用户名: 密码: 验证码:
充放储一体化电站并联式功率调节系统的控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境和能源问题的日益严峻,电动汽车和可再生能源发电受到了各国政府的高度重视。电动汽车具有节能环保的优势,可再生能源发电则可实现能源战略的可持续发展,二者的发展推动了电动汽车充电站和储能电站的建设以及各自产业链的发展。充放储一体化电站融合了电动汽车充电站和储能电站的优势,可以完成电池能量的双向调度,具有功能多样化、运营成本优的特点。本文的研究对象为充放储一体化电站内的功率调节系统(PCS),该系统由多个PCS子模块并联组成,采用分层控制结构。根据上位机的管理调度,PCS可工作于多种运行模式。本文针对PCS在几种关键运行工况中的问题进行了探讨,并给出了具体有效的解决方案。
     针对并网运行工况,本文首先建立了PCS的数学模型,设计了多模式的充放电控制方案,当电池低于额定电压时,系统可采用恒流模式或恒功率模式进行充放电,当电池电压达到额定电压时则转入恒压充电模式。针对弱电网环境,分析了系统公共耦合点(PCC)处存在较大电压谐波和不平衡情况时,PCS正负序锁相环的工作特性,提出了一种基于T/4延时正序锁相和T/3&T/6延时负序锁相的组合式锁相环系统(CSRF-PLL),该锁相环可以适应不平衡电压并且可以消除特定次谐波的影响。运用瞬时功率理论分析了电压不对称时PCS直流端口的输出特性,给出了一种基于CSRF-PLL的负序电流注入式不平衡控制策略,很好地抑制了弱电网下PCS电池组的电流纹波。
     针对孤岛运行工况,建立了PCS孤岛运行的数学模型,为消除输出滤波器引入的谐振峰,对虚拟阻抗法进行了详细的分析,得出了基于电感串联电阻的有源阻尼法最适合三相PCS的结论。探讨了非线性负载条件下的控制策略,给出了采用虚拟电阻加负载电流全前馈的控制策略。建立了系统孤岛运行的离散时间数学模型,分析了一拍滞后情况下控制参数与系统阶数的关系,分析表明离散化逆变器系统在引入滞后一拍控制环节后,系统的可控自由度和被控自由度始终相差一个。为此,本文提出了一种基于增广状态变量的控制策略,在不增加传感器的情况下,通过引入控制器的输出量vr为增广状态变量,实现了系统的极点配置,进而获得了期望的控制特性。
     针对功率调节系统并联孤岛运行工况,本文探讨了并联系统的构建形式和系统数据信息的交互方式。分析表明,采用独立直流母线并联方案时,由于各模块储能电池荷电状态存在差异,系统不能采用传统的功率均分方式,为此设计了一种基于荷电状态和模块容量的功率分配策略,充分地利用了并联系统的总容量。接着,分析了各模块储能电池荷电状态存在差异时高频谐波环流产生的原理,并给出了数学推导和相应的抑制方法。最后,在传统集中控制方案的基础上,提出了一种基于dq坐标解耦的功率误差间接控制方案,并详细分析了各参数对系统稳定性和功率分配效果的影响。
     分析了主动移相式孤岛检测法的基本原理,建立了三相PCS孤岛状态的数学模型。分析表明,以并网无功电流控制电压频率的孤岛检测算法,可以避免孤岛检测过程中PCC电压的幅值和频率相互耦合,从而保证了孤岛检测的可靠性。提出了一种带频率正反馈的孤岛检测方法(APSPF),该方法实现简单,能很好地适应单级式PCS和两级式PCS的不同并网控制策略。给出了APSPF法的检测盲区,并讨论了其对无功功率控制精度的影响。最后,将APSPF法推广到多台PCS并联运行系统,分类讨论了不同情况下的孤岛检测效果,分析表明APSPF法具有良好的鲁棒性,可以很好地适应多机并联系统。
With the increasingly serious issues on environment and energy, national governmentshave attached great importance to the electric vehicles (EV) and renewable energygeneration (REG). The EVs have the advantages on energy saving and environmentalprotection, while the REG can achieve the sustainable development of the energy strategy,and both have promoted the construction of electric vehicles charging stations and energystorage power stations, as well as the development of their industry chains. Combining theadvantages of electric vehicles charging station and energy storage power station, thecharge-discharge-storge power station (CDSPS), with various functions and low runningcosts, is able to realize bidirectional scheduling of battery energy. This paper presents thestudy on power conditioning system (PCS) in the CDSPS, where the system consists ofmultiple paralleled PCS sub-modules and a hierarchical control structure is introduced.Consequently, according to the management and scheduling of the upper computer, PCScan work in a variety of operating modes. In this paper, issues on several pivotal operatingconditions are discussed and some concrete and effective solutions are provided.
