埋暗挖施工过程数值模拟及方案比选[J].四川建筑,2007,27(5):172-176.
    [126]徐帮树,李树忱,李术才,张芹.海底隧道涌水量与覆岩厚度关系研究[J].力学与实践,2007,29(1):34-37.
    [127]范宏柱.浅埋既有人防隧道扩挖地铁车站施工技术研究[D].北京:北京交通大学,2009.
    [128]杨勇等.浅述新奥法在香溪隧道中的应用[J].城市建设,2009.
    [129]乔世范.随机介质变形破坏判据研究及其工程应用[D].长沙:中南大学,2006.
    [130]赵玉梅.城市地铁施工引起地层位移对邻近建筑物的风险研究[D].长沙:中南大学,2009.
    [131]滕红军.城市隧道穿越地面建筑物的安全风险控制[D].北京:北京交通大学,2007.
    [132]王晓形.浅埋洞室围岩压力若干问题研究[D].上海:同济大学,2006.
    [133]周博.通透肋式拱梁隧道变形规律分析与结构荷载简化模型[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [134]曲海锋等.公路隧道围岩压力研究与发展[J].地下空间与工程学报,2007.
    [135]汪磊.胶州湾海底隧道预注浆加固不良地质段围岩的稳定性分析[D]. 北京:北京交通大学,2009.
    [136]雷军,和万春.大跨度软岩公路隧道短台阶七步平行流水作业施工技术[J].公路工程,2001:78-82.
    [137]丁建隆.浅埋大跨度隧道的合理施工方法[J].中国铁道学,2005,26:77-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700