用户名: 密码: 验证码:
SP-70型全液压顶驱系统动力学仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
顶部驱动钻井系统(Top Drive Drilling System,简称TDS)自1982年诞生以来,在海洋和陆地钻机上都得到了广泛的应用。与常规的钻井装置相比,顶部驱动钻井装置更加安全可靠,特别适合于在深井、超深井、水平井以及斜井等高要求和复杂工况下工作。
     目前,世界上正在使用的和生产的TDS,有4种驱动形式:液压驱动形式;AC-SCR-DC电驱动形式;交流(AC)变频感应电动机驱动形式;AC变频永磁电动机驱动形式。国内外的主流产品,如Varco的TDS系列,北京石油机械厂的DQ70BS系列TDS都采取了AC变频感应电机驱动。
     AC变频技术在顶驱的应用上比较成熟,然而随着电液比例控制技术的发展,将以电液比例控制技术为代表的液压技术应用于顶驱系统有着其独特的优势,必将成为顶驱未来发展的一个趋势。将电液比例技术应用于TDS系统,即设计一套全液压驱动的TDS可大幅度提高我国科学钻探的技术装备水平,并将对我国钻掘机械方面产生深远的影响,具有重要战略意义。
     鉴于电液比例技术为代表的液压技术应用于顶驱的诸多优势,本课题提出设计一套与7000m交流变频顶驱性能相当的液压顶驱,并且要求其能够满足实施金刚石钻进工艺的要求。
     设计具体要求如下:(1)能够适应软到硬的任何地层;(2)能够实施金刚石钻进和牙轮钻进;(3)终孔直径为Φ152;(4)孔深能够达到7000m;(5)采用直径Φ89,Φ114,Φ127的钻杆;(6)能够实现全孔连续取心和测井(7)岩心直径大于Φ90。通过参考国内外主流7000m顶驱的设备,以及岩心钻探的具体要求,确定了全液压顶驱的主要工作参数。包括:(1)回转速度为0~300rpm无级调速;(2)钻井扭矩为50kN m;(3)顶驱功率850kW。
     通过研究技术较成熟交流变频TDS的结构,了解了TDS的功能以及工作原理。参考交流变频TDS的结构,对7000m全液压TDS进行了初步设计,命名为SP-70全液压顶驱,并绘制了SP-70全液压顶驱的三维实体模型,和液压回路图。
     以实现顶驱的功能为目标,分别设计了水龙头-钻井马达总成、导向滑车及伸展(平行四边形)机构总成、管子处理装置和平衡系统,将各部分组装,形成了全液压顶驱的主体机械系统。
     然后针对机械系统要实现的动作的控制,分别设计主轴回转系统回路、倾斜机构回路、动力旋转头液压马达控制回路、刹车回路、遥控内防喷器控制回路、背钳油缸控制回路、平衡油缸控制回路和伸展油缸控制回路。并将以上回路进行了集成。
     对SP-70全液压顶驱的动作分解成9个动作,并运用Solidworks Motion软件对分解的动作进行了运动分析,得到了相关零部件的绞点反作用力曲线图。为SP-70全液压顶驱的优化设计、有限元分析以及液压油缸的选型提供了依据。通过运动分析得到的绞点反作用力曲线图及其作用列于下:
     侧摆吊卡倾斜油缸绞点反作用力曲线图,可用于侧摆吊卡倾斜油缸的选型。侧摆吊卡吊环绞点力曲线图,可作为吊环强度有限元分析的载荷条件。伸展(平行四边形)机构的伸展油缸绞点反作用力曲线图,可用于伸展油缸选型。伸展机构杆件绞点反作用力曲线图,可用于伸展机构杆件的进一步设计和强度校核有限元分析。吊卡夹紧油缸绞点反作用力曲线图,这个曲线在修正后可用于吊卡夹紧油缸的选型。动力旋转头驱动马达扭矩变化曲线图,在经过实验修正后,可用于动力旋转头马达选型依据,也可以作为旋转头齿轮副强度校核的依据。
     在运动分析实施过程中,体会到:动力学分析软件在使用过程中应该更加灵活。同时,应该正视其局限性,通过更多的工具实现仿真分析。
     对SP-70全液压顶驱的主轴驱动系统建立了系统仿真模型,运用AMESim软件对主轴传动系统的工作过程进行了系统仿真模拟,得到以下结论:
     (1)在这个模型上能够实现现有交流变频TDS普遍具备的恒扭矩和恒功率控制
     (2)对主轴系统在正常钻进和载荷突变的情况下进行了模拟,在正常钻进时,系统在保持转速不变的情况下,系统油路能够自动调节工作压力,使扭矩达到负载载荷的强度,保证系统正常运行;在载荷突变的情况下,系统驱动扭矩上升到钻杆柱能承受的最大安全扭矩后,安全阀溢流,使驱动载荷不再变大,保证钻杆柱不被扭断而出现事故。
     通过有限元分析软件ANSYS,对主轴进行了有限元静态力学分析和疲劳分析,验证了主轴设计强度符合使用和设计要求。并对齿轮副进行了模态分析,得到了齿轮副低阶固有频率和对应主振型,可为齿轮的设计提供参考。
     静态力学分析以所设计的主轴模型为载体,定义了材料特性、零部件之间的接触、约束,添加的载荷为TDS工作过程中最大的静力载荷和最大扭矩,分别为431.2kN和80kN m。得到的最大应力为392MPa,最大应力出现在防松机构与主轴连接处;
     鉴于主轴在工作过程中,载荷并不总是静荷载,大多数情况下,主轴都是处于载荷波动的工作状态,因此对主轴进行了疲劳分析。分析过程中,对主轴载荷波动进行了处理,对材料的应力寿命曲线(S-N曲线)进行了计算和设置,得到疲劳分析的结果显示,主轴的承受的应力幅并不大,仅为39MPa,主轴寿命达到5.208×106个周期,大于设计寿命的5×104个周期(5年);
     齿轮副在工作过程中,可能受到振动的影响,因此对齿轮副进行了振动分析。得到了齿轮副前6阶振型的固有频率,以及固有频率对应的振型图。在齿轮副设计中要充分考虑齿轮固有频率和振型,使齿轮固有频率远离TDS工作频率,避免发生共振。
     虚拟样机技术日益成熟,在机械设计过程中,虚拟样机技术充分体现了其低成本、高时效的优越性,在今后的设计工作中,虚拟样机技术的应用应该进一步深化和推广。同时要认识到,虚拟样机技术的应用可以减少物理样机的使用数量,降低成本,但不能完全替代物理样机。
Top Drive Drilling System (TDS), since it was born in1982, have been widelyused in marine and land rigs. Compared with conventional drilling tools, TDS ismore secure and reliable, and especially suitable for high demand and complexconditions drilling such as deep, ultra-deep wells, horizontal wells and inclinedwells.
