用户名: 密码: 验证码:
带超级电容模块的馈能型电梯驱动系统若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自21世纪开始,中国经济的飞速发展使得人们对生活质量的要求不断提高、对生产效率的追求不断加深,电梯系统普遍出现在了高层建筑物和大型现代化工厂里,其保有量和增长潜力不断增加。然而,与之不符的是电梯的先进驱动控制技术目前主要掌握在韩国人以及美国人手里。鉴于上述原因,迅速发展国人自己的电梯先进驱动技术对于越来越大的电梯应用市场已是当务之急。同时,在中国电梯大保有量和增长量的基础上,深入地研究电梯系统的节能技术,在现有环境下对于降低能源消耗、减少碳排放量、保持经济可持续发展同样有着极其重要的战略意义。本文在基于带超级电容模块的馈能型电梯驱动系统和电梯试验塔的硬件平台上,对该系统的若干关键技术进行了深入的分析和研究。
     首先,由于本文所提的馈能型电梯驱动系统采用多模块集成的驱动和控制方案,所以对辅助电源提出了有别于其他系统的多输出、宽输入、中等功率、高效率等要求。针对于此,本文提出并实现了具有宽范围输入、主开关管和副边二极管全软开关的新型双管正激电路作为基于直流母线分布式电源的前端变换器。该拓扑在传统双管正激变换电路的基础上,增加了一个电容钳位型磁复位电路和一个谐振型辅助电路后,不仅使电路占空比突破了传统双管正激50%的限制,而且使得输入电压变化在200-400V的宽范围时依然能够实现全软开关,从而大幅提高了传统双管正激电路的效率。最终实验结果证明,该变换器的性能远高于传统变换器效率,满足了馈能型电梯驱动系统对辅助电源的需求,并且该电路的高效率特性使其具有较好的大功率应用前景。
     其次,电梯启动时受到电机编码器低速下强非线性特点的影响,采用传统控制器会发生较大的遛坡,甚至在某些情况下会出现由极限环引起的抖动而无法控制轿厢静止。针对该问题,本文建立了电梯系统启动摩擦力模型,提出了参数随电梯速度动态调整的非线性控制器,并通过李雅普诺夫方法证明了所提控制方法的全局收敛性。相比PI控制器和其他控制方法,本文提出的电梯启动非线性控制器具有超调量小、调整时间短、遛坡距离短的优点;并且因为控制力矩是连续变化的,使得乘客舒适度体验会更加优异。
     再次,当工业现场电能质量较差时,电梯网侧变流器有可能因无法快速与电网实现同步而导致其不能正常工作。为了提高网侧变流器与电网的同步速度,本文在传统SOGI-FLL电网同步方法的基础上,首次提出通过增加一个输入端口而构建出全新的双输入二阶广义积分正弦信号发生器模块(DISOGI-FLL QSG)。该方法突破了传统方法收敛速度的固有限制,大幅缩短了收敛时间;同时通过李雅普诺夫方法证明了该系统的稳定性和更快的收敛速率。以该模块为基础,将其分别应用在了电梯三相电网电压和单相电网同步中,并针对低频谐波使用了多模块交叉反馈去耦合的方法消除干扰。相比传统方法可以更加迅速地获得电网基波以及各次谐波的幅值、相位、频率信息。最后的仿真和实验证明了,本章所提方法比传统方法的同步速度提高了一倍以上。
     最后,现有研究表明电网最易受到0.01-1Hz波动功率的影响,而电梯的运行功率具有间歇性、波动性的特点,对电网质量产生严重影响。本文以提高电梯网侧电能质量为目标,建立了电梯系统周期运行的功率模型,并以此为基础通过系统各模块的协调运行实现了系统网侧恒功率运行,消除了网侧的功率波动、提高了电网电能质量、大幅降低了变流器功率等级。同时,为了使功率模型更加精确,以超级电容器端压为参考误差信号,通过增加系统参数的在线估计器,使得超级电容器端压在周期运行前后保持一致。实验表明,与传统的电梯能量回收系统相比,本章提出的恒功率控制方案使得电网功率在0.01-1Hz范围内的波动减小了75%。
Since the start of21st century, the requirement of life quality and production efficiency has increased dramatically, with China's rapid economic development. As a result, the elevator system has a greater usage and growth potential in high-rise buildings and large modern factories. However, the advanced elevator-control technology is mainly dominated by Koreans and Americans. Therefore, the research of our own elevator technology means a lot to China's sustainable economic development. Meanwhile, a better study of the energy-saving elevator system based on the large holdings and increase is of a great help to reduce energy consumption, carbon emissions, and maintain the sustainable economic development. This paper has made an in-depth study of some key technologies of the regenerative elevator with super-capacitor-based energy storage system, based on the elevator testing tower and hardware platform.