     Aiming at the grid-connected operation, a mathematical model of PCS is establishedand a multi-mode control strategy for charging and discharging is designed. The systemworks in constant current mode or constant power mode when the battery voltage is lowerthan the rated voltage, while it changes to the constant voltage mode after the batteryvoltage reached to rated voltage. The operating characteristic of positive and negativesequence phase-locked loop (PLL) of PCS is analyzed under the weak grid conditionwhere the voltages at the point of common coupling (PCC) are distorted and unbalanced.A compound synchronous reference frame PLL (CSRF-PLL) is proposed, whichcomposed of a T/4delay positive sequence (PS) PLL and a T/3&T/6delay negativesequence (NS) PLL. The CSRF-PLL can adapt to the unbalanced voltages and eliminatethe impacts of some specific harmonics. Characteristics of the DC port are analyzed viathe instantaneous power theory when the voltages are unbalanced, and then an unbalancedcontrol strategy based on the CSRF-PLL is designed by injecting a NS current into the PSreference current via a negative-sequence-to-positive-sequence transformation (NS-PST).It can well suppress the battery current ripples under weak grids.
     For the island operation mode, a mathematical model of the PCS is established first.To eliminate the resonance peak of the output filter, a detailed analysis of the virtualimpedance method (VIM) is given out in this paper, and it is concluded that the active damping method using resistor in series with inductor is best for the three-phase PCS. Thecontrol strategies are discussed under the nonlinear load conditions, and then a controlstrategy combined with the VIM and load current full feedforward is given out. Thediscrete time mathematical model of PCS is established. The relationship between thedegree-of-freedom (DOF) of controller and the DOF of system is discussed when one-step-delay is considered. It demonstrated that the DOF of system is always one more thanthe DOF of controller in the discrered inverter system. Therefore, a control strategy basedon the augmented state variable (ASV) is proposed. By introducing the output ofcontroller as an ASV, the desired control characteristic is obtained by means of poleassignment without adding any sensors.
     Contraposing the parallel-island operation mode, construction form of the parallelsystem and interaction mode of the data information are discussed. Study shows that whenthe independent dc-bus parallel scheme is adopted, the traditional load sharing strategybecomes invalid since the state of charge (SOC) of each battery is different. Therefore, apower allocation strategy (PAS) based on SOC and module capacity is designed, whichcan make full use of the total capacity of the parallel system. Then, the productionmechanism of the high-frequency harmonics circulating current (HFHCC) is analyzedwhen the SOC of each module is different, the mathematical statement and the relevantsuppression method is put up also. Finally, on the basis of the traditional centralizedcontrol scheme, an indirect control scheme with power errors based on the dq coordinatesdecoupling is proposed, and the impact of various parameters on the system stability andPDS is analyzed in detail.
     The basic principle of the active phase shift (APS) islanding detection method (IDM)is analyzed and a mathematical model of the three-phase PCS under islanding condition isestablished. Analysis shows that the islanding detection algorithm by using the grid-connected reactive current to control the frequency is more reliable, as it can decouple theeffects betweent the amplitude and frequency of voltage at PCC. An IDM based on activephase shift with positive feedback (APSPF) is proposed, which is simple to implement andcan be well adapted to different grid-connected control strategies for both single-stage anddouble-stage three-phase PCS. The none-detection zone (NDZ) of APSPF is described andits impact on reactive power control accuracy is discussed as well. Finally, we extendedthe APSPF IDM to the multiple PCS parallel system, and discussed the performances ofthe APSPF IDM in several different cases, study shows that the APSPF IDM is welladapted to the parallel system with good robustness.
引文
[1]杨孝纶.电动汽车技术发展趋势及前景.汽车科技,2007,6:10~13.
    [2] World Energy Outlook2007-Executive Summary. International Energy Agency,2007.
    [3] Jayasinghe S.S.G., Vilathgamuwa D.M., Madawala U.K.. Direct Integration of BatteryEnergy Storage Systems in Distributed Power Generation. IEEE Transactions onEnergy Conversion,2011,26(2):677~685.
    [4] Cao J., Emadi A.. A New Battery/Ultra Capacitor Hybrid Energy Storage System forElectric, Hybrid, and Plug-In Hybrid Electric Vehicles. IEEE Transactions on PowerElectronics,2012,27(1):122~132.
    [5]张文亮,武斌,李武峰,等.我国纯电动汽车的发展方向及能源供给模式的探讨,电网技术.2009,33(4):1~5.
    [6] Kristien Clement-Nyns, Edwin Haesen. The Impact of Charging Plug-In HybridElectric. IEEE Transactions on Power Systems,2010,25(1):371~380.
    [7]曾杰.可再生能源发电与微网中储能系统的构建与控制研究:[博士学位论文].武汉:华中科技大学图书馆,2009.
    [8] Bossart S.J., Bean J.E.. Metrics and benefits analysis and challenges for smart gridfield projects. In:2011IEEE Energytech,2011:1~5.
    [9] Su Wencong, Eichi H., Zeng Wente, et al. A Survey on the Electrification ofTransportation in a Smart Grid Environmen. IEEE Transactions on IndustrialInformatics,2012,8(1):1~10.
    [10]胡国珍.充放储一体化电站功率变换系统稳定分析与控制:[博士学位论文].武汉:华中科技大学图书馆,2012.
    [11]顾羽洁.电动汽车充放储一体化电站对电网影响的研究:[硕士学位论文].上海:上海交通大学图书馆,2012.