     Currently, there are4types of TDS:①type of hydraulic drive TDS;②type ofAC-SCR-DC electric drive TDS;③type of AC variable frequency inductionmotor drive TDS;④type of AC frequency permanent magnet motor drive TDS.Mainstream products at home and abroad, such as TDS series of Varco, DQ70BSseries of Beijing Petroleum Machinery Factory are using the AC variable frequencyinduction motor.
     AC variable frequency technology is maturely applicated in TDS. As theproportion of electro-hydraulic control technology development, electro-hydraulicproportional control technology, as represented by hydraulic technology, applied toTDS, has its unique advantages, will be the future development trend.We believethat, make the electro-hydraulic proportional technology used in TDS, that is to saythe design of a hydraulic drive TDS can greatly improve the technical level of China's scientific drilling, and make a profound impact on China's diamond diggingmachinery, also has the important strategic sense.
     Electro-hydraulic proportional control technology, as represented by hydraulictechnology, applied to TDS, has its unique advantages. The topics raised to design ahydraulic TDS that has similar performance to7000m AC variable frequency TDS,and able to meet the requirements of the implementation of the diamond drillingprocess.
     TDS design based on specific requirements are as follows:(1) Formationconditions: any soft to hard strata;(2) Drilling methods and techniques: diamonddrilling, roller cone drilling;(3) Hole depth:7000m;(4) The final hole diameter: Φ152;(5) Drill pipe diameter:Φ89,Φ114,Φ127;(6) Full hole continuous coringand logging;(7) Core diameter: greater than Φ90. By reference to domestic andforeign mainstream7000m TDS equipment, And the specific requirements of coredrilling, the main working parameters of the hydraulic TDS should be determined asfollows:(1) Rotary speed is0~300rpm stepless speed regulation;(2) Drilling torqueis50kN m;(3) Power to850kW.
     This article has carried on the preliminary design of hydraulical drive TDS,named for the SP-70hydraulic drive TDS. Dimensional solid model and Hydrauliccircuit diagram of SP-70hydraulic drive TDS have been built. A carrier is providedfor the TDS further design and optimization
     Take realizes the function of TDS, faucet-drilling motor assembly, guide blocksand parallelogram mechanism assembly, pipe handler and balance system aredesigned. The various parts fit together and hydraulic TDS is formatted.
     For controlling the motion of mechanical systems to achieve, spindle rotationsystem circuit, tilt mechanism circuit, rotary power head hydraulic motor controlcircuit, brake circuit, IBOP control circuit, back clamp cylinder control circuit,balance cylinder control circuit and stretching cylinder control circuit are designed,and the above circuits are integrated.