     Firstly, a distributed auxiliary power solution is proposed to meet the elevator driving system requirements and to reduce the EMI, after some comparison of other topologies. Meanwhile, a full-soft-switch forward is proposed as the front-end converter of the auxiliary power. The proposed converter overcomes the limit of50%duty cycle, and realizes the ZVZCS on main switches and diodes within the input voltage from200to400V, with a clamp circuit and resonant circuit. The experimental results show that the efficiency is much higher than the traditional forward converter.
     Secondly, the reason why a traditional PI controller cannot achieve a good start-hover of elevator car is found, after the analysis of the motor angular displacement and velocity nonlinear caused by the limit of encoder resolution. It leads to a large slip-distance, and even vibrations caused by the limit cycle, in some cases. To solve the problem, the start-hover friction mathematics model is established, and a new nonlinear controller is proposed, whose gain coefficient is adjustable according to the velocity and displacement. The global stability is proved by Lyapunov method. Compared to the traditional PI controller, the proposed nonlinear controller has a smaller overshoot, and a less adjust time, and a shorter slip distance. And the passenger would feel more comfortable due to the continuous variation of the control torque.
     Thirdly, the grid quality is poor in the industrial field, which has a great influence on the elevator driving system. To overcome this, a new quadrature-signal-generator (QSG) is proposed, which has two inputs based on the traditional SOGI-FLL (dual input SOGI-FLL, DISOGI-FLL). The analysis of the state-space equations of the DISOGI-FLL shows a much better dynamic response in amplitude and frequency track. The global stability of the system is proved by Lyapunov method, and the frequency convergence rate range is achieved, too. Based on this QSG, a single-phase synchronous method and a three-phase synchronous method are developed respectively. By multi-module expansion, harmonics are tracked as well. The simulation and experimental shows that, the convergence time is reduced by50%compared to traditional methods.
     Finally, studies show that the grid is most vulnerable to the impact of0.01to1Hz power fluctuation, which is the main power fluctuation frequency of the regenerative elevator. To improve the power quality, a power model of the elevator is proposed, and with the help of the super-capacitor module, the constant power controller is achieved to eliminate the power fluctuation. To realize a better effect, an adaptive estimator is designed by the super-capacitor terminal voltage as the reference error, and the super-capacitor voltage would remain the same before and after a run cycle, by addition. Compared with traditional way, the proposed controller removes75%power fluctuation.
引文
[1]周小杰,曹大鹏,阮毅.超级电容储能装置在电梯中的研究与实现[J].电力电子技术,2011,(1):101-103.
    [2]王雅雯.2010,市环保局请名人讲低碳:空调高一度节能迈一步.人民网:http://henan.people.com.cn/news/2010/06/23/487944.html.
    [3]水清木华研究中心.2012,2011-2012年中国电梯行业研究报告.水清木华研究中心:]http://www.pday.com.cn/Htmls/Report/201207/24511493.html.
    [4]洪小圆.基于永磁同步电机的电梯运动控制研究[D].博士论文.浙江大学电力电子与电力传动,2012.
    [5]中国国家标准.GB10060-93.电梯安装验收规范[S].北京:国家技术监督局,1994.
    [6]赵斌,杜石雷,孙海蓉,等.基于RS-485总线的分散控制系统开放性设计[J].自动化博览,2012,(3):66+69-71.
    [7]冯子陵,俞建新.RS485总线通信协议的设计与实现[J].计算机工程,2012,(20):215-218.
    [8]胡中功,黄波,江维.基于RS485总线的PC与单片机多机通信系统设计[J].自动化与仪器仪表,2012,(1):30-31+35.
    [9]赵斌,杜石雷,孙海蓉,等.基于RS-485总线的分散控制系统开放性设计[J].自动化博览,2012,(3):66+69-71.
    [10]刘波,高宏妍.基金会现场总线通讯接口的设计[J].工业控制计算机,2002,(5):19-20+35.
    [11]苏宁军,褚健.基金会现场总线功能块应用接口软件的设计[J].工业控制计算机,2003,(7):17-18+23.
    [12]曲涛.Foundation Field bus总线技术应用[J].科技创新导报,2012,(16):10-12.
    [13]温宝博,纪文刚,张慧平.基于MODBUS/TCP的以太网总线适配器的数据交换[J].北京石油化工学院学报,2002,(3):12-15.
