用户名: 密码: 验证码:
海杂波环境下的弱小目标检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海杂波环境下低RCS的弱小目标检测在军事领域以及民用领域都有着重要的应用价值,由于海杂波的似目标特性以及弱小目标的低信杂比(SCR)导致虚警概率较高,目标在杂波区不能有效被检测到。传统的海杂波背景下目标检测算法是根据海杂波的幅度统计模型而制定的检测策略。但是随着现代雷达距离分辨率的不断提高,在高分辨低擦地角的情况下海杂波回波的幅度模型逐渐偏离了传统的幅度统计模型,因此导致传统检测器的性能急剧下降,而新发现的海杂波模型也受到很多条件的限制,适应范围比较窄。因此寻求新的海杂波背景下弱小目标检测算法就成为了一个研究热点。本文针对这一问题展开了相关检测算法的研究工作,论文的主要工作如下:
     1.首先分析了海杂波的形成机理以及海面的构成,阐明了海杂波的主要构成是由重力波和由风引起的风波以及表面张力引起的毛细波构成的。文中总结分析了海杂波分布模型并对IPIX雷达实测数据进行了幅度统计分析与拟合,分别与常用的海杂波幅度统计分布模型进行了拟合对比,并对拟合结果进行了检验。得出了在该组海杂波数据中K分布的拟合效果最好。
     2.从K个独立同分布的二级数据的联合概率密度函数推导了固定点协方差矩阵,构造了使用Toeplize矩阵为初始矩阵的T-FP法。在实测非高斯海杂波环境下对该方法进行了检测性能仿真与分析,仿真结果表明与常用的几种杂波协方差矩阵构造相比T-FP法在信杂比较小的情况下可以获得较好的检测效果。
     3.针对弱小目标在高分辨雷达下的跨距离单元和较低SCR不利于检测的问题,提出了一种基于Radon变换的强海杂波下雷达高速弱小目标检测算法。该算法通过对高分辨雷达回波数据进行Radon变换,将时间—距离域数据变换到参数域,此过程中将目标呈现出来的线状特征变换成峰值强度,在参数域对杂波和信号的峰值进行处理,最后在能量与角度域对目标进行检测。由于在变换和处理过程中对杂波进行了抑制处理,对信号进行了长时间的能量累积且不受目标跨距离单元的影响,因此可以在较低的信杂比条件下检测到弱小目标。接着在Radon变换的基础上提出了基于Radon逆变换的海杂波中弱小目标检测算法,经过杂波抑制与目标信号累积后将检测到的弱小目标逆变换回时间-距离域,由于在参数域的处理提高了信杂比,因此变换回时间-距离域后可以得到弱小目标的航迹信息。
     4.针对海杂波环境下弱小目标信杂比较低的问题,提出了一种多重分形谱的均方和测试量来检测海杂波中的弱小目标。分析了真实海杂波数据的多重分形特征,研究了无目标的纯海杂波与混有目标的海杂波之间的差异。通过对实测海杂波数据的重新截取构造了新的不同信杂比(SCR)的海杂波序列,使用新构造的数据对算法进行分析验证,并分析了海杂波的分形特征,包括目标与杂波之间的关系,盒维数与SCR之间的关系,均方和测试量与SCR之间的关系,以及每个测试中分形特征与序列长度变化之间的关系。分析结果显示了该检测算法可以在较低SCR下有效检测出目标。
The sea clutter low RCS weak target detection in the field of military and civilianareas has important applications, lead to a higher probability of false alarm due to thesea clutter like the target characteristic as well as the weak target in low signal-to-noiseratio (SCR),The target can not effectively be detected in the clutter area. Traditional seaclutter in the context of target detection algorithm is developed based on the magnitudeof the sea clutter statistical model detection strategy. However, with the continuousimprovement of modern radar range resolution, in the case of low grazing angle seaclutter returns average RCS reduced, sea clutter echo amplitude model graduallydeviated from the Gaussian statistical model, thus leading to the sharp decline inperformance of the conventional detector. Newly discovered sea clutter model is limitedby many conditions, to adapt to the relatively narrow scope, so seek new Sea Cluttersmall target detection algorithm has become a hot research topic. In this thesis, novel seaclutter low RCS target detection methods are studied. The main contributions of thisthesis are as follows:
     1.First, the formation mechanism of sea clutter is analyzed as well as thecomposition of the sea, to clarify the main components of sea clutter is constituted bythe gravity waves caused by the wind storm and surface tension induced capillary waves.Sea clutter distribution model is analyzed and the the IPIX radar measured data of theamplitude is statistical analysised and fitting, fitting contrast with the commonly usedstatistical distribution model of sea clutter amplitude, and fitting results have been tested.Simulation results demonstrate the best fit K distribution model in this group of seaclutter data.
     2.K independent and identically distributed joint probability density function of thesecondary data derived fixed-point covariance matrix for the initial matrix use Toeplizematrix T-FP method. The method was measured in non-Gaussian clutter to test thedetection performance. Simulation results show that compared with several commonlyused clutter covariance matrix structure, T-FP method in the case of relatively smallsignal-to-clutter can be obtained better detection results.