    [12]中国电动汽车充电站商业模式与配套政策.中国经济体制改革研究会公共政策研究中心,2010.
    [13] Wang Zhenpo, Liu Peng. Analysis on Storage Power of Electric Vehicle ChargingStation. Asia-Pacific Power and Energy Engineering Conference,2010:1~4.
    [14]黄李,张维戈,姜久春.2008年奥运会电动车充电站电气设计方案.建筑电气,2007,8(26):450~453.
    [15]康继光,卫振林,程丹明,等.电动汽车充电模式与充电站建设研究.电力需求侧管理,2009,9:64~66.
    [16]2011年-2012年中国电动车充电站市场调查研究报告.中华调研网,http://www.cmrr.com.cn/freereport/51554.html.
    [17]2011年-2012年中国电动汽车充电站产业研究分析.赛迪顾问股份有限公司,http://www.03964.com/read/bdf72e192207275510dab51d.html.
    [18]严干贵,谢国强,李军徽,等.储能系统在电力系统中的应用综述.东北电力大学学报.2011,(03):7~12.
    [19]袁智强,张征,祝达康.钠硫电池储能系统在上海电网的应用研究.供用电.2010,(03):1~4.
    [20] Iijima Y., Sakanaka Y., Kawakami N., et al. Development and field experiences ofNAS battery inverter for power stabilization of a51MW wind farm. In:2010International Power Electronics Conference (IPEC), Sapporo:2010,1837~1841.
    [21] Hawkins J.M., Robbins T.P.. A field trial of a vanadium energy storage system.Twenty-Third International Telecommunications Energy Conference (INTELEC2001),2001,10:652~656.
    [22] Carr J.A., Balda J.C., Mantooth H.A.. A survey of systems to integrate distributedenergy resources and energy storage on the utility grid. In: IEEE ENERGY, Atlanta,GA,2008,11:1~7.
    [23]王建高.青岛薛家岛电动汽车智能充换储放示范电站运行.科技日报:2011.07.
    [24] Hajizadeh A., Golkar M.A., Feliachi A.. Voltage Control and Active PowerManagement of Hybrid Fuel-Cell/Energy-Storage Power Conversion System underUnbalanced Voltage Sag Conditions. IEEE Transactions on Energy Conversion,2010,25(4):1195~1208.
    [25] Yoshino T., Inzunza R., Ambo T., et al. MW-range PCS for efficient operation oflarge PV plants-High efficiency and less maintenance works. The3rd IEEEInternational Symposium on Power Electronics for Distributed Generation Systems(PEDG).2012:249~253.
    [26] Li Xiao, Zhang Wenping, Du Chengrui, et al. Investigation to power conversiontopology for fuel cell power generation system. International Power ElectronicsConference (IPEC),2010:2637~2643.
    [27] Bai Sanzhong, Yu Du, Lukic S.. Optimum Design of an EV/PHEV Charging Stationwith DC Bus and Storage System. IEEE Energy Conversion Congress&Expo,2010.12:1178~1184.
    [28] Thoralf Winkler, Przemyslaw Komarnicki. Electric Vehicle Charging Stations inMagdeburg. IEEE Vehicle Power and Propulsion Conference,2009:60~65.
    [29] Vazquez S., Lukic S.M., Galvan E., et al. Energy Storage Systems for Transport andGrid Applications. IEEE Transactions on Industrial Electronics,2010,57(12):3881~3895.
    [30]李战鹰,胡玉峰,吴俊阳.大容量电池储能系统PCS拓扑结构研究.南方电网技术.2010,4(5):39~42.
    [31] Wildrick C.M., Lee F.C., Cho B.H., et al. A method of defining the load impedancespecification for a stable distributed power system. IEEE Transactions on PowerElectronics,1995,10(3):280~285.
    [32] Feng Xiaogang, Liu Jinjun, Lee F.C.. Impedance specifications for stable DCdistributed power systems. IEEE Transactions on Power Electronics,2002,17(2):157~162.
    [33] Dixon J., Nakashima I., Arcos E.F., et al. Electric vehicle using a combination ofultracapacitors and ZEBRA battery. IEEE Transactions on Industrial Electronics,2010,57(3):943~949.
    [34] Tan N.M.L., Inoue S., Kobayashi A., et al. Voltage balancing of a320V,12F electricdouble-layer capacitor bank combined with a10-kW bidirectional isolated DC-DCconverter. IEEE Transactions on Power Electronics,2008,23(6):2755~2765.
    [35] Lopez O., Teodorescu R., Freijedo F., et al. Leakage Current Evaluation of aSingle-Phase Transformerless PV Inverter Connected to the Grid. Applied PowerElectronics Conference(APEC)2007:907~912.
    [36] Kerekes T., Teodorescu R., Borup U. Tranformerless Photovolatic InvertersConnected to the Grid. Applied Power Electronics Conference(APEC),2007:1733~1737.
    [37] Liu Xiong, Wang Peng, Loh P.C.. A Hybrid AC/DC Microgrid and Its CoordinationControl. IEEE Transactions on Smart Grid,2011,2(2):278~286.