    [14]程世军,周以琳.基于以太网总线的多功能输入节点仪表的研制[J].青岛科技大学学报(自然科学版),2003):93-96.
    [15]粱志远,李海龙.基于以太网总线的力科示波器组群测试系统设计[J].国外电子测量技术,2007,(8):74-75+77.
    [16]中国国家标准.GB/T10058-2009.电梯技术条件[S].北京:中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会,2009.
    [17]武汉智能电梯有限公司.一种节能电梯[P].:200910060677.3,2009.07.08.
    [18]浙江威特电梯有限公司.一种节能电梯[P].:201120018115.5,2011.08.24.
    [19]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [20]Jin W, Libing Z, Jing S. Simplified predictive current controller for bidirectional voltage source PWM rectifier based on state feedback decoupling [C]. Electrical Machines and Systems,2008. ICEMS 2008. International Conference on,2008: 2136-2141.
    [21]Kanaan H, Al-Haddad K, Fnaiech F. Modelling and control of three-phase/switch/level fixed-frequency PWM rectifier:state-space averaged model [J]. Electric Power Applications, IEE Proceedings-,2005,152(3):551-557.
    [22]Rodriguez J R, Dixon J W, Espinoza J R, et al. PWM regenerative rectifiers: state of the art [J]. Industrial Electronics, IEEE Transactions on,2005,52(1):5-22.
    [23]王永,沈颂华,关淼.新颖的基于电压空间矢量三相双向整流器的研究[J].电工技术学报,2006,(1):104-110.
    [24]王儒,方宇,邢岩.三相高功率因数PWM变换器可逆运行研究[J].电工技术学报,2007,(8):46-51.
    [25]瞿博.带超级电容模块的馈能型电梯能量管理研究[D].博士论文.浙江大学电力电子与电力传动,2010.
    [26]徐德鸿.电力电子系统建模及控制[M].北京:机械工业出版社,2006.
    [27]刘建华张静之.电力电子技术[M].:2010.
    [28]陈卫昀,严仰光.分布式电源[J].电力电子技术,1999,(2):82-85.
    [29]陈义龙.应用于通信系统的分布式电源设计要求[J].电源世界,2004,(4):42-44.
    [30]熊滨,于海东.浅谈VS-616G5变频器在电梯调速控制系统中的应用[J].黑龙江科技信息,2009,(25):14+26.
    [31]林信宏.电梯用永磁式同步电动机驱动器之研制[D].硕士论文.国立台湾科技大学2006.
    [32]Jae-Sung Y, Sang-Hoon K, Byoung-Kuk L, et al. Fuzzy-Logic-Based Vector Control Scheme for Permanent-Magnet Synchronous Motors in Elevator Drive Applications [J]. Industrial Electronics, IEEE Transactions on,2007,54(4): 2190-2200.
    [33]Hyung-Min R, Seung-Ki S. Position control for direct landing of elevator using time-based position pattern generation [C]. Industry Applications Conference, 2002.37th IAS Annual Meeting. Conference Record of the,2002:644-649 vol.1.
    [34]颜文俊,陈素琴,林峰.控制理论CAI教程[M].北京:科学出版社,2002.
    [35]Blaabjerg F, Teodorescu R, Liserre M, et al. Overview of Control and Grid Synchronization for Distributed Power Generation Systems [J]. Industrial Electronics, IEEE Transactions on,2006,53(5):1398-1409.
    [36]张建成,黄立培,吴速.电压源型电能质量控制技术研究[J].电力系统自动化,2004,(4):45-48+91.
    [37]Bueno E J, Rodriguez F J, Espinosa F, et al. SPLL design to flux oriented of a VSC interface for wind power applications [C]. Industrial Electronics Society, 2005. IECON 2005.31st Annual Conference of IEEE,2005:6 pp.
    [38]Helle L, Rodriguez P, Marco L, et al. Grid requirements, monitoring, synchronization and control of wind turbines under grid faults [C]. Industrial Electronics,2008. ISIE 2008. IEEE International Symposium on,2008:1-102.
    [39]Iov F, Teodorescu R, Blaabjerg F, et al. Grid Code Compliance of Grid-Side Converter in Wind Turbine Systems [C]. Power Electronics Specialists Conference,2006. PESC'06.37th IEEE,2006:1-7.
    [40]Yang Y, Blaabjerg F, Zou Z. Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems [C]. Energy Conversion Congress and Exposition (ECCE),2012 IEEE,2012:4370-4377.