     3.High-speed small target detection algorithm based on Radon transform in strongsea clutter environment is proposed, the algorithm take Radon transform onhigh-resolution radar echo data into parameter field. In parameter field the targetpresented linear characteristics is converted into a peak intensity, threshold and theclustering process is then carried out for each peak, to detect the target in energy and angle domain, the energy accumulated in the transformation process, the sea clutter issuppressed, target can be detected in low SCR conditions. Then on the basis of theRadon transform, the Radon inversion transform weak target detection algorithm isproposed, the methods can suppress the clutter, the target can be transformed back to thetime-range domain, the weak target track information can be clearly detected.
     4.Multi-fractal characteristics of the real sea clutter data are analyzed. Weresearched the difference between the no-target pure sea clutter with sea clutter mixedtarget in. Proposed a mean square test methods based multi-fractal characteristic oftarget. Construct the new sea clutter data series with different SCR to test the proposedmethod performance. The thesis analyzed the fractal characteristics of the sea clutterand relationship of target and sea clutter, also analyzed the relationship of boxdimension and SCR, relationship of mean square test and SCR. Simulation results showthe algorithm can detect the targets in low RCS.
引文
[1]丁鹭飞,耿富录,雷达原理[M].西安:西安电子科技大学出版社,2002.
    [2]Skolnik M I.,雷达手册[M].北京:电子工业出版社,2003.
    [3]WARD K.D.,BAKER C.J.,WATTS S., Maritime surveillance radar I: Radarscattering from the ocean surface[J], IEE Proc. Radar Signal Process,1990.137(2):51-62.
    [4]FARINA A, GINI F, GRECO M.V, VERRAZZANI L, High resolution sea clutterdata:analysis of recorded live data[J], IEE Proc.Radar Signal Process,1997.144(3):121-130.
    [5]Gregers Hansen Vilhelm,Mital Rashmi, an improved empirical model for radar seaclutter reflectivity[J], IEEE Trans. Aerosp. Electron. Syst.,2012.48(4):3512-3524.
    [6]杨俊岭,海杂波建模及雷达信号模拟系统关键技术研究[D],博士,国防科技大学,2006.
    [7]Greco Maria V,Stinco Pietro,Gini Fulvio, identification and analysis of sea radarclutter spikes[J], IET Radar Sonar Navigation,2010.4(2):239-250.
    [8]Rosenberg L, sea-spike detection in high grazing angle x-band sea-clutter[J], IEEEGeoscience and Remote Sensing,2013. pp(99):1-7.
    [9]谢常清,杨俊岭,雷达海杂波尖峰时频分布特性研究[J],现代雷达,2008.30(5):10-13.
    [10]Jakeman E,Pusey P N, Amodel for non-Raileigh sea echo[J], IEEE Transactions onAntennas Propag,1976.24(6):806-814.
    [11]Fay F A,Clarke J,Peters R S, Weibull Distribution Applied to sea-clutter[C],Proceeding of the International Conference, London, England,1977:101-104.
    [12]Trunk G V,Georg S F, Detection of targets in non-Gaussian sea clutter[J], IEEETransactions onAerospace and Electronic Systems,1970.6(5):620-628.
    [13]WATTS S., Radar sea clutter: recent progress and future challenges[C], Radar2008international conference,2008:10-16.
    [14]Denny W M, K-Distributed sea clutter: small target processing[C], Radar97.,1997:14-16.
    [15]刘杰,何伍福,王国宏,基于统计模型的海杂波建模和检测技术综述[J],海军航空工程学院学报,2006.21(3):347-352.
    [16]E.Conte,A.Dmaio,C.Galdi, Statistical analysis of real clutter at different rangeresolutions[J], IEEE Trans. Aerosp. Electron. Syst.,2004.40(3):903-918.
    [17]L.James,Jr.Mrier, Correlated K distributed clutter generation for radar detection andtrack[J], IEEE Trans. Aerosp. Electron. Syst.,1995.31(2):568-580.
    [18]H.C.Chan, Radar sea-clutter at low grazing angles[J], IEE Proc. Radar Sonar Navig,1990.137(2):102-112.
    [19]T. Nohara,S.Haykin, Canadian east coast radar trials and the K-distribution[J], IEEProc. Radar Sonar Navig,1991.138(2):80-88.
    [20]Mengen.C,Marre F,Dhar T, sea-clutter analysis at multiple wavelengths (L,C,X) fortarget-clutter contrast assessment in littoral waters[C], Geoscience and remoteSensing Symposium,2009:713-716.
    [21]AL-Ashwal W.A, Baker C.J, Balleri A, Griffiths H.D, statistical analysis ofsimultaneous monostatic and bistatic sea clutter at low grazing angles[J],Electronics letters,2011.47(10):621-622.
    [22]Griffiths H.D, AI-ashwal W.A, WARD K.D., Tough R.J A, Baker C. J.,Measurement and modeling of bistatic radar sea clutter[J], IET Radar SonarNavigation,2010.4(2):280-292.
    [23]S. WATTS, modeling and simulation of coherent sea clutter[J], IEEE Trans. Aerosp.Electron. Syst.,2012.48(4):3303-3317.
    [24]M.W.朗(美),陆地和海面的雷达波散射特性[M].北京:科学出版社,1981.