    [38] Xu Lie, Chen Dong. Control and Operation of a DC Microgrid with VariableGeneration and Energy Storage. IEEE Transactions on Power Delivery,2011,26(4):2513~2522.
    [39] Kai Sun, Li Zhang, Yan Xing, et al. A Distributed Control Strategy Based on DC BusSignaling for Modular Photovoltaic Generation Systems with Battery EnergyStorage. IEEE Transactions on Power Electronics,2011,26(10):3032~3045.
    [40]沈国桥.燃料电池并网逆变技术研究:[博士学位论文].杭州:浙江大学图书馆,2008.
    [41] IEEE Standard for Interconnecting Distributed Resources with Electric PowerSystems. IEEE Std1547-2003,2003:1~16.
    [42] IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems.IEEE Std929-2000.
    [43] Kojabadi H.M., Yu B., Gadoura I.A., et al. A novel DSP-based current-controlledPWM strategy for single phase grid connected inverters. IEEE Transactions onPower Electronics.2006,21(4):985~993.
    [44]郭小强,邬伟扬,赵清林.新型并网逆变器控制策略比较和数字实现.电工技术学报.2007,22(5):111~116.
    [45]刘飞.三相并网光伏发电系统的运行控制策略:[博士学位论文].武汉:华中科技大学图书馆,2008.
    [46] Liu Fei, Zhou Yan, Duan Shanxu, et al. Parameter Design of a Two-Current-LoopController Used in a Grid-Connected Inverter System With LCL Filter. IEEETransactions on Industrial Electronics,2009,56(11):4483~4491.
    [47] Shen Guoqiao, Zhu Xuancai, Zhang Jun, et al. A New Feedback Method for PRCurrent Control of LCL-Filter-Based Grid-Connected Inverter, IEEE Transactionson Industrial Eletronics,2010,57(6):2033~2041.
    [48] Wang X.H., Ruan X.B., Liu S.W., et al. Full Feedforward of Grid Voltage forGrid-Connected Inverter With LCL Filter to Suppress Current Distortion Due toGrid Voltage Harmonics. IEEE Transactions on Power Electronics,2010,25(12):3119~3127.
    [49] Suul J.A., Undeland T.. Flexible Reference Frame Orientation of Virtual Flux-basedDual Frame Current Controllers for Operation in Weak Grids. IEEE TrondheimPowerTech, Piscataway, NJ, USA,2011:1~8.
    [50]徐海亮,章玮,胡家兵,等.电网电压不平衡及谐波畸变时基波电压同步信号的检测.电力系统自动化,2012,36(5):90~95.
    [51] Suh Y., Lipo T.A.. Modeling and Analysis of Instantaneous Active and ReactivePower for PWM AC/DC Converter under Generalized Unbalanced Network. IEEETransactions on Power Delivery,2006,21(3):1530~1540.
    [52] Yin B., Oruganti R., Panda S.K., et al. An output-power-control strategy for athree-phase PWM rectifier under unbalanced supply conditions. IEEE Transactionson Industrial Electronics,2008,55(5):2140~2151.
    [53]郑征.双PWM变频器及其协调控制技术研究:[博士学位论文].北京:中国矿业大学,2011.
    [54] Neves F.A.S., de Souza H.E.P., Cavalcanti M.C., et al. Digital Filters for FastHarmonic Sequence Component Separation of Unbalanced and DistortedThree-Phase Signals. IEEE Transactions on Industrial Electronics,2012,59(10):3847~3859.
    [55] Suh Y., Lipo T.A.. A Control Scheme of Improved Transient Response for PWMAC/DC Converter under Generalized Unbalanced Operating Conditions.35thAnnual IEEE Power Eleetronics Specialists Conference (PESC), Aachen, Germany,2004:189~195.
    [56] Mojiri M., Karimi-Ghartemani M., Bakhshai A.. Estimation of Power SystemFrequency Using an Adaptive Notch Filter. IEEE Transactions on Instrumentationand Measurement,2007,56,(6):2470~2477.
    [57] Jung Sung-Yoon, Nam K.. PMSM Control Based on Edge-Field Hall Sensor SignalsThrough ANF-PLL Processing. IEEE Transactions on Industrial Electronics,2011,58(11):5121~5129.
    [58] Rolim L.G.B., da Costa Jr.D.R., Aredes M.. Analysis and software implementation ofa robust synchronizing PLL circuit based on the pq theory. IEEE Transactions onIndustrial Electronics,2006,53(6):1919~1926.
    [59] Rodriguez P., Luna A., Candela I., et al. Multiresonant Frequency-locked Loop forGrid Synchronization of Power Converters under Distorted Grid Conditions. IEEETransactions on Industrial Electronics,2011,58(1):127~138.
    [60] Jan S., Massimo B., Ambra S.. Practical Implementation of Delayed SignalCancellation Method for Phase-Sequence Separation. IEEE Transactions on PowerDelivery,2007,22(1):18~26.
    [61] Rodriguez P., Pou J., Bergas J., et al. Decoupled double synchronous reference framePLL for power converters control. IEEE Transactions on Power Electronics,2007,22(2):584~592.
