用户名: 密码: 验证码:
扩展目标的雷达检测技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达目标检测是雷达信号处理研究领域的经典问题。传统的研究通常针对低分辨率雷达,将目标视为点目标。当目标尺寸大于雷达空间分辨率,即目标表现为扩展目标时,基于点目标假设的检测技术难以充分利用目标回波特性,获得最优检测性能。近年来,宽带雷达的广泛应用以及雷达应用领域的拓展对扩展目标检测器设计和检测器的稳健性、适应性提出了新的要求。论文面向扩展目标雷达探测的需求,以提高检测器的稳健性和适应性为目标,针对典型的应用场景,开展扩展目标的雷达检测新技术、新应用研究。
     在扩展目标雷达检测新技术方面,论文首先分析了扩展目标回波特性,建立了扩展目标回波模型;在此基础上,针对噪声、杂波背景中的扩展目标检测问题,研究了扩展目标的参量、非参量检测新技术。具体工作包括:
     ·扩展目标回波特性及建模:建立了基于几何绕射理论的扩展目标散射中心回波模型;推导了典型扩展目标回波的幅度、极化分布;分别针对高速、低速扩展目标建立了频域、时域回波模型。
     ·扩展目标的参量检测技术:设计并分析了五种不同目标先验信息(目标回波幅度、极化、相位以及目标散射中心分布等)条件下扩展目标的单脉冲参量检测器;提出了一种高效、稳健、实用的准最优多通道单脉冲极值检测器及其检测性能的高精度近似分析方法;针对低速扩展目标,设计并分析了具有时-频-空域和极化域联合处理结构的多脉冲参量检测器,基于此检测器提出并分析了均匀、非均匀目标多普勒谱条件下扩展目标的多脉冲极值检测器;针对高速扩展目标在雷达多脉冲观测期间容易发生跨距离单元走动的问题,提出并分析了基于keystone变换的多脉冲参量检测方法,显著改善了高速扩展目标的检测性能。
     ·扩展目标的非参量检测技术:针对未知杂波环境下的点目标检测应用,提出了Blind-CFAR(恒虚警率)非参量检测器,分别设计并分析了基于Padé逼近方法、最大熵方法的两种Blind-CFAR检测方案;在此基础上,分别基于非相参积累、极值积累和二进制积累等脉冲积累方法,提出并分析了三种扩展目标Blind-CFAR检测器。上述Blind-CFAR检测器克服了现有CFAR检测器过度依赖于参量估计精度的缺点,可适用于多种类型杂波背景下的目标检测。
     在扩展目标检测器设计、分析的基础上,论文面向航空安全、反隐身等应用领域,研究了扩展目标检测技术在飞机尾流雷达探测中的新应用,分析了典型大气条件下飞机尾流的雷达可探测性。具体工作包括:
     ·分析了晴空、降水条件下飞机尾流的电磁散射机理和雷达目标特性;分别基于飞机尾流雷达探测实验、理论分析,获得了晴空、降水条件下飞机尾流的RCS(雷达散射截面)和多普勒谱;建立了飞机尾流的雷达回波模型和检测模型,导出并分析了飞机尾流的局部最大势(LMP)检测器以及均匀、非均匀飞机尾流多普勒谱条件下的广义似然比检验(GLRT)检测器,为飞机尾流雷达探测提供了理论基础。
     ·导出了晴空、降水条件下飞机尾流探测的雷达方程;分析了典型雷达系统的飞机尾流探测距离,并将其与隐身飞机探测距离进行了比较研究。研究结果表明,在降水条件下,飞机尾流探测距离可望大于隐身飞机探测距离。
     论文在目标检测方面的研究成果对宽带雷达和分布式雷达目标检测具有重要的理论意义,在飞机尾流检测方面的研究成果在航空安全、反隐身等应用领域具有很大的应用潜力。
Radar target detection is a classic problem in the research area of radar signal pro-cessing. Traditional research is usually for low-resolution radars and treats the target asa point target. When the target’s dimensions are greater than the radar’s spatial resolu-tions, i.e., when the target is an extended target, the detection techniques based on theassumption of point targets are difficult to make full use of the characteristics of the tar-get’s echoes, and to obtain optimal detection performance. In recent years, the extensiveapplication of broadband radars and the expansion of radar application have brought upnew requirements for the design, robustness, and adaptability of extended target detectors.This dissertation, facing the requirements of the radar detection of extended targets andaimingtoimprovetherobustnessandadaptabilityofdetectors,studiesnewtechniquesandnewapplicationoftheradardetectionofextendedtargetsfortypicalapplicationscenarios.
     In the aspect of new techniques of the radar detection of extended targets, the char-acteristics of extended targets’echoes are analyzed, and some echo models of extendedtargets are established first. On this basis, for the problems of the detection of extendedtargets in noise, clutter backgrounds, new techniques of the parametric, nonparametricdetection of extended targets are studied. The work includes:
     ·Characteristics and modeling of extended targets’echoes: An echo model based onthe geometrical theory of diffraction is established for the scattering centers of ex-tended targets. The distributions of the amplitudes and polarization of the echoes oftypical extended targets are deduced. A frequency-domain echo model and a time-domain echo model are established for high-speed and low-speed extended targets,respectively.