    [25]时艳玲,高距离分辨率海杂波背景下目标检测方法[D],博士,西安电子科技大学,2011.
    [26]M.Sekine,T.Musha, Weibull-distributed sea clutter[J], IEE Proceedings-F,1983.130(5):471.
    [27]Schleher D.C, Radar detection in weibull clutter[J], IEEE Trans. Aerosp. Electron.Syst.,1976.24(11):806-814.
    [28]D.Blacknell, comparison of parameter estimators for k-distribution[J], IEE Proc.Radar,Sonar Navig,1994.141(1):45-52.
    [29]M.D Bisceglie,C.Galdi, Random walk based characterisation of radar backscatterfrom the sea surface [J], IEE Proc. RSN,1998.145(4):216-225.
    [30]C.J.Baker, K-distributed coherent sea clutter[J], IEE Proc.,1991.138(4):82-92.
    [31]J Carretero-Moya,Gismero-Menoyo J, statistical analysis of a high-resolutionsea-clutter database[J], IEEE Geoscience and Remote Sensing2010.48(4)
    [32]J Carretero-Moya,Gismero-Menoyo J, Experimental validation of the compoundgaussian sea clutter model at sub-meter range resolution[C], Radarconference-surveillance for a safer world,2009:1-5.
    [33]Ritchie M.A,Woodbridge Karl,Stove Andrew G, analysis of sea clutter distributionvariation with doppler using the compound k-distribution[C], Radar conference2010IEEE,2010:495-499.
    [34]F.Gini,M.V.Greco, Texture modeling, estimation, and validation using measured seaclutter data[J], IEE Proc.Radar,Sonar Navig,2002.149(3):115-124.
    [35]S. WATTS,M.A,M.Sc, radar detection prediction in sea clutter using the compoundK-distribution model[J], IEE Proceeding1985.132Pt.F(7):613-620.
    [36]S.Haykin,R.Bakker,B.W.Currie, Uncovering nonlinear dynamics-The case study ofsea clutter[J], Proceedings of IEEE,2002.90(5):860-882.
    [37]L.P.Roy,R.V.R Kumar, accurate k-distributed clutter model for scanning radarapplication[J], IET Radar Sonar Navigation,2010.4(2):158-167.
    [38]M.Rangaswamy,D.D.Weiner,A.Ozturk, Non-Gaussian random vector identificationusing spherically invariant random processes[J], IEEE Trans. Aerosp. Electron.Syst.,1993.29(1):111-124.
    [39]M.Rangaswamy,D.D.Weiner,A.Ozturk, Computer generation of correlatednon-Gaussian radar clutter[J], IEEE Trans. Aerosp. Electron. Syst.,1995.31(1):106-115.
    [40]Phillips O M, Radar returns from the sea surface[J], J.Phys.Oceanogr.,1988.18(4):1065-1074.
    [41]Oyedokun,Titus,Inggs Michael raymond, Design and evaluation of a sea cluttersimulator[C], Geoscience and Remote Sensing symposium2011:2089-2092.
    [42]McDonald M,Damini A, Limitations of nonlinear chaotic dynamics in predictingsea clutter returns[J], IEE Proc.Radar Sonar Navig.,2004.151(2):105-113.
    [43]姜卫东,光学区雷达目标结构成像的理论及其在雷达目标识别中的应用[D],博士,国防科技大学,2000.
    [44]石志广,基于统计与复杂性理论的杂波特性分析及信号处理方法研究[D],博士,国防科技大学,2007.
    [45]Hank Leong,Ponsford A, the effect of sea clutter on the performance of HF surfacewave radar in ship detection[C], Radar conference2008IEEE,2008:1-6.
    [46]S.Hykin. The McMaster IPIX radar sea clutter database in1993,[Online].http://soma.crl.mcmaster.ca/ipix/
    [47]S.Haykin. The McMaster IPIX radar sea clutter database in1998,[Online].http://soma.mcmaster.ca/ipix.php
    [48]zhao zhijian, xu ruilai, huang yong, guan jian, new nonparametric detectors underk-distributed sea clutter in radar applications[C], radar2011IEEE CIEInternational Conference,2011:1752-1755.
    [49]Conte E,Lops M,Ricci G, Adaptive detection schemes in compound-Gaussianclutter[J], IEEE Trans. Aerosp. Electron. Syst.,1998.34(3):1058-1069.
    [50]S.Bidon,O.Besson,J.Y.Tourneret, A Bayesian approach to adaptive detection innonhomogeneous environments[J], IEEE Trans. Signal Process.,2008.56(1):205-217.
    [51]E.Conte,A.D.Maio,A.Farina, Design and analysis of a knowledge-Aided radardetector for Doppler processing[J], IEEE Trans. Aerosp. Electron. Syst.,2006.42(3):1058-1079.
    [52]Y.Zhang,S.Qian,T.Thayaparan, Detection of a manoeuvring air target in strong seaclutter via joint time-frequency representation[J], IET Signal Process,2008.2(3):216-222.
    [53]Guan. J,Chen X.L,Y Huang, Adaptive fractional fourier transform-based detectionalgorithm for moving target in heavy sea clutter[J], IET Radar Sonar Navigation2012.6(5):389-401.