    [62] Neves F.A.S., Cavalcanti M.C., de Souza H.E.P., et al. A Generalized Delayed SignalCancellation Method for Detecting Fundamental-Frequency Positive-SequenceThree-Phase Signals. IEEE Transactions on Power Delivery,2010,25(3):1816~1825.
    [63] Wang Y.F., Li Y.W.. Grid synchronization PLL based on cascaded delayed signalcancellation. IEEE Transactions on Power Electronics,2011,26(7):1987~1997.
    [64] Wang Y.F., Li Y.W.. Analysis and Digital Implementation of Cascaded Delayed-Signal-Cancellation PLL. IEEE Transactions on Power Electronics,2011,26(4):1067~1080.
    [65] Wang Y.F., Li Y.W.. Fast harmonic detection based on cascaded delayed signalcancellation PLL. IEEE Energy Conversion Congress and Exposition (ECCE),2011:1094~1101.
    [66]谭广军,郭渊源,张晓华.电网不平衡条件下三相电压型PWM整流器非线性控制研究.电力电子,2008,3:19~34.
    [67] Magueed F.A., Svensson J.. Control of VSC connected to the grid through LCL-filterto achieve balanced currents. Industry Applications Conference,2005,10:572~578.
    [68] Enjeti P.N., Choudhury S.A.. A new control strategy to improve the performance of aPWM AC to DC converter under unbalanced operating conditions. IEEETransactions on Power Electronics,1993,8(4):493~500.
    [69] Rioual P., Pouliquen H., Louis J.P.. Regulation of a PWM Rectifier in theUnbalanced Network State Using a Generalized Model. IEEE Transactions onPower Electronics.1996,11(3):495~502.
    [70]张兴,季建强,张崇巍,等.基于内模控制的三相电压型PWM整流器不平衡控制策略研究.中国电机工程学报,2005,25(13):51~56.
    [71]丁杰.电网不平衡条件下LCL-VSR控制策略研究:[硕士学位论文].合肥:合肥工业大学图书馆,2011.
    [72] Stankovic A.V., Lipo T.A.. A novel control method for input output harmonicelimination of the PWM boost type rectifier under unbalanced operating conditions.IEEE Transactions on Power Electronics,2001,16(5):603~611.
    [73] Song H.S., Nam K.. Dual current control scheme for PWM converter underunbalanced input voltage conditions. IEEE Transactions on Industrial Electronics,1999,46(5):953~959.
    [74] Suh Y., Tijeras V., Lipo T.A.. A nonlinear control of the instantaneous power in dqsynchronous frame for PWM AC/DC converter under generalized unbalancedoperating conditions.37th IAS Annual Meeting, Industry Applications Conference,2002:1189~1196.
    [75] Li Z.X., Wang P., Li Y.H., et al. Control of Three-phase PWM Rectifier underUnbalanced Input Voltage Conditions without Sequential Component Extraction. In:14th EPE/PEMC,2010:179~184.
    [76]彭力.基于状态空间理论的PWM逆变电源控制技术研究:[博士学位论文].武汉:华中科技大学图书馆,2004.
    [77] Lin B.R., Wei T.C.. Implementation of a single-phase AC/AC converter based onneutral-point-clamped topology. IEEE Transactions on Aerospace and ElectronicSystems.2003,39(2):625~634.
    [78] Jung S.L., Huang H.S., Chang M.Y., et al. DSP-Based Multiple-Loop ControlStrategy for Single-Phase Inverters Used in AC Power Sources. IEEE PESC Conf.Rec.,1997:706~712.
    [79]舒为亮,张昌盛,段善旭,等.逆变电源PI双环数字控制技术研究.电工电能新技术,2005,24(2):52~54.
    [80]刘新民,邹旭东,康勇,等.带状态观测器的逆变器增广状态反馈控制和重复控制.电工技术学报.2007,22(01):91~95.
    [81] Koga T., Hayashi H., Nakano M., et al. Dead beat control for PWM inverter. inProceedings of the20thInternational Conference on Industrial Electronics,1994:549~554.
    [82] Ide T, Yokoyama T. A study of deadbeat control for three phase PWM inverter usingFPGA based hardware controller. IEEE Power Electronics Specialists Conference.2004:50~53.
    [83] Mattavelli P.. An improved deadbeat control for UPS using disturbance observers.IEEE Transactions on Industrial Electronics,2005,52(1):206~212.
    [84]张凯.基于重复控制原理的CVCF-PWM逆变器波形控制技术研究:[博士学位论文].武汉:华中科技大学图书馆,2000.
    [85] Yeh S.C., Tzou Y.Y.. Adaptive repetitive control of a PWM inverter for AC voltageregulation with low harmonic distortion. IEEE Power Electronics SpecialistConference (PESC),1995:18~22.
    [86] Tzhou Y.Y., Jung S.L., Yeh H.C.. Adaptive Repetitive Control of PWM Inverters forVery Low THD AC-Voltage Regulation with Unknown Loads. IEEE Transactions onPower Electronics,1999,14(5):973~981.