    [41]Blaabjerg F, Teodorescu R, Liserre M, et al. Overview of Control and Grid Synchronization for Distributed Power Generation Systems [J]. Industrial Electronics, IEEE Transactions on,2006,53(5):1398-1409.
    [42]Blaabjerg F, Liserre M, Ke M. Power Electronics Converters for Wind Turbine Systems [J]. Industry Applications, IEEE Transactions on,2012,48(2): 708-719.
    [43]Kazmierkowski M P. Grid Converters for Photovoltaic and Wind Power Systems [J]. Industrial Electronics Magazine, IEEE,2011,5(2):54-54.
    [44]Lidong Z, Bollen M H J. Characteristic of voltage dips (sags) in power systems [J]. Power Delivery, IEEE Transactions on,2000,15(2):827-832.
    [45]Bollen M, Zhang L D. Different methods for classification of three-phase unbalanced voltage dips due to faults [J]. ELECTRIC POWER SYSTEMS RESEARCH,2003,1(66):59-69.
    [46]Timbus A, Teodorescu R, Blaabjerg F, et al. Synchronization methods for three phase distributed power generation systems-An overview and evaluation [C]. Power Electronics Specialists Conference,2005. PESC'05. IEEE 36th,2005: 2474-2481.
    [47]Costas J P. Synchronous Communications [J].,1956,44(12):1713-1718.
    [48]Gardner F M. PhaseLock Techniques [M]. NJ:Hoboken,2004.
    [49]Liccardo F, Marino P, Raimondo G. Robust and fast three-phase pll tracking system [J]. IEEE Trans. Ind. Electron.,2011,58(1):221-231.
    [50]Shinnaka S. A robust single-phase PLL system with stable and fast tracking [J]. IEEE Trans. Ind. Appl.,2008,44(2):624-633.
    [51]Shinnaka S. A novel fast-tracking D-estimation method for single-phase signals [J]. IEEE Trans. Power Electron.,2011,26(4):1081-1087.
    [52]Ghartemani M K, Khajehoddin S A, Jain P K, et al. Problems of Startup and Phase Jumps in PLL Systems [J]. Power Electronics, IEEE Transactions on, 2012,27(4):1830-1838.
    [53]Karimi-Ghartemani M, Iravani M R. A nonlinear adaptive filter for online signal analysis in power systems:applications [J]. Power Delivery, IEEE Transactions on,2002,17(2):617-622.
    [54]刘森森.电网受干扰时VIENNA整流器同步与控制方法的研究[D].博士论文.浙江大学电气工程,2012.
    [55]Vainio O, Ovaska S J. Noise reduction in zero crossing detection by predictive digital filtering [J]. Industrial Electronics, IEEE Transactions on,1995,42(1): 58-62.
    [56]Vainio O, Ovaska S J, Polla M. Adaptive filtering using multiplicative general parameters for zero-crossing detection [J]. Industrial Electronics, IEEE Transactions on,2003,50(6):1340-1342.
    [57]Routray A, Pradhan A K, Rao K P. A novel Kalman filter for frequency estimation of distorted signals in power systems [J]. Instrumentation and Measurement, IEEE Transactions on,2002,51(3):469-479.
    [58]McGrath B P, Holmes D G, Galloway J J H. Power converter line synchronization using a discrete Fourier transform (DFT) based on a variable sample rate [J]. Power Electronics, IEEE Transactions on,2005,20(4):877-884.
    [59]Kwok H K, Jones D L. Improved instantaneous frequency estimation using an adaptive short-time Fourier transform [J]. Signal Processing, IEEE Transactions on,2000,48(10):2964-2972.
    [60]Yazdani D, Bakhshai A, Joos G, et al. A Nonlinear Adaptive Synchronization Techniquefor Grid-Connected Distributed Energy Sources [J]. Power Electronics, IEEE Transactions on,2008,23(4):2181-2186.
    [61]Mojiri M, Bakhshai A R. Estimation of Frequencies Using Adaptive Notch Filter [J]. Circuits and Systems II:Express Briefs, IEEE Transactions on,2007, 54(4):338-342.
    [62]Ciobotaru M, Teodorescu R, Blaabjerg F. A New Single-Phase PLL Structure Based on Second Order Generalized Integrator [C]. Power Electronics Specialists Conference,2006. PESC'06.37th IEEE,2006:1-6.
    [63]Padua M S, Deckmann S M, Sperandio G S, et al. Comparative analysis of Synchronization Algorithms based on PLL, RDFT and Kalman Filter [C]. Industrial Electronics,2007. ISIE 2007. IEEE International Symposium on, 2007:964-970.