    [54]J Carretero-Moya,Antonio De Maio,Gismero-Menoyo J, High resolution seaclutter and maritime target data:Experimental performance of distributed targetcoherent detectors[C], IEEE Radar conference2011:383-388.
    [55]Vakily,Vahid Taba Taba,Vahedi Mohammad, sea clutter modeling improvement andtarget detection by tsallis distribution[C], International conference on digitalobject identifier,2009:715-719.
    [56]Alfonso Farina,Fulvio Gini,Maria V.Greco, optimum and sub-optimum coherentradar detection in compound gaussian clutter:a data-dependent thresholdinterpretation[C], IEEE1996national radar conference,1996:160-165.
    [57]Y L Shi,shui P L, target detection in high-resolution sea clutter via block-adaptiveclutter suppression[J], IET Radar Sonar Navigation,2011.5(1):48-57.
    [58]Jingyao Liu,Huadong Meng, radar sea clutter suppression and target detection withα-β-γ filter[J], ICSP2008.9th International conference2008:2376-2379.
    [59]Peng lang shui,yan ling shi, subband anmf detection of moving targets in sea clutter[J], IEEE Trans. Aerosp. Electron. Syst.,2012.48(4):3578-3593.
    [60]刘立东,相干雷达恒虚警检测算法[D],博士,西安电子科技大学,2005.
    [61]胡文琳,机载雷达恒虚警率检测算法研究[D],博士,国防科学技术大学,2007.
    [62]张维,复杂杂波背景恒虚警检测技术研究[D],博士,南京航空航天大学,2009.
    [63]何友,关键,孟祥伟,雷达自动检测和CFAR处理方法综述[J],系统工程与电子技术,2001.23(1):9-13.
    [64]Farina A,Studer FA, A review of CFAR detection techniques in radar systems[J],Microware Proceeding-F,1986.136(5):193-209.
    [65]Shawn Kraut,Louis L.Scharf, The CFAR Adaptive subspace detector is aScale-Invariant GLRT[J], IEEE Transaction on Signal Processing,1999.47(9):2538-2541.
    [66]Greco M, Fulvio Gini, Younsi A, Rangaswamy M, zoubir A, non-stationary seaclutter: impact on disturbance covariance matrix estimate and detector CFAR [C],Radar2008International conference,2008:558-562.
    [67]Yuanwei Jin, a CFAR adaptive subspace detector for second-order gaussiansignals[J], IEEE Transaction on Signal Processing,2005.53(3):871-884.
    [68]Tri-Tan Van Cao, Design of low-loss CFAR detectors[C], Radar2008international conference,2008:712-717.
    [69]武楠,徐艳国,李宗武,海杂波背景下的双参数单元平均恒虚警检测器[J],现代雷达,2010.132(2):52-56.
    [70]宋惠波,高梅国,田黎育,雷达微弱信号检测算法中的恒虚警处理[J],仪器仪表学报,2006.27(6):1330-1342.
    [71]Finn H.M,Johnson R.S, Adaptive detection mode with threshold control as afunction of spatially sampled clutter-level estimated[J], RCA Review,1968.29(3):414-464.
    [72]Hansen V G, Constant false alarm rare processing in search radars[C], IEEEInternational Radar Conference, London,1973:325-332.
    [73]Trunk G V, Range resolution of targets using automatic detectors[J], IEEE Trans.Aerosp. Electron. Syst.,1978.14(5):750-755.
    [74]Barkat M,Varshney P K, Aweight cell-averaging CFAR detector for multiple targetsituation[C], Proceeding of the21st annual conference on Information Sciencesand Systems, Baltimore, Maryland,1987:118-123.
    [75]Weiss M, Analysis of some modified cell-averaging CFAR processors inmultiple-target situations[J], IEEE Trans. Aerosp. Electron. Syst.,1982.18(1):102-114.
    [76]Rohling H, Radar CFAR thresholding in clutter and multiple target situations[J],IEEE Trans. Aerosp. Electron. Syst.,1983.19(4):608-621.
    [77]何友,Rohling H,有序统计恒虚警(OS-CFAR)检测器在韦布尔干扰背景中的性能[J],电子学报,1995.23(1):79-84.
    [78]Gini F, Suboptimum approach to adaptive coherent radar detection incompound-Gaussian clutter[J], IEEE Trans. Aerosp. Electron. Syst.,1999:1095-1104.
    [79]Conte E,Lops M,Ricci G, Asymptotically optimum radar detection incompound-Gaussian clutter[J], IEEE Trans. Aerosp. Electron. Syst.,1995.31(2):617-625.
    [80]Greco M, Robust CFAR detection of random signals in compound-Gaussian clutterplus thermal noise[J], IEE Proc-F,2001.144(1):227-232.
    [81]J Carretero-Moya,Gismero-menoyo J,Asensio-Lopez A, small-target detection inhigh-resolution heterogeneous sea clutter:an empirical analysis[J], IEEE Trans.Aerosp. Electron. Syst.,2011.47(3):1880-1898.
    [82]Hamurcu A.C,Hizal A, ca-cfar detection in spatially correlated k distributed seaclutter[C], IEEE17th signal processing and communcations applicationsconference,2009:840-843.