     ·Parametric detection techniques of extended targets: Five single-pulse parametricdetectors are designed and analyzed for extended targets with different a priori infor-mation (amplitudes, polarization, and phases of the target’s echoes, and distributionsof the target’s scattering centers, etc.). A quasi-optimal multi-channel single-pulseextreme detector, which is efficient, robust, and practical, is proposed, and a high-precision approximate analysis method is proposed for its detection performanceanalysis. For low-speed extended targets, a multi-pulse parametric detector witha time-frequency-spatial and polarization domain joint processing structure is de-signed and analyzed. Based on this detector, some multi-pulse extreme detectors are proposed and analyzed for extended targets with homogeneous, non-homogeneousDoppler spectra. For the problem that a high-speed extended target is prone to crossone or more range cells during the period of the radar’s multi-pulse observation, amulti-pulse parametric detection method based on the keystone transform is pro-posed and analyzed, which can significantly improve the detection performance ofhigh-speed extended targets.
     ·Nonparametric detection techniques of extended targets: For the detection of pointtargetsinunknownclutterenvironment,anonparametricdetectornamedBlind-CFAR(constantfalsealarmrate)detectorisproposed,andtwoBlind-CFARdetectionschemes,whicharebasedonthePadéapproximationmethodandthemaximumentropymethodrespectively, are designed and analyzed. On this basis, based on the pulse integra-tion methods of non-coherent integration, extreme integration and binary integra-tion, three Blind-CFAR detectors for extended targets are proposed and analyzed.
     The Blind-CFAR detectors have overcome the shortcoming of the existing CFARdetectors that they are over-relied on the accuracy of parameter estimation, and areapplicable to target detection in many types of clutter environment.Based on the design and analysis of the extended target detectors, new applicationof the extended target detection techniques in the radar detection of aircraft wake vorticesis studied, and the radar detectability of aircraft wake vortices under typical atmosphericconditions is analyzed for aviation safety, anti-stealth and other applications. The workincludes:
     ·The electromagnetic scattering mechanism and radar target characteristics of aircraftwake vortices in clear and precipitation air are analyzed. The RCSs (radar cross sec-tions) and Doppler spectra of aircraft wake vortices in clear and precipitation air areobtained based on the radar detection experiments of aircraft wake vortices and the-oretical analysis respectively. An echo model and a detection model are establishedfor the radar detection of aircraft wake vortices. A locally most powerful (LMP)detector of aircraft wake vortices and two generalized likelihood ratio test (GLRT)detectors of aircraft wake vortices with homogeneous, non-homogeneous Dopplerspectra are deduced and analyzed, which provides a theoretical basis for the radardetection of aircraft wake vortices.
     ·Radar equations for the detection of aircraft wake vortices in clear and precipitation air are deduced. The detection range of aircraft wake vortices with typical radarsystemsisanalyzed,andiscomparedwiththeradardetectionrangeofstealthaircraft.The results show that, under precipitation conditions, the detection range of aircraftwake vortices is expected to be greater than that of stealth aircraft.
     The results of this dissertation on target detection are of important theoretical signifi-cance for broadband and distributed radar target detection, and the results on the detectionof aircraft wake vortices are of great potential in aviation safety, anti-stealth and otherapplications.
引文
[1] Skolnik M I.雷达系统导论[M].左群声,徐国良,马林,等,译.北京:电子工业出版社,2006.
    [2]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [3]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2005.
    [4] Farina A, Studer F A. Detection with high resolution radar: great promise, bigchallenge [J]. Microwave Journal. 1991, 34 (1): 263–273.
    [5] Farina A, Studer F A. Detection with high resolution radar: advanced topics andpotential applications [J]. Chinese Journal of Systems Engineering and Electronics.1992, 3 (1): 21–34.
    [6]李健兵.飞机尾流电磁散射特性研究[D].长沙:国防科学技术大学,2010.
    [7] Liu C. Wake Vortex Encounter Analysis with Different Wake Vortex Models UsingVortex-Lattice Method [D]. Netherlands: Delft University of Technology, 2007.
    [8] Veillette P R. Data show that U.S. wake-turbulence accidents are most frequentat low altitude and during approach and landing [J]. Flight Safety Digest. 2002,21 (3/4): 1–2.
    [9] Luckner R, Hohne G, Fuhrmann M. Hazard criteria for wake vortex encountersduring approach [J]. Aerospace Science and Technology. 2004, 8 (8): 673–687.
    [10] Harris M, Young R I, Kopp F, et al. Wake vortex detection and monitoring [J].Aerospace Science and Technology. 2002, 6: 325–331.
    [11] Fine N E, Kring D C. Opto-acoustic tracking of aircraft wake vortices [C]. In 11thAIAA/CEAS Aeroacoustics Conference. Monterey, California, 2005: 1–26.
    [12] Mackey S M, Burnham D C. Use of a commercial wind SODAR for measuringwake vortices [C]. In 12th AIAA/ CEAS Aeroacoustics Conference. Cambridge,Massachusetts, 2006: 1–11.