    [64]Fedele G, Picardi C, Sgro D. A Power Electrical Signal Tracking Strategy Based on the Modulating Functions Method [J]. Industrial Electronics, IEEE Transactions on,2009,56(10):4079-4087.
    [65]Moreno V M, Liserre M, Pigazo A, et al. A Comparative Analysis of Real-Time Algorithms for Power Signal Decomposition in Multiple Synchronous Reference Frames [J]. Power Electronics, IEEE Transactions on,2007,22(4): 1280-1289.
    [66]Golestan S, Monfared M, Freijedo F, et al. Dynamics Assessment of Advanced Single-Phase PLL Structures [J]. Industrial Electronics, IEEE Transactions on, 2012,PP(99):1-1.
    [67]Rodriguez P, Pou J, Bergas J, et al. Decoupled Double Synchronous Reference Frame PLL for Power Converters Control [J]. Power Electronics, IEEE Transactions on,2007,22(2):584-592.
    [68]Rodriguez P, Luna A, Ciobotaru M, et al. Advanced Grid Synchronization System for Power Converters under Unbalanced and Distorted Operating Conditions [C]. IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on,2006:5173-5178.
    [69]Rodriguez P, Luna A, Candela I, et al. Grid synchronization of power converters using multiple second order generalized integrators [C]. Industrial Electronics, 2008. IECON 2008.34th Annual Conference of IEEE,2008:755-760.
    [70]周鹏,贺益康.电网电压不对称且谐波畸变时基波电压同步信号的检测[J].仪器仪表学报,2010,(1):78-84.
    [71]Wei L, Joos G, Abbey C. Wind Power Impact on System Frequency Deviation and an ESS based Power Filtering Algorithm Solution [C]. Power Systems Conference and Exposition,2006:2077-2084.
    [72]Banos C, Aten M, Cartwright P, et al. Benefits and control of STATCOM with energy storage in wind power generation [C]. AC and DC Power Transmission, 2006:230-235.
    [1]Moisseev S, Hamada S, Nakaoka M. Double two-switch forward transformer linked soft-switching PWM DC-DC power converter using IGBTs [J]. Electric Power Applications, IEE Proceedings-,2003,150(1):31-38.
    [2]Tofoli F L, Gallo C A, Coelho E A A, et al. A switched-mode power supply employing a quadratic boost converter and a soft-switched two-switch forward converter [C]. Power Electronics Specialists Conference,2004. PESC 04.2004 IEEE 35th Annual,2004:2611-2614 Vol.4.
    [3]Hamada S, Moisseev S, Nakaoka M. Two-switch forward soft-switching PWM DC-DC power converter [J]. Electronics Letters,2000,36(25):2055-2056.
    [4]Li Q M, Lee F C. Design consideration of the active-clamp forward converter with current mode control during large-signal transient [J]. Power Electronics, IEEE Transactions on,2003,18(4):958-965.
    [5]Torrico-Bascop R, Barbi I. A double ZVS-PWM active-clamping forward converter:analysis, design, and experimentation [J]. Power Electronics, IEEE Transactions on,2001,16(6):745-751.
    [6]Leu C, Hua G, Lee F C. Comparison of forward topologies with varies reset schemes [C]. Proceeding of Virginia Power Electronics Center Seminar,1991: 101-109.
    [7]Tabisz W A, Lee F C. A Novel Zero-Voltage-Switched Multi-Resonant Forward Converter [C]. Conference, High Frequency Power Conversion,1988:309-318.
    [8]Ji H K, Kim H J. Active clamp forward converter with MOSFET synchronous rectification [C]. Power Electronics Specialists Conference, PESC'94 Record., 25th Annual IEEE,1994:895-901 vol.2.
    [9]Li-jun H, Yi-lei G, Zheng-yu L, et al. ZVS active-clamped compensative reset dual-switch forward converter [C]. Industry Applications Conference,2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005,2005: 1980-1984 Vol.3.
    [10]Yilei G, Zhengyu L, Zhaoming Q, et al. A Novel ZVS Resonant Reset Dual Switch Forward DC–DC Converter [J]. Power Electronics, IEEE Transactions on,2007,22(1):96-103.
    [11]Hengchun M, Lee F C Y, Xunwei Z, et al. Improved zero-current transition converters for high-power applications [J]. Industry Applications, IEEE Transactions on,1997,33(5):1220-1232.
    [12]Chien-Ming W. A Novel ZCS-PWM Flyback Converter With a Simple ZCS-PWM Commutation Cell [J]. Industrial Electronics, IEEE Transactions on, 2008,55(2):749-757.