    [83]Barboy B,Lomes A,Perkalski E, Cell-averaging CFAR for multiple targetsituations[J], IEE Proc-F,1986.133(2):176-186.
    [84]Finn H.M, ACFAR design for a window spanning two clutter fields[J], IEEE Trans.Aerosp. Electron. Syst.,1986.22(1):563-575.
    [85]王霄,基于时频分析的线性调频信号检测[J],仪器仪表学报,2006.27(6):1245-1258.
    [86]L.科恩(美),时-频分析:理论与应用[M].西安交通大学出版社,1998.
    [87]关键,李宝,刘加能,两种海杂波背景下的微弱匀加速运动目标检测方法[J],电子与信息学报,2009.31(8):1898-1902.
    [88]刘建成,王雪松,刘忠,基于Wigner-Hough变换的LFM信号检测性能分析[J],电子学报,2007.35(6):1212-1217.
    [89]zhang Y,qian S,thayaparan T, detection of a manoeuvring air target in strong seaclutter via joint time-frequency representation[J], IET Signal Processing,2008.2(3):216-222.
    [90]Yuan Yeshu,Ye Lichao, analysis of sea clutter in distributed shipborne OTHradar[C], Radar conference2009IET2009:1-6.
    [91]L Jubisa Stankovic,Thayananthan Thayaparan,Milos Dakovic, Signaldecomposition by using the S-mehtod with application to the analysis of HF radarsignals in sea-clutter[J], IEEE TRANSACTIONS ON SIGNAL PROCESSING,2006.54(11):4332-4342.
    [92]T.Thayaparan,S.Kennedy, Detection of a manoeuvring air target in sea-clutter usingjoint time-frequency analysis techniques[J], IEE Proc. Radar Sonar Navig.,2004.151(1):19-30.
    [93]陈新敏,张明博,基于时频分布的海杂波背景下的小目标物检测[J],制导与引信,2008.29(2):44-54.
    [94]A.Yasotharan,T.Thayaparan, Time-Frequency method for detecting an acceleratingtarget in sea clutter[J], IEEE Trans. Aerosp. Electron. Syst.,2006.42(4):1289-1310.
    [95]F.Jangal,S.Saillant,M.Helier, Wavelet contribution to remote sensing of the sea andtarget detection for a high-frequency surface wave radar[J], IEEE Geoscience andRemote Sensing Letters,2008.5(3):552-556.
    [96]李晓玮,基于小波分解的K分布SAR图像舰船检测[J],测试技术学报,2007.21(4):350-354.
    [97]罗强,罗莉,任庆利,一种基于小波变换的卫星SAR海洋图像舰船目标检测方法[J],兵工学报,2002.23(4):500-503.
    [98]E.J.Kelly, An adaptive detection algorithm[J], IEEE Trans. Aerosp. Electron. Syst.,1986.22(1):115-127.
    [99]F.C.Robey,D.R.Fuhrmann,E.J.Kelly, A CFAR adaptive matched filter detector[J],IEEE Trans. Aerosp. Electron. Syst.,1992.28(1):208-216.
    [100]E.Conte,M.Lops,G.Ricci, Asymptotically optimum radar detection incompound-Gaussian clutter[J], IEEE Trans. Aerosp. Electron. Syst.,1995.31(2)
    [101]F.Gini, Suboptimum coherent radar detection in a mixture of K-distributed andGaussian clutter[J], IEE Proceedings-F,1997.144(1):39-48.
    [102]E.Conte,M.Lops,G.Ricci, Adaptive detection schemes in compound-Gaussianclutter[J], IEEE Trans. Aerosp. Electron. Syst.,1998.34(4):1058-1069.
    [103]F.Gini,GRECO M.V, Suboptimum approach to adaptive coherent radar detectionin compound-Gaussian clutter[J], IEEE Trans. Aerosp. Electron. Syst.,1999.35(3):1095-1104.
    [104]E.Conte,A.D.Maio, Covariance matrix estimation for adaptive CFAR detection incompound-Gaussian clutter[J], IEEE Trans. Aerosp. Electron. Syst.,2002.38(2):415-426.
    [105]Conte E,A.D.Maio, Mitigation techniques for non-Gaussian sea clutter[J], IEEEJournal of Oceanic Eng.,2004.29(2):284-302.
    [106]O.Besson,J.Y.Tourneret,S.Bidon, Knowledge-aided Bayesian detection inheterogeneous environments[J], IEEE Signal Processing Lett.,2007.14(5):355-358.
    [107]A.D.Maio,A.Farina,G.Foglia, Knowledge-Aided Bayesian radar detectors&theirapplication to live data[J], IEEE Trans. Aerosp. Electron. Syst.,2010.46(1):170-183.
    [108]L.M.William,A.S.Gregory, An approach to knowledge-Aided covarianceestimation[J], IEEE Trans. Aerosp. Electron. Syst.,2006.42(3):1021-1042.
    [109]Chakravarthi, radar target detection in chaotic clutter[C], IEEE National RadarConference,1997:367-371.
    [110]刘瑞平,沈福民,混沌时间序列预测与目标检测[J],雷达科学与技术,2005.3(6):327-341.
    [111]黄晓斌,马晓岩,万建伟,对数正态分布海杂波背景下的雷达混沌检测方法[J],航天电子对抗,2004,(6):45-47.