    [13] BarbarescoF.WakevortexX-bandradarmonitoring: Paris-CDGairport2008cam-paign results & perspectives [C]. In WakeNet3-Europe 1st Workshop on Wake Tur-bulence Safety in Future Aircraft Operations. Thales University in Jouy-en-Josas,France, 2009.
    [14] Gerz T, Holz?pfel F, Bryant W, et al. Research towards a wake-vortex advisorysystem for optimal aircraft spacing [J]. Comptes Rendus Physique. 2005, 6 (4/5):501–523.
    [15] Space-based lidar for detection-stealth aircraft. http://csat.au.af.mil/2025/concepts/800036.HTM.
    [16] Barbaresco F, Meier U. Radar monitoring of a wake vortex: Electromagnetic re-flectionofwaketurbulenceinclearair[J].ComptesRendusPhysique.2010, 11(1):54–67.
    [17] Barton D K, Leonov S A. Radar Technology Encyclopedia [M]. Norwood, MA:Artech House, 1998.
    [18] Van Trees H L. Detection, Estimation, and Modulation Theory, vol. ?, Radar/SonarSignalProcessingandGaussianSignalsinNoise[M].NewYork: JohnWiley,1971.
    [19] van der Spek G A. Detection of a distributed target [J]. IEEE Transactions onAerospace and Electronic Systems. 1971, 7 (5): 922–931.
    [20] Hughes P K. A high resolution radar detection strategy [J]. IEEE Transactions onAerospace and Electronic Systems. 1983, 19: 663–667.
    [21] Farina A, Russo A. Radar detection of correlated targets in clutter [J]. IEEE Trans-actions on Aerospace and Electronic Systems. 1986, 22: 513–532.
    [22] Gerlach K, Steiner M. Detection of a spatially distributed target in white noise [J].IEEE Signal Processing Letters. 1997, 4 (7): 198–200.
    [23] Gerlach K. Spatially distributed target detection in non-Gaussian clutter [J]. IEEETransactions on Aerospace and Electronic Systems. 1999, 35 (3): 926–934.
    [24] Gerlach K, Steiner M J. Adaptive detection of range distributed targets [J]. IEEETransactions on Signal Processing. 1999, 47: 1844–1851.
    [25] Gerlach K, Steiner M J. Fast converging adaptive detection of Doppler-shiftedrange-distributed targets [J]. IEEE Transactions on Signal Processing. 2000, 48:2686–2690.
    [26] Conte E, Lops M. Clutter-map CFAR detection for range-spread targets in non-Gaussian clutter. Part I: System design [J]. IEEE Transactions on Aerospace andElectronic Systems. 1997, 33 (2): 432–443.
    [27] Conte E, de Maio A, Ricci G. CFAR detection of distributed targets in heteroge-neous disturbance [J]. IEEE Transactions on Aerospace and Electronic Systems.2002, 38 (2): 612–620.
    [28] Conte E, de Maio A. Distributed target detection in compound-Gaussian noise withRao and Wald tests [J]. IEEE Transactions on Aerospace and Electronic Systems.2003, 39 (2): 568–582.
    [29] Alfano G, de Maio A, Farina A. Model-based adaptive detection of range-spreadtargets [J]. IEE Proc.-Radar, Sonar Navig. 2004, 151 (1): 2–10.
    [30] AlfanoG,deMaioA,ConteE.Polarizationdiversitydetectionofdistributedtargetsin compound-Gaussian clutter [J]. IEEE Transactions on Aerospace and ElectronicSystems. 2004, 40 (2): 755–765.
    [31] Bandiera F, de Maio A, Greco A S, et al. Adaptive radar detection of distributedtargets in homogeneous and partially homogeneous noise plus subspace interfer-ence [J]. IEEE Transactions on Signal Processing. 2007, 55 (4): 1223–1237.
    [32] de Maio A. Polarimetric adaptive detection of range-distributed targets [J]. IEEETransactions on Signal Processing. 2002, 50 (9): 2152–2159.
    [33] Park H R, Wang H. Adaptive polarisation-space-time domain radar target detectionin inhomogeneous clutter environments [J]. IEE Proc.-Radar, Sonar Navig. 2006,153 (1): 35–43.
    [34]王雪松,李永祯,徐振海,等.高分辨雷达信号极化检测研究[J].电子学报.2000,28 (12):15–18.
    [35]王雪松,徐振海,李永祯,等.高分辨雷达目标极化检测仿真实验与结果分析[J].电子学报.2000,28 (12):60–63.
    [36]李永祯,王雪松,徐振海,等.基于强散射点径向积累的高分辨极化目标检测研究[J].电子学报.2001,29 (3):307–310.
    [37]李永祯,王雪松,肖顺平,等.基于非线性积累的高分辨极化目标检测[J].红外与毫米波学报.2000,19 (4):307–312.
    [38]李永祯,王雪松,李军,等.基于Stokes矢量的高分辨极化目标检测[J].现代雷达.2001,23 (1):52–57, 60.