     A decomposition of the TDS action has been conducted, and the movementanalysis to the decomposition movement has been carried on. The twisted pointforce curve of related parts is obtained. A basis for optimize design, finite elementanalysis and the selection of hydraulic cylinders have been provided.
     Reaction force curves of twist points and their roles are listed in the following:(1) Reaction force curves of twist points of swing cylinders of side swing elevator.It can be used for the selection of the cylinders;(2) Reaction force curves of twistpoints of rings of side swing elevator. It can be used as load conditions for the finiteelement analysis of the rings;(3) Reaction force curves of twist points of extensioncylinders of extension mechanism(The parallelogram mechanism). It can be used forthe slection of the extension cylinders;(4) Reaction force curves of twist points ofextension rods of extension mechanism. It can be used for further design of the rod parts and strength check of the finite element analysis;(5) Reaction force curves oftwist points of clamping cylinder of elevator. It can be used for the selection of theclamping cylinder after revised;(6) Drive motor torque curve of power rotatinghead. It can be used for the slection of the drive motor and for the strength check ofrotating head gear pair.
     During the implementation of the dynamics analysis, we realized: dynamicsanalysis software should be flexiblely used. At the same time, address its limitations,and use more tools for simulation analysis.
     The system simulation model of spindle drive chain has been established andthe system simulation analysis has been conducted on it. Following conclusions hasbeen obtained:
     Constant power control and constant torque control can be realized on thismodel;
     The simulation analysis of normal drilling conditions and the conditions ofmeeting stuck drill has been conducted. During normal drilling, under the conditionof keeping rotational speed, the system oil duct automatically adjust the workingpressure to enable the torque to achieve the load intensity, to ensure the normaloperation of the system. Under the condition of load mutation, system driving torquerises to maximum safe torque of the drill pipe, then safety valve overflows, the driveload is no longer rising, ensure that the drill pipe column is not broken.
     At last, we proved that the spindle drive system can meet the designrequirements with the good stability and security.
     Applied the finite element analysis software ANSYS to analyze the main partsin the case of the static mechanical analysis, fatigue analysis and vibration (modal)analysis. The spindle strength has been verified. Vibration analysis of gear pair hasbeen conducted. Conclusions of FEA are listed as following:
     Static mechanical analysis: use the designed spindle model for simulation; setmaterial properties, contact and constraints between the parts; the added loads aremaximum static load and maximum torque during the TDS working, they are 431.2kN and80kN m. Get a maximum stress of392MPa. Maximum stress occurs atthe connecton place of the locking bodies and spindle;
     Fatigue Analysis: as load act on the spindle is not always static load duringworking, most of the time, the spindle is in the state of load fluctuation. Therefore,fatigue analysis of the spindle has been conducted. During the analysis, loadfluctuation has been settled, material stress life curve (S-N curve) were calculatedand set; results of fatigue analysis showed that spindle stress amplitude is not large,only39MPa; spindle life can reached to5.208e6cycles, greater than the designlife(5×104cycles, that is5years);
     Gear pair in the course of their work, may be subject to the effects of vibration.Therefore, vibration analysis of gear pair has been conducted.The first6naturalfrequencies and mode shapes of the gear pair has been provided. Duing the design ofthe gear system, gear natural frequencies and mode shapes shouled be considered,make natural frequencies of the gear away from the operating frequency to avoidresonance.
     In the present paper, the full hydraulic pressure top drive design is still stay inthe preliminary design stage, of course, there are many defects and needs the furtheroptimization design. In the course of movement analysis, the friction between theparts may influence the results of the analysis due to the limitation of my experienceand the software, adding up the lacking considering. So we should consult more dataand combine with the spot experience to amend it. During the design process, weprocceeded a large mount of simulation analysis without the support of theexperiments. In the physical prototype design process, we should add moreexperiment content. The application of virtual prototype technology can reduce theuse quantity of physical prototype and reduce the cost, but it can not fully replace thephysical prototype.
引文
[1]李传华,杨启伟.TDS钻机技术进展及建议[J].河南石油,2005,19(5):49-51.
    [2]刘钊,赵湘前.变频器常见故障与港口机械的应用[J].科技创新导报,2010(14):61-64.
    [3]薛林.交流变频技术在海洋修井机上的应用[J].天津理工大学学报,2010,26(5):65-68.
    [4]胡春媛,鲍威,马涛,周云翔.交流变频调速技术及应用[J].科技信息,2008(22):81-82.
    [5]徐邦荃,李浚源,詹琼华.直流调速系统与交流调速系统[M].武汉:华中科技大学出版社,2000.
    [6]汪建晓.电液比例控制技术及在自动液压压砖机中的应用[J].陶瓷,2001(3):34-37.
    [7]赵应樾.液压控制阀及其修理[M].上海:上海交通大学出版社,1999.