    [112]马晓岩,黄晓斌,张贤达,海杂波中基于混沌预测的目标检测方法改进[J],电子学报,2003.31(6):907-910.
    [113]Li Yujie,wang wenguang,sun jinping, research of small target detection within seaclutter based on chaos[C], ESIAT2009international conference,2009:469-472.
    [114]S.Haykin,X.B.Li, Detection of signals in chaos[J], Proceedings of IEEE,1995.83(1):94-122.
    [115]Li jingsheng,Wanguang,Mao shiyi, chaos-based detection from sea clutter[C],radar conference2009IET international,2009:20-22.
    [116]修春波,刘向东,张宇河,一种新的混沌神经网络及其应用[J],电子学报,2005.33(5):868-870.
    [117]Guan jian, Liu N B, Huang Y, He Y, fractal characteristic in frequency domain fortarget detection within sea clutter[J], IET Radar Sonar Navigation,2011.6(5):293-306.
    [118]王永诚,吴小飞,海杂波的分数维测量在对海面目标探测中的应用研究[J],现代雷达,2000.22(5):28-32.
    [119]杜干,张守宏,基于分维特征的舰船目标的检测[J],西安电子科技大学学报,1999.29(4):498-501.
    [120]APotapove,M K Ali, Robust chaos in neural networks[J], Physics Letters A,2000.277(6):310-322.
    [121]江涛,何明浩,翟卫俊,小波神经网络在雷达信号分选中的应用[J],雷达科学与技术,2004.2(6):341-344.
    [122]Pournejatian N.M,Nayebi M.M, fractal-multiresolution based detection of targetswithin sea clutter[J], Electron Letters,2011.48(6):345-347.
    [123]Mandelbrot B.B, Fractal:Form,Chance and Dimension[M]. San FrancisicoFreeman,1977.
    [124]Yin Deqian,Guo Haiyan, Weak target detection based on fractional spectralsubtraction in sea clutter [C], Electric Information and control Engineering2011:6355-6358.
    [125]Ji Ren,Wen sheng, analysis of multifractality for sea clutter[C],2011IEEE CIEInternational conference,2011:1276-1279.
    [126]xiao ke Xu, Low observable target detection by joint fractal properties of seaclutter: an experimental study of IPIX OHGR datasets[J], IEEE TransactionsAntennas and Propagation,2010.58(4):1425-1429.
    [127]Jing Hu,Wen-wen Tung, a new way to model nonstationary sea clutter[J], IEEESignal Processing Lett.,2009.16(2):129-132.
    [128]Jing Hu,Wen-wen Tung,Jianbo Gao, Detection of low observable targets withinsea clutter by structure function based multifractal analysis[J], IEEE TransactionsAntennas and Propagation,2006.54(1):136-143.
    [129]刘宁波,关键,张键,基于分形可变步长LMS算法的海杂波中微弱目标检测[J],电子与信息学报,2010.32(2):371-376.
    [130]陈小龙,关键,刘宁波,何友,海杂波FRFT域分形特征在动目标检测中的应用[J],海军航空工程学院学报,2010.25(611-616)
    [131]Lo T,Leung H,Litva J, Fractal characterisation of sea-scattered signals anddetection of sea-surface targets[J], IEE Proc-F,1993.140(4):243-249.
    [132]C.V.Stewart,B.Moghaddam, Fractional brownian motion models for syntheticradar imagery scene segmentation[J], Proceedings of IEEE,1993.81(10):1511-1522.
    [133]刘中,刘国岁,动目标多普勒信号的分维数特征[J],信号处理,1995.11(1):62-64.
    [134]John C Kirk, Using the fractal dimension to discrimination between targets andclutter[C], IEEE national radar conference,1993:76-78.
    [135]Pournejatian N.M,Nayebi M.M, fractal-mutiresolution based detection of targetswithin sea clutter[J], electronics letters,2012.48(6):345-347.
    [136]Liu N.B,Guan J, fuzzy fractal algorithm for low observable target detection withinsea clutter[C], radar conference2009IET international,2009:1-4.
    [137]杜干,目标检测的分形方法及应用[D],博士,西安电子科技大学,2000.
    [1]WARD K.D.,TOUGH R.J.A,WATTS S, sea clutter scattering: the K-distribution andradar performance[J], IET Radar Sonar Navigation Ser,2006.20:45-49.
    [2]M.W.Long, Radar Reflectivity of Land and Sea[M]. Artech House,Norwood,1983.
    [3]时艳玲,高距离分辨率海杂波背景下目标检测方法[D],博士,西安电子科技大学,2011.
    [4]W.J.Plant,W.C.Keller, Evidence of Bragg scattering in microwave Doppler spectra ofsea return[J], J.Geophys.Res,1990.95(C9):16299-16310.
    [5]D.Walker, Doppler modelling of radar sea clutter[J], IEE Proc. Radar, Sonar Navig.,2001.148(2):73-80.
    [6]H.Goldstein, Sea echo in propagation of short radio waves[J], MIT RadiationLaboratory Series,1951. McGraw-Hill,New York
    [7]G.R.Valenzuela, Theories for the interaction of electromagnetic waves and oecanicwaves--a review[J], Boundary Layer Meteorol,1978.13:61-65.