    [39]徐振海,王雪松,周颖,等.基于PWF融合的高分辨极化雷达目标检测算法[J].电子学报.2001,29 (12):1620–1622.
    [40]曾勇虎,王雪松,肖顺平,等.高分辨极化雷达检测中极化滤波器的选择[J].系统工程与电子技术.2005,27 (2):201–204, 287.
    [41]黄巍.相关检测在宽带雷达信号处理中的应用[J].现代雷达.2005,27 (2):36–39.
    [42]黄巍,贺知明,石云江,等.滑窗检测在宽带雷达信号处理中的应用研究[J].信号处理.2003,19 (5):494–497.
    [43]何松华,李娟,陈威兵,等.基于限带参数模型的距离扩展目标检测[J].湖南大学学报(自然科学版).2010,37 (3):69–72.
    [44]黄德双,韩月秋.基于位置相关的高分辨雷达目标检测方法[J].电子科学学刊.1997,19 (5):584–590.
    [45]黄德双.高分辨雷达智能信号处理技术[M].北京:机械工业出版社,2001.
    [46]陆林根.高距离分辨(HRR)雷达单个目标回波信号检测[J].系统工程与电子技术.1999,21 (9):22–25.
    [47]孙文峰,何松华,郭桂蓉,等.自适应距离单元积累检测法及其应用[J].电子学报.1999,27 (2):111–112, 123.
    [48]黎海涛,徐继麟.高分辨率雷达目标检测研究[J].仪器仪表学报.2001,22 (4):397–399.
    [49]黄巍,贺知明,向敬成.宽带雷达能量积累与信号检测方法研究[J].系统工程与电子技术.2004,26 (7):889–892.
    [50]杨建宇,李俊生.高分辨率雷达目标的随机参量脉冲串检测方法[J].电子学报.2004,32 (6):1044–1046.
    [51]陈希信,刘刚.宽带雷达信号检测技术研究[J].现代雷达.2005,27 (8):28–31.
    [52]闫冯军,夏传浩,洪一.高分辨雷达信号检测方法[J].合肥工业大学学报(自然科学版).2006,29 (5):521–524, 528.
    [53]王彩云,许小剑,毛士艺.高分辨率雷达中带宽对信号检测影响的研究[J].宇航学报.2006,27 (5):915–919.
    [54]刘劲,戴奉周,刘宏伟.宽带雷达探测性能分析[J].雷达科学与技术.2008,6 (2):92–95, 107.
    [55]戴奉周,刘宏伟,吴顺君.宽带和窄带雷达在噪声中的检测性能比较[J].电子与信息学报.2010,32 (8):1837–1842.
    [56]张顺生,曾涛.基于keystone变换的微弱目标检测[J].电子学报.2005,33 (9):1675–1678.
    [57] Zhang S, Zeng T, Long T, et al. Dim target detection based on keystone trans-form [C]. In IEEE International Radar Conference. 2005: 889–894.
    [58]苏军海,邢孟道,保铮.宽带机动目标检测[J].电子与信息学报.2009,31 (6):1283–1287.
    [59]苏军海.宽窄带雷达目标检测与成像技术研究[D].西安:西安电子科技大学,2009.
    [60]吴兆平,何学辉,苏涛.带有距离走动和多普勒扩散的高速运动目标检测[J].哈尔滨工程大学学报.2010,31 (4):476–480.
    [61]孟祥伟,曲东才,何友.高斯背景下距离扩展目标的恒虚警率检测[J].系统工程与电子技术.2005,27 (6):1012–1015.
    [62]顾新锋,简涛,何友,等.一种基于波形的距离扩展目标检测方法[J].海军航空工程学院学报.2008,23 (6):659–661, 668.
    [63]顾新锋,简涛,苏峰,等.一种基于强散射中心的距离扩展目标检测方法[J].数据采集与处理.2009,24 (5):576–580.
    [64]顾新锋,简涛,何友,等.一种基于散射中心密度的距离扩展目标检测方法[J].信号处理.2009,25 (12):1941–1945.
    [65]戴奉周,刘宏伟,吴顺君.一种基于顺序统计量的距离扩展目标检测器[J].电子与信息学报.2009,31 (10):2488–2492.
    [66]胡文明,关键,何友.基于二维积累的雷达分布式目标检测新方法[J].系统工程与电子技术.2006,28 (9):1335–1337.
    [67]胡文明,关键,何友.基于视频积累的距离扩展目标检测[J].火控雷达技术.2006,35 (4):16–18, 22.
    [68]刘劲,郭启俊,刘宏伟.基于次优匹配处理的分布式目标检测[J].现代雷达.2008,30 (2):65–67.
    [69]夏宇垠,冯大政,李涛.一种距离扩展目标的检测方法[J].哈尔滨工业大学学报.2010,42 (7):1149–1152.
    [70]何友,简涛,苏峰,等.非高斯杂波下两种自适应距离扩展目标检测器及性能分析[J].中国科学:信息科学.2010,40 (9):1270–1280.
    [71]简涛,何友,苏峰,等.非高斯杂波下修正的SDD-GLRT距离扩展目标检测器[J].电子学报.2009,37 (12):2662–2667.