    [13]Wakabayashi F T, Bonato M J, Canesin C A. A new family of zero-current-switching PWM converter [C]. Power Electronics Specialists Conference,1999. PESC 99.30th Annual IEEE,1999:451-456 vol.1.
    [14]Bodur H, Bakan A F. A new ZVT-ZCT-PWM DC-DC converter [J]. Power Electronics, IEEE Transactions on,2004,19(3):676-684.
    [1]Xu D, Wang H, Shi J. PMSM servo system with speed and torque observer [C]. Power Electronics Specialist Conference,2003. PESC'03.2003 IEEE 34th Annual,2003:241-245 vol.1.
    [2]Bolognani S, Faggion A, Sgarbossa L, et al. Modelling and design of a direct-drive lift control with rope elasticity and estimation of starting torque [C]. Industrial Electronics Society,2007. IECON 2007.33rd Annual Conference of the IEEE,2007:828-832.
    [3]Nam-Joon K, Hee-Sung M, Dong-Seok H. Inertia identification for the speed observer of the low speed control of induction machines [J]. Industry Applications, IEEE Transactions on,1996,32(6):1371-1379.
    [4]Gasc L, Fadel M, Astier S, et al. Load torque observer for minimising torque ripple in PMSM [C]. Electrical Machines and Systems,2003. ICEMS 2003. Sixth International Conference on,2003:473-476 vol.2.
    [5]Lee K B, Yoo J Y, Song J H, et al. Improvement of low speed operation of electric machine with an inertia identification using ROELO [J]. Electric Power Applications, IEE Proceedings-,2004,151(1):116-120.
    [6]Matsui N, Makino T, Satoh H. Autocompensation of torque ripple of direct drive motor by torque observer [J]. Industry Applications, IEEE Transactions on, 1993,29(1):187-194.
    [7]中国国家标准.GB10060-93.电梯安装验收规范[S].北京:中国标准出版社,1994.
    [8]中国国家标准.GB/T10058-2009.电梯技术条件[S].北京:中国标准出版社,2009.
    [9]中国国家标准.GB/T24474-2009.电梯乘运质量测量[S].北京:中国标准出版社,2009.
    [10]Xiaoyuan H, Zhe D, Siran W, et al. A novel elevator load torque identification method based on friction mode [C]. Applied Power Electronics Conference and Exposition (APEC),2010 Twenty-Fifth Annual IEEE,2010:2021-2024.
    [11]Weiss M A.数据结构与算法分析[M].北京:机械工业出版社,2004.
    [12]洪小圆.基于永磁同步电机的电梯运动控制研究[D].博士论文.浙江大学电力电子与电力传动,2012.
    [13]郭友谦,赵斌.光电式编码器在机电设备上的应用[J].矿山机械,2003,(10):80.
    [14]董莉莉,熊经武,万秋华.光电轴角编码器的发展动态[J].光学精密工程,2000,(2):198-202.
    [15]Suraneni S, Kar I N, Bhatt R K P. Adaptive stick-slip friction compensation using dynamic fuzzy logic system [C]. TENCON 2003. Conference on Convergent Technologies for the Asia-Pacific Region,2003:1470-1474 Vol.4.
    [16]Slotine J E, Li W. Applied Nonlinear Control [M].北京:机械工业出版社,2006.
    [17]苏德矿,金蒙伟.微积分[M].北京:高等教育出版社,2004.
    [18]颜文俊,陈素琴,林峰.控制理论CAI教程[M].北京:科学出版社,2002.
    [19]赵光宙.现代控制理论[M].北京:机械工业出版社,2009.
    [1]Ciobotaru M, Teodorescu R, Blaabjerg F. A New Single-Phase PLL Structure Based on Second Order Generalized Integrator [C]. Power Electronics Specialists Conference,2006. PESC'06.37th IEEE,2006:1-6.
    [2]Padua M S, Deckmann S M, Sperandio G S, et al. Comparative analysis of Synchronization Algorithms based on PLL, RDFT and Kalman Filter [C]. Industrial Electronics,2007. ISIE 2007. IEEE International Symposium on, 2007:964-970.
    [3]Fedele G, Picardi C, Sgro D. A Power Electrical Signal Tracking Strategy Based on the Modulating Functions Method [J]. Industrial Electronics, IEEE Transactions on,2009,56(10):4079-4087.
    [4]Moreno V M, Liserre M, Pigazo A, et al. A Comparative Analysis of Real-Time Algorithms for Power Signal Decomposition in Multiple Synchronous Reference Frames [J]. Power Electronics, IEEE Transactions on,2007,22(4): 1280-1289.