    [8]C.L.Rino,H.D.Ngo, Numerical simulation of low-grazing-angle ocean microwavebackscatter and its relation to sea spikes[J], IEEE Trans. Antennas Propag.,1998.46(1):133-141.
    [9]P.H.Y.Lee,J.D.Barter,B.M.Lake, Lineshape analysis of breaking-wave Dopplerspectra[J], IEE Proc.-Radar,Sonar Navig,1998.145(2):135-139.
    [10]F.A.Fay,J.Clarke,R.S.Peters, Weibull distribution applied to sea-clutter[C],Proceedings of the IEE Conference of Radar London,1977:101-103.
    [11]H.C.Chan, Radar sea-clutter at low grazing angles[J], IEE Proc. Radar Sonar Navig,1990.137(2):102-112.
    [12]WARD K.D.,BAKER C.J.,WATTS S., Maritime surveillance radar I: Radarscattering from the ocean surface[J], IEE Proc. Radar Signal Process,1990.137(2):51-62.
    [13]T.Nohara,S.Haykin, Canadian east coast radar trials and the k-distribution[J], IEEProc.,1991. F138:80-88.
    [14]吕晓蕊, Alpha稳定分布的模型仿真及参数估计[D],硕士,华中科技大学,2008.
    [15]H.Lew,D.M.Drumheller, Estimation of non-Rayleigh clutter and fluctuating-targetmodels[J], IEE Proc.,Radar,Sonar Navig.,2002.149(5):231-241.
    [16]Trunk G V,Georg S F, Detection of targets in non-Gaussian sea clutter[J], IEEETransactions onAerospace and Electronic Systems,1970.6(5):620-628.
    [17]K.D.WARD, Compound representation of high resolution sea clutter[J], ElectronLetters,1981.17(16):561-563.
    [18]J.W.Wright, A new model for sea clutter[J], IEEE Trans. Antennas Propag.,1968.AP-16(2):217-223.
    [19]F.Gini,M.V.Greco, Texture modeling, estimation, and validation using measured seaclutter data[J], IEE Proc.Radar,Sonar Navig,2002.149(3):115-124.
    [20]C.J.Baker, K-distributed coherent sea clutter[J], IEE Proc.,1991.138(4):82-92.
    [21]TOUGH R.J.A,K.D.WARD, The correlation properties of gamma and othernon-gaussian processes generated by memoryless nonlinear transformation[J],J.Phys.D Appl.Phys,1999.32:3075-3048.
    [1]D.R.Fuhrmann, Application of Toeplitz covariance estimation to adaptivebeamforming and detection[J], IEEE Trans.Signal Processing,1991.39(10):2194-2198.
    [2]E.J.Kelly, An adaptive detection algorithm[J], IEEE Trans. Aerosp. Electron. Syst.,1986.22(1):115-127.
    [3]I.S.Reed,J.D.Mallet,L.E.Brennan, Rapid convergence rate in adaptive arrays[J],IEEE Trans. Aerospace Electron System,1974.10(11):853-863.
    [4]WATTS S., Radar sea clutter: recent progress and future challenges[C], Radar2008international conference,2008:10-16.
    [5]F.C.Robey,D.R.Fuhrmann,E.J.Kelly, A CFAR adaptive matched filter detector[J],IEEE Trans. Aerosp. Electron. Syst.,1992.28(1):208-216.
    [6]秦国栋,陈伯孝,陈多芳,大入射角下海杂波仿真及其时空相关性分析[J],西安电子科技大学学报,2008.35(4):600-604.
    [7]E.Conte,A.D.Maio, Covariance matrix estimation for adaptive CFAR detection incompound-Gaussian clutter[J], IEEE Trans. Aerosp. Electron. Syst.,2002.38(2):415-426.
    [8]Oyedokun,Titus,Inggs Michael raymond, Design and evaluation of a sea cluttersimulator[C], Geoscience and Remote Sensing symposium2011:2089-2092.
    [9]J Carretero-Moya,Gismero-Menoyo J, Experimental validation of the compoundgaussian sea clutter model at sub-meter range resolution[C], Radarconference-surveillance for a safer world,2009:1-5.
    [10]Conte E,A.D.Maio, Mitigation techniques for non-Gaussian sea clutter[J], IEEEJournal of Oceanic Eng.,2004.29(2):284-302.
    [11]J Carretero-Moya,Gismero-menoyo J,Asensio-Lopez A, small-target detection inhigh-resolution heterogeneous sea clutter:an empirical analysis[J], IEEE Trans.Aerosp. Electron. Syst.,2011.47(3):1880-1898.
    [12]Rangaswamy M.,Weiner D.D,Ozturk, a non-Gaussian vector identification usingspherically invariant random processes[J], IEEE Trans. Aerosp. Electron. Syst.,1993.29(1):111-124.
    [13]K.D.WARD, Compound representation of high resolution sea clutter[J], ElectronLetters,1981.17(16):561-563.
    [14]C.J.Baker, K-distributed coherent sea clutter[J], IEE Proc.,1991.138(4):82-92.
    [15]WARD K.D.,TOUGH R.J.A,WATTS S, sea clutter scattering: the K-distributionand radar performance[J], IET Radar Sonar Navigation Ser,2006.20:45-49.