    [72] Guan J, Zhang Y, Huang Y. Adaptive subspace detection of range-distributed targetin compound-Gaussian clutter [J]. Digital Signal Processing. 2009, 19 (1): 66–78.
    [73]唐劲松,朱兆达,金慧琴,等.非高斯背景下高分辨雷达CFAR检测器[J].信号处理.1999,15 (增刊):7–11.
    [74]陈远征,陈建军,付强.复合高斯杂波下基于GLRT的扩展目标检测[J].电子与信息学报.2010,32 (6):1327–1331.
    [75]陈远征,范红旗,付强.复合高斯杂波下距离扩展目标的OM-GLRT [J].信号处理.2008,24 (5):718–721.
    [76]孙文峰,何松华,郭桂蓉,等.强杂波背景中高距离分辨率雷达运动目标的积累检测[J].电子学报.1998,26 (12):12–15.
    [77]蔡春,杨军,秦江敏.Weibull杂波背景下扩展目标的恒虚警率检测[J].空军雷达学院学报.2006,20 (2):111–113.
    [78]杨军,秦江敏,蔡春,等.三种Weibull背景下的延展目标的CFAR检测器[J].雷达科学与技术.2009,7 (5):373–379.
    [79]郝程鹏,蔡龙,陈模江.高斯杂波中距离扩展目标的模糊CFAR检测[J].系统工程与电子技术.2010,32 (4):678–681.
    [80] He Y, Jian T, Su F, et al. Novel range-spread target detectors in non-Gaussianclutter [J]. IEEE Transactions on Aerospace and Electronic Systems. 2010, 46 (3):1312–1328.
    [81] Greene G C. An approximate model of vortex decay in the atmosphere [J]. Journalof Aircraft. 1986, 23 (7): 566–573.
    [82] Tank W. Airplane wake detection with a VHF cw bistatic radar [C]. In AIAA, 35thAerospace Sciences Meeting & Exhibit. Reno, NV, 1997.
    [83] Mackenzie A I. Measured changes in C-band radar reflectivity of clear air causedby aircraft wake vortices [R]. 1997.
    [84] Iannuzzelli R J, Schemm C E, Marcotte F J, et al. Aircraft wake detection usingbistatic radar: analysis of experimental results [J]. Johns Hopkins APL technicaldigest. 1998, 19 (3): 299–314.
    [85] Harris M, VaughanJ M, Huenecke K, et al. Aircraft wake vortices: a comparison ofwind-tunneldatawithfieldtrialmeasurementsbylaserradar[J].AerospaceScienceand Technology. 2000, 4 (5): 363–370.
    [86] Jackson W, Yaras M, Harvey J, et al. Wake vortex prediction: an overview, TP13629E [R]. 2001.
    [87] Holz?pfel F, Hofbauer T, Darracq D, et al. Analysis of wake vortex decay mecha-nisms in the atmosphere [J]. Aerospace Science and Technology. 2003, 7 (4): 263–275.
    [88] Nespor J, Hudson B, Stegall R L, et al. Doppler radar detection of vortex hazard in-dicators [C]. In Fifth and Final Combined Manufacturers’and Technologists’Con-ference, Part 2. 1994: 651–688.
    [89] Gilson W H. Aircraft wake RCS measurement [C]. In Fifth and Final CombinedManufacturers’and Technologists’Conference, Part 2. 1994: 603–623.
    [90] Myers T J. Determination of Bragg scatter in an aircraft generated wake vortex sys-temforradardetection[D].Blacksburg, Virginia: theVirginiaPolytechnicInstituteand State University, 1997.
    [91] MarshallRE,MudukutoreA,WisselVLH.Radarreflectivityinwingtip-generatedwake vortices [R]. NASA/CR-97-206259, 1997.
    [92] Shariff K, Wray A. Analysis of the radar reflectivity of aircraft vortex wakes [J].Journal of Fluid Mechanics. 2002, 463: 121–161.
    [93] Hinton D, Charnock J K, Bagwell D R. Design of an aircraft vortex spacing systemfor airport capacity improvement, AIAA 2000-0622 [R]. 2000.
    [94] de Bruin A. WAVENC, wake vortex evolution and wake vortex encounter, NLR-TR-2000-079 [R]. 2000.
    [95] de Bruin A. Wake Vortex Evolution and ENCounter (WAVENC) [J]. Air & SpaceEurope. 2000, 2 (5): 84–87.
    [96] deBruinA,SpeijkerLJP,MoetH,etal.S-Wake: assessmentofwakevortexsafety,NLR-TP-2003-243 [R]. 2003.
    [97] Elsenaar B. Wake vortex research needs for”improved wake vortex separation sul-ing”and”reduced wake signatures”[R]. 2006.
    [98] WakeNet3-Europe. Green-Wake Project Description. http://wakenet.eu/index.php?id=65.
    [99] http://www.wakenet3-europe.eu/.
    [100]李健兵,王雪松,王涛.基于马蹄涡模型的飞机尾流介电常数分布的快速建模方法[J].航空学报.2009,30 (7):1214–1218.