    [5]Golestan S, Monfared M, Freijedo F, et al. Dynamics Assessment of Advanced Single-Phase PLL Structures [J]. Industrial Electronics, IEEE Transactions on, 2012, PP(99):1-1.
    [6]刘森森.电网受干扰时VIENNA整流器同步与控制方法的研究[D].博士论文.浙江大学电气工程,2012.
    [7]Costas J P. Synchronous Communications [J].,1956,44(12):1713-1718.
    [8]Gardner F M. PhaseLock Techniques [M]. NJ:Hoboken,2004.
    [9]Liccardo F, Marino P, Raimondo G. Robust and fast three-phase pll tracking system [J]. IEEE Trans. Ind. Electron.,2011,58(1):221-231.
    [10]Shinnaka S. A robust single-phase PLL system with stable and fast tracking [J]. IEEE Trans. Ind. Appl,2008,44(2):624-633.
    [11]Shinnaka S. A novel fast-tracking D-estimation method for single-phase signals [J]. IEEE Trans. Power Electron.,2011,26(4):1081-1087.
    [12]Jan S, Massimo B, Ambra S. Practical Implementation of Delayed Signal Cancellation Method for Phase-Sequence Separation [J]. Power Delivery, IEEE Transactions on,2007,22(1):18-26.
    [13]Silva S M, Lopes B M, Filho B J C, et al. Performance evaluation of PLL algorithms for single-phase grid-connected systems [C]. Industry Applications Conference,2004.39th IAS Annual Meeting. Conference Record of the 2004 IEEE,2004:2259-2263 vol.4.
    [14]Da Silva S A O, Tomizaki E, Novochadlo R, et al. PLL Structures for Utility Connected Systems under Distorted Utility Conditions [C]. IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on,2006:2636-2641.
    [15]陶兴华,李永东,孙敏,等.一种基于同步旋转坐标变换的单相锁相环新算法[J].电工技术学报,2012,(6):147-152.
    [16]Ghartemani M K, Khajehoddin S A, Jain P K, et al. Problems of Startup and Phase Jumps in PLL Systems [J]. Power Electronics, IEEE Transactions on, 2012,27(4):1830-1838.
    [17]Karimi-Ghartemani M, Iravani M R. A nonlinear adaptive filter for online signal analysis in power systems:applications [J]. Power Delivery, IEEE Transactions on,2002,17(2):617-622.
    [18]Rodriguez P, Luna A, Munoz-Aguilar R, et al. Control of power converters in distributed generation applications under grid fault conditions [C]. Energy Conversion Congress and Exposition (ECCE),2011 IEEE,2011:2649-2656.
    [19]Xiaoming Y, Allmeling J, Merk W, et al. Stationary frame generalized integrators for current control of active power filters with zero steady state error for current harmonics of concern under unbalanced and distorted operation conditions [C]. Industry Applications Conference,2000. Conference Record of the 2000 IEEE,2000:2143-2150 vol.4.
    [20]De Brabandere K, Loix T, Engelen K, et al. Design and Operation of a Phase-Locked Loop with Kalman Estimator-Based Filter for Single-Phase Applications [C]. IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on,2006:525-530.
    [21]赵光宙.现代控制理论[M].北京:机械工业出版社,2009.
    [22]Rodriguez P, Luna A, Candela I, et al. Grid synchronization of power converters using multiple second order generalized integrators [C]. Industrial Electronics, 2008. IECON 2008.34th Annual Conference of IEEE,2008:755-760.
    [23]管志成,李俊杰.常微分方程与偏微分方程[M].杭州:浙江大学出版社,2000.
    [24]范承志,孙盾,童梅.电路原理[M].杭州:机械工业出版社,2004.
    [25]Slotine J E, Li W. Applied Nonlinear Control [M].北京:机械工业出版社,2006.
    [26]刘森森,杭丽君,姚文熙,等.电网故障时电力电子变流器的直接解耦同步法[J].中国电机工程学报,2011,(21):32-39.
    [1]鲁宗相,王彩霞,闵勇,等.微电网研究综述[J].电力系统自动化,2007,(19):100-107.
    [2]Liu Q, Zhou L, Guo K. Review on the dynamic characteristics of micro-grid system [C]. Industrial Electronics and Applications (ICIEA),2012 7th IEEE Conference on,2012:2069-2074.