    [16]E.Conte,M.Lops,G.Ricci, Asymptotically optimum radar detection incompound-Gaussian clutter[J], IEEE Trans. Aerosp. Electron. Syst.,1995.31(2)
    [17] E.Conte,M.Lops,G.Ricci, Adaptive detection schemes in compound-Gaussianclutter[J], IEEE Trans. Aerosp. Electron. Syst.,1998.34(4):1058-1069.
    [18]F.Gini,M.Greco, Covariance matrix estimation for CFAR detection in heavyclutter[J], Signal Processing2002.82:1495-1507.
    [19]F.Pascal,Y.Chitour, covariance structures maximum-likelihood estimates incompound Gaussian noise: existence and algorithm analysis[J], IEEE Transactionon Signal Processing,2008.56(1):34-48.
    [1]WARD K.D.,BAKER C.J.,WATTS S., Maritime surveillance radar I: Radarscattering from the ocean surface[J], IEE Proc. Radar Signal Process,1990.137(2):51-62.
    [2]FARINA A, GINI F, GRECO M.V, VERRAZZANI L, High resolution sea clutterdata:analysis of recorded live data[J], IEE Proc.Radar Signal Process,1997.144(3):121-130.
    [3]WARD K.D.,BAKER C.J.,WATTS S., Maritime surveillance radar II:Detectionperformance prediction in sea clutter[J], IEE Proc. Radar Signal Process,1990.137(2):63-72.
    [4]WARD K.D.,TOUGH R.J.A,WATTS S, sea clutter scattering: the K-distribution andradar performance[J], IET Radar Sonar Navigation Ser,2006.20:45-49.
    [5]Conte E,A.D.Maio, Mitigation techniques for non-Gaussian sea clutter[J], IEEEJournal of Oceanic Eng.,2004.29(2):284-302.
    [6] WOODS R.E,Gonzalfz R.C, Digital image processing[M]. Prentice Hall,2002.
    [7]Rey M.T,Tunaley J.K,folinsbee J.T, application of radon transform techniques towake detection in seasat-asar images[J], IEEE Trans. Geosci Remote Sens,1990.28(4):553-560.
    [8]Anthony C.Copeland,Gopalan Ravichandran,Mohan M, Localized RadonTransform-Based Detection of Ship Wakes in SAR images[J], IEEE Transactions onGeoscience and Remote Sensing,1995.33(1):35-45.
    [9]http://en.wikipedia.org/wiki/Radon_transform
    [1]H.C.Chan, Radar sea-clutter at low grazing angles[J], IEE Proc. Radar Sonar Navig,1990.137(2):102-112.
    [2]S.Haykin,R.Bakker,B.W.Currie, Uncovering nonlinear dynamics-The case study ofsea clutter[J], Proceedings of IEEE,2002.90(5):860-882.
    [3]S C. Guedes,Z.Cherneva,E. M. Antao, Steepness and asymmetry of the largest wavesin storm sea states[J], Ocean Engineering,2004.31:1147-1167.
    [4]Conte E,A.D.Maio, Mitigation techniques for non-Gaussian sea clutter[J], IEEEJournal of Oceanic Eng.,2004.29(2):284-302.
    [5]J.Chen, K.Y.Lo, H.Leung, J.Litva, The use of fractals for modeling EM wavesscattering from rough sea surface[J], IEEE Trans.Geosci.Remote Sens,1996.34(4):966-972.
    [6]Pournejatian N.M,Nayebi M.M, fractal-mutiresolution based detection of targetswithin sea clutter[J], electronics letters,2012.48(6):345-347.
    [7]Guan. J,Chen X.L,Y Huang, Adaptive fractional fourier transform-based detectionalgorithm for moving target in heavy sea clutter[J], IET Radar Sonar Navigation2012.6(5):389-401.
    [8]张延东,海面电磁与光散射特性研究[D],博士,西安电子科技大学,2004.
    [9]Mandelbrot B B, The Fractal Geometry of Nature[M]. New York: WH Freeman,1982.
    [10]Lo T,Leung H,Litva J, Fractal characterisation of sea-scattered signals and detectionof sea-surface targets[J], IEE Proc-F,1993.140(4):243-249.
    [11]S.Haykin,S.Puthusserypady, Chaotic dynamics of sea clutter[J], Chaos,1997.7(4):777-802.
    [12]F.Berizzi,E.Dalle-Mese, Fractal analysis of the signal scattered from the seasurface[J], Antennas and Propagation,1999.47(2):324-338.
    [13]K.Falconer,"Fractal Geometry: Mathematical Foundations and Applications," ed.Chichester: John Wiley&Sons,1990.
    [14]G.Du, Detection of sea-surface radar targets based on factal model[J], ElectronLetters,2004.40(14):906-907.
    [15]石志广,周剑雄,付强,基于多重分形模型的海杂波特性分析与仿真[J],系统仿真学报,2006.18:2289-2292.
    [16]J.Hu,W.W.Tung,J.B.Gao, Detection of low observable targets within sea clutter bystructure function based multifractal analysis[J], IEEE Trans. Antennas Propag.,2006.54(1):136-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700