    [101] Li J, Wang X, Wang T, et al. Study on the scattering characteristics of stable-stagewake vortices [C]. In IEEE International Radar Conference. Paris, 2009.
    [102] Li J, Wang X, Wang T. Scattering Mechanism of Aircraft Wake Vortex Generatedin Clear Air [C]. In IEEE International Radar Conference. Washington, 2010.
    [103]周彬.飞机尾流的微结构特征及散射特性研究[D].长沙:国防科学技术大学,2009.
    [104]周彬,王雪松,王涛.晴空状态下飞机尾流的雷达散射截面分析[J].微波学报.2008,24 (5):6–10.
    [105]周彬,王雪松,王涛,等.飞机尾流的介电常数分布特性分析[J].微波学报.2008,24 (S1):28–32.
    [106]周彬,王雪松,王涛.飞机尾流的二维可视化仿真[J].系统仿真学报.2008,20 (16):4281–4285.
    [107]周彬,王雪松,王国玉,等.飞机尾流的快速建模方法[J].航空动力学报.2009,24 (1):110–115.
    [108]周彬,王雪松,王涛,等.侧向风速对飞机尾流运动的影响[J].航空学报.2009,30 (5):773–779.
    [109]李文臣,刘俊凯,王涛,等.基于粒子模型的飞机尾流雷达回波仿真[J].系统仿真学报.2009,21 (23):7397–7400.
    [110]刘俊凯,王雪松,王涛,等.潮湿大气中飞机尾流的多普勒特性分析[J].信号处理.2009,25 (9):1443–1447.
    [111]刘俊凯,王雪松,王涛.飞机尾流的频域CFAR检测性能分析[J].现代雷达.2009,31 (12):62–65.
    [112]刘俊凯,王雪松,王涛.基于空间线状分布模型的飞机尾流跟踪算法[J].信号处理.2010,26 (10):1552–1559.
    [113]屈龙海,李健兵,王雪松,等.飞机尾流RCS计算中的网格剖分技术[J].电波科学学报.2010,25 (5):852–858.
    [114]刘忠训,王涛,王雪松,等.对微弱线状分布目标的雷达检测方法[J].系统工程与电子技术.2010,32 (3):499–503.
    [115]沈淳.飞机尾流的电磁散射特性分析及仿真平台构建研究[D].长沙:国防科学技术大学,2008.
    [116]沈淳,李盾,周彬,等.飞机尾流的网格剖分技术及雷达散射特性研究[J].微波学报.2008,24 (S1):7–12.
    [117]安崇军,刘长卫.飞机尾涡对飞行安全的影响[J].飞行力学.2000,18 (4):69–72.
    [118]戴培基,刘继全.JL8飞机尾流对编队起飞和着陆的影响[J].江苏航空.2000 (1):20–21.
    [119]王旭东,苏金平.跟进起飞间隔时间的确定[J].飞行力学.2000,18 (1):58–60.
    [120]胡军,徐肖豪.空中交通中尾流间隔的研究[J].中国民航学院学报.2002,20 (4):1–5.
    [121]杨新湦.尾流对飞行影响的研究[J].空中交通管理.2003 (1):25–28.
    [122]朱代武.飞机尾流涡旋的速度模型分析[J].中国民航飞行学院学报.2005,16 (6):17–20.
    [123]何德富.飞机翼尖尾涡对后面飞机飞行安全影响及安全措施[J].中国民航飞行学院学报.2005,16 (1):12–15.
    [124]牟勇飚.无人机编队中的气动耦合问题研究[D].西安:西北工业大学,2006.
    [125]冯志勇.尾流对飞行的影响及安全间隔研究[D].成都:西南交通大学,2007.
    [126]鲍锋.大型民航机尾流控制及完全研究[C].In大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集.深圳,2007.
    [127]赵鸿胜,徐肖豪.一种尾流消散动态预测的改进算法[J].中国民航大学学报.2008,26 (1):4–7.
    [128]魏志强.尾涡流场及安全间隔的建模与仿真计算研究[D].天津:中国民航大学,2008.
    [129]魏志强,徐肖豪.飞机尾涡流场的建模与仿真计算研究[J].交通运输系统工程与信息.2010,10 (4):186–191.
    [130]张兆宁,张彬.纵向尾流间隔计算方法研究[J].中国民航大学学报. 2010,28 (5): 10–12.
    [131]徐肖豪,赵鸿盛,王振宇.尾流间隔缩减技术综述[J].航空学报.2010,31 (4):655–662.
    [132]徐肖豪,赵鸿盛,杨传森,等.飞行进近中尾流的大涡数值模拟[J].南京航空航天大学学报.2010,42 (2):179–184.
    [133] Barbaresco F, Jeantet A, Meier U. Wake vortex detection & monitoring by X-bandDoppler radar: Paris Orly radar campaign results [C]. In IET International Confer-ence on Radar Systems. Edinburgh, UK, 2007: 1–5.
    [134]李军,王涛,李文臣,等.飞机尾流X波段雷达散射特性的实验研究[J].雷达科学与技术.2009,7 (6):406–410.