    [3]Zhao D, Zhang N, Liu Y. Micro-grid connected/islanding operation based on wind and PV hybrid power system [C]. Innovative Smart Grid Technologies-Asia (ISGT Asia),2012 IEEE,2012:1-6.
    [4]Yongqin G, Peiqiang L, Yuan P, et al. Development of micro-grid coordination and control overview [C]. Innovative Smart Grid Technologies-Asia (ISGT Asia),2012 IEEE,2012:1-6.
    [5]王成山,肖朝霞,王守相.微网综合控制与分析[J].电力系统自动化,2008,(7):98-103.
    [6]Lasseterrh, Piagi P. Microgrid:a conceptual solution [C]. Proceedings of IEEE 35th Annual Power Electronics Specialists Conference,2004:4285-4290.
    [7]Georgakisl D, Papathanassiou S, Hatziargyriou N, et al. Operation of a prototype microgird system based on micro-sources equipped with fast-acting power electronics interfaces [C]. Proceedings of IEEE 35 th Annual Power Electronics Specialists Conference,2004:2521-2526.
    [8]Katiraei F, Iravani M R, Lehn P W. Micro-grid autonomous operation during and subsequent to islanding process [J]. IEEE Trans on Power Delivery,2005, 1(20):248-257.
    [9]周小杰,曹大鹏,阮毅.超级电容储能装置在电梯中的研究与实现[J].电力电子技术,2011,(1):101-103.
    [10]王司博,韦统振,齐智平.超级电容器储能的节能系统研究[J].中国电机工程学报,2010,30(9):105-110.
    [11]Attaianese C, Nardi V, Tomasso G. High performances supercapacitor recovery system for industrial drive applications [C]. Applied Power Electronics Conference and Exposition,2004. APEC'04. Nineteenth Annual IEEE,2004: 1635-1641 vol.3.
    [12]何晓光,张逸成,龚增,等.轨道交通超级电容能量回收控制系统设计[J].电气自动化,2009,(5):73-75.
    [13]洪小圆.基于永磁同步电机的电梯运动控制研究[D].博士论文.浙江大学电力电子与电力传动,2012.
    [14]刁利军,刘志刚,郝荣泰,等.能量回馈式PWM整流器并网的工程设计方法[J].电工技术学报,2005,20(11):75-79.
    [15]Woodley N H, Morgan L, A S. Experience with an inverter-based dynamic voltage restorer [J]. IEEE Transactions on Power Delivery,1999,3(14): 1181-1186.
    [16]张鹏,郭永基.电压骤降的可靠性评估新方法[J].电力系统自动化,2002,(8):20-24.
    [17]Wei L, Joos G, Abbey C. Wind Power Impact on System Frequency Deviation and an ESS based Power Filtering Algorithm Solution [C]. Power Systems Conference and Exposition,2006:2077-2084.
    [18]Banos C, Aten M, Cartwright P, et al. Benefits and control of STATCOM with energy storage in wind power generation [C]. AC and DC Power Transmission, 2006:230-235.
    [19]石庆升,张承慧,崔纳新.新型双能量源纯电动汽车能量管理问题的优化控制[J].电工技术学报,2008,(8):137-142.
    [20]刘海波,毛承雄,陆继明,等.电子电力变压器储能系统及其最优控制[J].电工技术学报,2010,(3):54-60.
    [21]李霄,胡长生,刘昌金,等.基于超级电容储能的风电场功率调节系统建模与控制[J].电力系统自动化,2009,(9):86-90.
    [22]瞿博.带超级电容模块的馈能型电梯能量管理研究[D].博士论文.浙江大学电力电子与电力传动,2010.
    [23]中国国家标准.GB10060-93.电梯安装验收规范[S].北京:中国标准出版社,1994.
    [24]中国国家标准.GB/T10058-2009.电梯技术条件[S].北京:中国标准出版社,2009.
    [25]中国国家标准.GB/T24474-2009.电梯乘运质量测量[S].北京:中国标准出版社,2009.
    [26]Suraneni S, Kar I N, Bhatt R K P. Adaptive stick-slip friction compensation using dynamic fuzzy logic system [C]. TENCON 2003. Conference on Convergent Technologies for the Asia-Pacific Region,2003:1470-1474 Vol.4.
    [27]Slotine J E, Li W. Applied Nonlinear Control [M].北京:机械工业出版社,2006.
    [28]赵光宙.现代控制理论[M].北京:机械工业出版社,2009.
    [29]L. S R, M. N R. Classical equivalent circuit parameters for a double-layer capacitor [J]. IEEE Transctions on Aerospace and Electronic Systems,2000, 36(3):829-836.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700