    [87] Chun T.W., Choi M.K.. Development of adaptive hysteresis band current controlstrategy of PWM inverter with constant switching frequency. IEEE Applied PowerElectronics Conference(APEC).1996:3~7.
    [88] Carpita M, Marchesoni M. Experimental study of a power conditioning using slidingmode control. IEEE Transactions on Power Electronics,1996,11(5):731~742.
    [89] Lin B.R., Hoft R.G.. Real-time digital control of PWM inverter with fuzzy logiccompensator for nonlinear loads.28th Annual Meeting of the IEEE IndustryApplications Conference,1993:862~869.
    [90] Li Jian, Kang Yong, Chen Jian. A novel fuzzy-repetitive control scheme for inverters.IEEE International Symposium Intelligent Control,2002:104~109.
    [91]胡雪峰,谭国俊.应用神经网络和重复控制的逆变器综合控制策略.中国电机工程学报,2009,29(6):43~47.
    [92]孔雪娟.数字控制PWM逆变电源关键技术研究:[博士学位论文].武汉:华中科技大学图书馆,2005.
    [93]彭力,张凯,康勇,等.数字控制PWM逆变器性能分析及改进.中国电机工程学报,2006,26(18):65~70.
    [94] Mattavelli P., Polo F., Dal Lago F., et al. Analysis of control-delay reduction for theimprovement of UPS voltage-loop bandwidth. IEEE Transactions on IndustrialElectronics,2008,55(8):2903~2911.
    [95] Deng H., Oruganti R., Srinivasan D.. Adaptive digital control for UPS inverterapplications with compensation of time delay. IEEE Applied Power ElectronicsConference and Exposition.2004:450~455.
    [96] Yokoyama T., Kawamura A.. Disturbance observer based fully digital controlledPWM inverter for CVCF operation. IEEE Transactions on Power Electronics,1994,9(5):473~480.
    [97]郭卫农,陈坚.基于状态观测器的逆变器数字双环控制技术研究.中国电机工程学报,2002,22(09):64~68.
    [98]熊健,史鹏飞,张凯,等.基于积分环节电压微分反馈的逆变器重复控制策略.电工技术学报.2007,22(01):85~90.
    [99] Zhang K., Peng L., Kang Y., et al. State-feedback-with-integral control plusrepetitive control for UPS inverters. IEEE Applied Power Electronics Conferenceand Exposition.2005:553~559.
    [100]唐诗颖,彭力,康勇.脉宽调制逆变电源数字双环控制技术研究.中国电机工程学报,2009,29(15):55~60.
    [101]段善旭.模块化逆变器全数字化并联控制技术研究:[博士学位论文].武汉:华中科技大学图书馆,1999.
    [102]张宇.三相逆变器动态特性及其并联系统环流抑制的研究:[博士学位论文].武汉:华中科技大学图书馆,2005.
    [103] Siri K., Lee C.Q., Wu T.F.. Current Distribution Control for Parallel ConnectedConverters. II. IEEE Transactions on Aerospace and Electronic Systems,1992,28(3):841~851.
    [104] Prodanovie M., Green T.C., Mansir H.. A Survey of Control Methods for ThreePhase Inverters in Parallel Connection. IEE International Conference on PowerElectronics and Variable Speed Drives,2000:472~477.
    [105] Tan K.T., Peng X.Y., So P.L., et al. Centralized Control for Parallel Operation ofDistributed Generation Inverters in Microgrids. IEEE Transactions on Smart Grid,2012, pp (99):1~11.
    [106] Lee W.C., Lee T.K., Lee S.H., et al. A master and slave control strategy for paralleloperation of three-phase UPS systems with different ratings. IEEE Transactions onPower Electronics,2002,17(1):25~32.
    [107]肖岚,胡文斌,蒋渭忠,等.基于主从控制的逆变器并联系统研究.东南大学学报(自然科学版),2002,32(1):133~137.
    [108]姜桂宾,裴云庆,王峰,等. SPWM逆变电源的自动主从并联控制技术.电工电能新技术,2003,22(3):16~20.
    [109] Schonknecht A., de Doncker R.W.. Distributed Control Scheme for ParallelConnected Soft-Switching High-Power High-Frequency Inverters. In: IEEE PESCConf. Rec.,2002,1395~1400.
    [110] Ramos R., Biel D., Guinjoan F., et al. Distributed control strategy for parallel-connected inverters. Sliding mode control approach and FPGA-basedimplementation. In: IEEE IECON Conf. Rec.,2002,1:111~116.
    [111]孔雪娟,王荆江,彭力,等.采用SVPWM的三相逆变电源的分散逻辑并联运行.中国电机工程学报,2003,23(6):81~86.
    [112]段善旭,刘邦银,康勇,等.基于分散逻辑的UPS逆变电源并联控制技术.电力电子技术,2004,2:56~58.
    [113] Wu T.F., Chen Y.K., Huang Y.H..3C strategy for inverters in parallel operationachieving an equal current distribution. IEEE Transactions on Industrial Electronics,2000,47(2):273~281.
    [114]陈宏,胡育文.逆变电源并联技术.电工技术学报.2002,17(5):55~59.