    [135] Seliga T A, Mead J B. Meter-scale observations of aircraft wake vortices in precip-itation using a high resolution solid-state W-band radar [C]. In 34th Conference onRadar Meteorology. Williamsburg, VA, 2009.
    [136] Potter L C, Chiang D-M, Carriere R, et al. A GTD-based parametric model forradarscattering[J].IEEETransactionsonAntennasandPropagation.1995,43(10):1058–1067.
    [137] Steedly W M, Moses R L. High resolution exponential modeling of fully polarizedradar returns [J]. IEEE Transactions on Aerospace and Electronic Systems. 1991,27 (3): 459–469.
    [138]刘涛.瞬态极化统计理论及应用研究[D].长沙:国防科学技术大学,2007.
    [139]代大海,王雪松,肖顺平.基于相干极化GTD模型的散射中心提取新方法[J].系统工程与电子技术.2007,29 (7):1057–1061.
    [140]代大海.极化雷达成像及目标特征提取研究[D].长沙:国防科学技术大学,2008.
    [141]庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用[M].北京:国防工业出版社,1999.
    [142] Abdi A, Hashemi H, Nader-Esfahani S. On the PDF of the sum of random vec-tors [J]. IEEE Transactions on Communications. 2000, 48 (1): 7–12.
    [143]叶其孝,沈永欢.实用数学手册[M].第2版.北京:科学出版社,2006.
    [144] Durgin G D.空-时无线信道[M].朱世华,任品毅,王磊,等,译.西安:西安交通大学出版社,2004.
    [145]王雪松.宽带极化信息处理的研究[D].长沙:国防科学技术大学,1999.
    [146] Wehner D R. High-Resolution Radar [M]. 2nd ed. Norwood, MA: Artech House,
    [147] DiFrancoJV,RubinWL.RadarDetection[M].Dedham,MA:ArtechHouse,1980.
    [148] Cumming I G,Wong F H.合成孔径雷达成像——算法与实现[M].洪文,胡东辉,译.北京:电子工业出版社,2007.
    [149] Kay S M. Fundamentals of Statistical Signal Processing, vol. 2, Detection The-ory [M]. New Jersey: Prentice Hall, 1998.
    [150] Gradshteyn I S,Ryzhik I M.积分、级数和乘积表[M].第7版.北京:世界图书出版公司,2007.
    [151] Barton D K.雷达系统分析与建模[M].南京电子技术研究所,译.北京:电子工业出版社,2007.
    [152] Taylor J D. Ultra-wideband Radar Technology [M]. Boca Raton, Florida: CRCPress, 2001.
    [153] Papoulis A,Pillai S U.概率、随机变量与随机过程[M].保铮,冯大政,水鹏朗,译.第4版.西安:西安交通大学出版社,2004.
    [154]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [155]匡继昌.常用不等式[M].第3版.济南:山东科学技术出版社,2004.
    [156]李道本.信号的统计检测与估计理论[M].第2版.北京:科学出版社,2004.
    [157]陈文驰,保铮,邢孟道.基于Keystone变换的低信噪比ISAR成像[J].西安电子科技大学学报(自然科学版).2003,30 (2):155–159.
    [158] de Miguel G, Casar J R. CFAR detection for Weibull and other log-log-linear tailclutter distributions [J]. IEE Proc.-Radar, Sonar Navig. 1997, 144 (2): 64–70.
    [159] Ravid R, Levanon N. Maximum-likelihood CFAR for Weibull background [J]. IEEProceedings-F. 1992, 139 (3): 256–264.
    [160] Anastassopoulos V, Lampropoulos G A. Optimal CFAR detection in Weibull clut-ter [J]. IEEE Transactions on Aerospace and Electronic Systems. 1995, 31 (1): 52–64.
    [161] Erfanian S, Vakili V T. Introducing excision switching-CFAR in K distributed seaclutter [J]. Signal Processing. 2009, 89 (6): 1023–1031.
    [162]胡文琳,王永良,王首勇.Log-normal分布杂波背景下有序统计恒虚警检测器性能分析[J].电子与信息学报.2007,29 (3):517–520.
    [163] Tantaratana S, Nasipuri A. Two-stage Wilcoxon detectors using conditionaltests [J]. IEEE Transactions on Information Theory. 1992, 38 (3): 1080–1090.
    [164] Nasipuri A, Tantaratana S. Nonparametric distributed detector using Wilcoxonstatistics [J]. Signal Processing. 1997, 57: 139–146.
    [165]何友,关键,孟祥伟,等.雷达自动检测和CFAR处理方法综述[J].系统工程与电子技术.2001,23 (1):9–14.
    [166]何友,关键,彭应宁,等.雷达自动检测与恒虚警处理[M].北京:清华大学出版社,1999.
    [167] SaberaliSM,AmindavarH,RitceyJA.Blinddetectioninsymmetricnon-GaussiannoisewithunknownPDFusingmaximumentropymethodwithmomentgeneratingfunction constraints [J]. Signal Processing. 2010, 90 (3): 891–899.
    [168] AmindavarH,RitceyJA.Padéapproximationsofprobabilitydensityfunctions[J].IEEE Transactions on Aerospace and Electronic Systems. 1994, 30 (2): 416–424.