    [115] Kim J.W., Choi H.S., Cho B.H.. A novel droop method for converter paralleloperation. IEEE Transactions on Power Electronics,2002,17(1):25~32.
    [116] Brabandere K., Bolsens B., Keybus J., et al. A voltage and frequency droop controlmethod for parallel inverters. IEEE Transactions on Power Electronics,2007,22(4):1107~1115.
    [117] Liu Quanwei, Li Linjue, Peng Hao, et al. Improved Droop Control for ParallelInverters in Microgrids, IEEE7th International Power Electronics and MotionControl Conference,2012:2277~2281.
    [118]林新春. UPS无互联线并联控制技术研究:[博士学位论文].武汉:华中科技大学图书馆,2003.
    [119] Guerrero J.M., Matas J., de Vicuna L.G., et al. Wireless-Control Strategy for ParallelOperation of Distributed-Generation Inverters. IEEE Transactions on IndustrialElectronics,2006,53(5):1461~1470.
    [120]张丹红,李兵,刘开培.无互连线逆变器并联控制的一种改进下垂算法.武汉大学学报(工学版),2006,39(5):97~101.
    [121]阚加荣,谢少军,吴云亚.无互联线并联逆变器的功率解耦控制策略.中国电机工程学报,2008,28(21):40~45.
    [122] Roslan A.M., Ahmed K.H., Finney S.J., et al. Improved Instantaneous AverageCurrent-Sharing Control Scheme for Parallel-Connected Inverter Considering LineImpedance Impact in Microgrid Networks. IEEE Transactions on Power Electronics,2011,26(3):702~716.
    [123] Hua Ming, Hu Haibing, Xing Yan, et al. Multilayer Control for Inverters in ParallelOperation without Intercommunications. IEEE Transactions on Power Electronics,2012,27(8):3651~3663.
    [124] Yao W., Chen M., Matas J., et al. Design and Analysis of the Droop Control Methodfor Parallel Inverters Considering the Impact of the Complex Impedance on thePower Sharing. IEEE Transactions on Industrial Electronics,2011,58(2):576~588.
    [125]余蜜.光伏发电并网与并联关键技术研究:[博士学位论文].武汉:华中科技大学图书馆,2009.
    [126] Zhang Y., Yu M., Liu F.R., et al. Instantaneous Current-Sharing Control Strategy forParallel Operation of UPS Modules Using Virtual Impedance. IEEE Transactions onPower Electronics,2013,28(1):432~440.
    [127]张尧.基于逆变器并联系统的网络控制技术及其相关问题的研究:[博士学位论文].杭州:浙江大学图书馆,2010.
    [128] Sha Deshang, Guo Zhiqiang, Liao XiaoZhong. Control Strategy for Input-Parallel-Output-Parallel Connected High-Frequency Isolated Inverter Modules. IEEETransactions on Power Electronics,2011,26(8):2237~2248.
    [129] Sha Deshang, Deng Kai, Guo Zhiqiang, et al. Control Strategy for Input-Series-Output-Parallel High-Frequency AC Link Inverters. IEEE Transactions on IndustrialElectronics,2012,59(11):4101~4111.
    [130]汪洪亮.逆变器并联系统若干关键问题研究:[博士学位论文].武汉:华中科技大学图书馆,2011.
    [131] Velasco D., Trujillo C.L., Garcera G., et al. Review of anti-islanding techniques indistributed generators. Renewable and Sustainable Energy Reviews,2010,14:1608~1614.
    [132]程启明,王映斐,程尹曼,等.分布式发电并网系统中孤岛检测方法的综述研究.电力系统保护与控制,2011,39(6):147~156.
    [133]赵宁.三相正弦波逆变器并网及孤岛检测技术研究:[硕士学位论文].秦皇岛:燕山大学图书馆,2009.
    [134]光伏系统并网技术要求.中华人民共和国国家标, GB/T19939-2005.
    [135]侯梅毅.分布式同步发电机的孤岛检测原理与实现:[博士学位论文].济南:山东大学图书馆,2010.
    [136] Wang W.C., Kliber J., Zhang G.B., et al. A Power Line Signaling Based Scheme forAnti-Islanding Protection of Distributed Generators: Part II: Field Test Results.IEEE Transactions on Power Delivery,2007,22(3):1767~1772.
    [137] Wang W.C., Kliber J., Xu W.. A Scalable Power-Line-Signaling-Based Scheme forIslanding Detection of Distributed Generators. IEEE Transactions on PowerDelivery,2009,24(2):903~909.
    [138]薛明雨.光伏并网发电系统之孤岛检测技术研究:[硕士学位论文].武汉:华中科技大学图书馆,2008.
    [139]牛冲宣.微电网的孤岛检测与孤岛划分:[硕士学位论文].天津:天津大学图书馆,2008.
    [140] Zeineldin H.H., Kirtley J.L.. Performance of the OVP/UVP and OFP/UFP Methodwith Voltage and Frequency Dependent Loads. IEEE Transactions on PowerDelivery,2009,24(2):772~778.