    [169] Inverardi P N, Petri A, Pontuale G, et al. Stieltjes moment problem via fractionalmoments [J]. Applied Mathematics and Computation. 2005, 166 (3): 664–677.
    [170]张发启.盲信号处理及应用[M].西安:西安电子科技大学出版社,2006.
    [171]王仁宏,朱功勤.有理函数逼近及其应用[M].北京:科学出版社,2004.
    [172] Amindavar H, Ritcey J A. Padéapproximations for detectability in K-clutter andnoise [J]. IEEE Transactions on Aerospace and Electronic Systems. 1994, 30 (2):425–434.
    [173] Jay E, Ovarlez J P, Duvaut P. New methods of radar performances analysis [J].Signal Processing. 2000, 80: 2527–2540.
    [174]王仁宏.数值逼近[M].北京:高等教育出版社,1999.
    [175] Jaynes E T. Information Theory and Statistical Mechanics [J]. Physical Review.1957, 106 (4): 620–630.
    [176] BastamiBA,AmindavarH.Signaldetectioninclutterusingmaximumentropypdfestimation based on fractional moments [C]. In IEEE International Conference onAcoustics, Speech and Signal Processing. Toulouse, 2006: 1084–1087.
    [177] SaberaliSM,AmindavarH,KirlinRL.Novelnonlinearfunctionsusedforoptimaldetection in Gaussian mixture noise based on maximum entropy densities [C]. InFourth IEEE Workshop on Sensor Array and Multichannel Processing. Waltham,MA, July 2006: 435–438.
    [178] Saberali S M, Amindavar H. Spread spectrum signal detection in overlay systemsusing maximum entropy PDF estimation based on fractional moments [C]. In IEEEInternational Conference on Acoustics, Speech and Signal Processing. Honolulu,HI, 2007: 1269–1272.
    [179] Ding J, Mead L R. The maximum entropy method applied to stationary densitycomputation [J]. Applied Mathematics and Computation. 2007, 185 (1): 658–666.
    [180] Pinchas M, Bobrovsky B Z. A Maximum Entropy approach for blind deconvolu-tion [J]. Signal Processing. 2006, 86 (10): 2913–2931.
    [181] Gzyl H, Tagliani A. Hausdorff moment problem and fractional moments [J]. Ap-plied Mathematics and Computation. 2010, 216 (11): 3319–3328.
    [182] Cover T M, Thomas J A. Elements of Information Theory [M]. 2nd ed. Hoboken,New Jersey: John Wiley & Sons, Inc., 2006.
    [183] Feller W. An Introduction to Probability Theory and Its Applications [M]. NewYork: Wiley, 1971.
    [184] Lin G D. Characterizations of distributions via moments [J]. Sankhyā: The IndianJournal of Statistics, Series A. 1992, 54 (1): 128–132.
    [185] Schleher D C. Radar Detection in Weibull Clutter [J]. IEEE Transactions onAerospace and Electronic Systems. 1976, 12 (6): 736–743.
    [186] Gerz T, Holz?pfel F, Darracq D. Commercial aircraft wake vortices [J]. Progress inAerospace Sciences. 2002, 38 (3): 181–208.
    [187] Proctor F H. The NASA-Langley wake vortex modelling effort in support of anoperational aircraft spacing system [C]. In AIAA Conference Proceedings 1998-0589. 1998.
    [188] Winckelmans G S, Thirifay F, Ploumhans P. Effect of non-uniform wind shearontovortexwakes: parametricmodelsforoperationalsystemsandcomparisonwithCFD studies [C]. In Handouts of the Fourth WakeNet Workshop on”Wake VortexEncounter”. Amsterdam, The Netherlands, 2000.
    [189] JacquinL,FabreD,GeffroyP,etal.Thepropertiesofatransportaircraftwakeintheextended near field: an experimental study [C]. In AIAA Conference Proceedings2001-1038. 2001.
    [190] Tatarskii V I. Wave Propagation in a Turbulent Medium [M]. New York: McGraw-Hill, 1961.
    [191] Ishimaru A. Wave Propagation and Scattering in Random Media [M]. AcademicPress, 1978.
    [192] Gilson W H. Radar measurements of aircraft wakes [R]. 1992.
    [193] BarbarescoF.Airportradarmonitoringofwakevortexinallweatherconditions[C].In 2010 European Radar Conference (EuRAD). Paris, 2010: 85–88.
    [194] Skolnik M I.雷达手册[M].王军,林强,米慈中,等,译.第二版.北京:电子工业出版社,2003.
    [195]张培昌,杜秉玉,戴铁丕.雷达气象学[M].第二版.北京:气象出版社,2001.
    [196] Yanovsky F J, Russchenberg H W J, Unal C M H. Retrieval of information aboutturbulence in rain by using Doppler-polarimetric radar [J]. IEEE Transactions onMicrowave Theory and Techniques. 2005, 53 (2): 444–450.
    [197]俞小鼎,姚秀萍,熊廷南,等.多普勒天气雷达原理与业务应用[M].北京:气象出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700