    [141] Huang S.J., Pai. F.S.. A new approach to islanding detection of dispersed generatorswith self-commutated static power converters. IEEE Transactions on PowerDelivery,2000,15(2):500~507.
    [142] Samantaray S.R., El-Arroudi K., Joos G., et al. A Fuzzy Rule-Based Approach forIslanding Detection in Distributed Generation. IEEE Transactions on PowerDelivery,2010,25(3):1427~1433.
    [143] Lidula N.W.A., Rajapakse A.D.. A Pattern Recognition Approach for DetectingPower Islands Using Transient Signals-Part I: Design and Implementation. IEEETransactions on Power Delivery,2010,25(4):3070~3077.
    [144] El-Arroudi K., Joos G., Kamwa I., et al. Intelligent-Based Approach to IslandingDetection in Distributed Generation. IEEE Transactions on Power Delivery,2007,22(2):828~835.
    [145]刘芙蓉.并网型户用光伏系统的孤岛检测技术研究:[博士学位论文].武汉:华中科技大学图书馆,2008.
    [146]刘芙蓉,康勇,段善旭,等.主动移频式孤岛检测方法的参数优化.中国电机工程学报.2008,28(1):95~99.
    [147]刘芙蓉,王辉,康勇,等.滑模频率偏移法的孤岛检测盲区分析.电工技术学报.2009,24(2):178~182.
    [148] Zeineldin H.H., Kennedy S.. Sandia Frequency-Shift Parameter Selection toEliminate Nondetection Zones. IEEE Transactions on Power Delivery,2009,24(1):486~487.
    [149] Zeineldin H.H., Salama M.M.A.. Impact of Load Frequency Dependence on theNDZ and Performance of the SFS Islanding Detection Method. IEEE Transactionson Industrial Electronics,2011,58(1):139~146.
    [150] Wang X.Y., Freitas W., Xu W., et al. Impact of DG Interface Controls on the SandiaFrequency Shift Antiislanding Method. IEEE Transactions on Power Conversion,2007,22(3):792~794.
    [151] Wang X.Y., Freitas W.. Impact of Positive-Feedback Anti-Islanding Methods onSmall-Signal Stability of Inverter-Based Distributed Generation. IEEE Transactionson Energy Conversion,2008,23(3):923~931.
    [152]王志峰.光伏发电系统并网控制及其孤岛检测:[硕士学位论文].武汉:华中科技大学图书馆,2007.
    [153]王辉.户用光伏并网系统设计及孤岛检测技术研究:[硕士学位论文].武汉:华中科技大学图书馆,2007.
    [154]刘芙蓉,康勇,王辉,等.主动移相式孤岛检测的一种改进的算法.电工技术学报.25(3):172~176.
    [155] Liu F.R., Kang Y., Zhang Y., et al. Improved SMS islanding detection method forgrid-connected converters. Renewable Power Generation, IET.2010,4(1):36~42.
    [156] Timbus A.V., Teodorescu R., Blaabjerg F., et al. ENS detection algorithm and itsimplementation for PV inverters. IEE Electric Power Applications,2006,153(2):206~212.
    [157] Palethorpe B., Sumner M., Thomas D.W.P.. Power system impedance measurementusing a power electronic converter. Ninth International Conference on Harmonicsand Quality of Power,2000,1:208~213.
    [158] Ishigure N., Matsui K., Ueda F.. Development of an on-line impedance meter tomeasure the impedance of a distribution line. IEEE International Symposium onIndustrial Electronics,2001,1:549~554.
    [159] Asiminoaei L., Teodorescu R., Blaabjerg F., et al. A new method of on-line gridimpedance estimation for PV inverter. Nineteenth Annual IEEE Applied PowerElectronics Conference and Exposition (APEC),2004.3:1527~1533.
    [160] O'Kane P., Fox B.. Loss of mains detection for embedded generation by systemimpedance monitoring. Sixth International Conference on Developments in PowerSystem Protection,1997:95~98.
    [161]王一迪.基于有源负序电流扰动的三相并网逆变器孤岛检测研究:[硕士学位论文].秦皇岛:燕山大学图书馆,2011.
    [162] Zeineldin H.H., Kirtley J.L.. A Simple Technique for Islanding Detection withNegligible Nondetection Zone. IEEE Transactions on Power Delivery,2009,24(2):779~786.
    [163] Zeineldin H.H.. A Q-f Droop Curve for Facilitating Islanding Detection of Inverter-Based Distributed Generation. IEEE Transactions on Power Electronics,2009,24(3):665~673.
    [164] Alaboudy A.H.K., Zeineldin H.H.. Islanding Detection for Inverter-Based DGCoupled With Frequency-Dependent Static Loads. IEEE Transactions on PowerDelivery,2011,26(2):1053~1063.
    [165]刘方锐,余蜜,张宇,等.主动移频法在光伏并网逆变器并联运行下的孤岛检测机理研究.中国电机工程学报.2009,29(12):47~51.
    [166] Lopes L.A.C., Zhang Y.Z.. Islanding Detection Assessment of Multi-InverterSystems With Active Frequency Drifting Methods. IEEE Transactions on PowerDelivery,2008,23(1):480~486.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700