    [8]高纪念,蔚长春.电液控制技术及其应用[M].北京:石油工业出版社,1993.
    [9]黄银萍,唐志勇.工程机械电液比例阀控制系统模糊PID控制器研究[J].机床与液压,2010,38(13):52-55.
    [10]许益民.电液比例控制系统分析与设计[M].北京:机械工业出版社,2005.
    [11]于忠斌,姜雪.电液比例阀用控制器的研究设计[J].山东科技大学学报(自然科学版),2004,23(2):50-51.
    [12]王廷才,王伟主编.变频器原理及应用[M].北京:机械工业出版社,2005.
    [13]谭松涛,于兰英,王国志,张弓,秦剑.超高速比例电磁铁的静态研究[J].液压与气动,2007(7):49-51.
    [14]李素玲,刘军营.比例控制与比例阀及应用[J].液压与气动,2003(2):30-32.
    [15]吴万荣,李怀福.电液比例技术在潜孔钻机中的应用[J].矿山机械,2007,35(6):25-27.
    [16]李贵闪,翟华.电液比例控制技术在液压机中的应用[J].锻压装备与制造技术,2005,40(6):28-30.
    [17]马长林,黄先祥,郝琳.基于AMESim的电液伺服系统仿真与优化研究[J].液压气动与密封,2006(1):32-34.
    [18]张连山.2010年世界石油钻机技术发展水平预测[J].钻采工艺,1998(3):40-44.
    [19]北京石油机械厂.顶部驱动钻井装置操作手册[M].北京:北京石油机械厂,2005.
    [20]国家发展与改革委员会. SY/T6726-2008石油钻机项部驱动装置[S].北京:国家发展与改革委员会,2008.
    [21]陶涛.7000米顶部驱动钻井装置设计计算[D].北京:中国石油大学,2011.
    [22]韩辛,齐建雄.国内首台DQ40Y液压TDS研制成功[N].中国石油报,2008-11-14(1).
    [23]刘振东.全液压TDS石油钻机模型数字样机研究[D].北京:中国石油大学,2007.
    [24]王子敏.微观孔隙结构及剩余油仿真研究[D].北京:中国石油大学,2010.
    [25]张领强.行星齿轮传动机构的数据库系统建立及其创新设计[D].南京:南京航空航天大学,2009.
    [26]赵洪亮.高空作业平台稳定性分析[D].西安:长安大学2010
    [27]K Iwata,M Onosato,K Teramoto and S Osaki. Virtual Manufacturing Systems asAdvanced Information Infrastructure for Integrating Manufacturing ResourcesandActivities. Annals of the CIRP [J],1997,46(1):335-338.
    [28]Mine M R. ISAAC: a meta-CAD system for virtual environments[J]. CAD,1997,29(8):547-553.
    [29]Gobel M. Industrial application of Ves [J]. IEEE CG&A,1996,16(1):10-13.
    [30]Ruitao Li, Mei Fang, Yue Ma. Simulation of Vertical Planetary Mill Based onVirtual Prototype[J]. Journal of University of Science and Technology,2001(2):86-90.
    [31]Iwata, M.Onosato, K.Teramoto and S.Osaki. A Modelling and SimulationArchitecture for Virtual Manufacturing Systems[J].Annals of the CIRP,1995,44(1):399-402.
    [32]Su W and Woon I M Y. Current reseach in the conceptual design of mechanicalproducts[J]. CAD,1998,30(6):377-389.
    [33]李磊.四轮转向车辆动力学分析与试验仿真研究[D].镇江:江苏大学,2007.
    [34]I D Carpenter, J M Ritchie, R G Dewar. Virtual manufacturing[J]. ManufacturingEngineer,1997(9):113-116
    [35]Paula M Noaker. Manufacturing Takes the Simulation Driver’s Seat[J]. IntegratedDesign&Manufacturing,1998(6):16-19.
    [36]李雪金. CAD在机械设计中的应用探究[J].中国新技术新产品,2010(16):119-120.
    [37]Shabana. Computational Dynamics[M]. Wiley&Sons, New York,2001.
    [38]Joseh S Lombardo, Edward Mhalakscott. Coilaborative Virtual Prototyping[J].Johns Hopkins APL Technical Digest,1996,17(3):295-304.
    [39]赵志. Auto CAD在机械设计中的应用册[J].同煤科技,2007(12):44-45.
    [40]荣涵锐.新编机械设计CAD技术基础[M].北京:机械工业出版社,2002.
    [41]龙建云.虚拟仿真技术在汽车操纵动力学设计中的应用[D].镇江:江苏大学,2009.
    [42]李家柱.基于AMEsim的车辆关键点振动仿真及分析[D].合肥:合肥工业大学,2009.
    [43]李立斌.离合器综合性能试验台的设计与计算机仿真[D].长沙:湖南大学,2005.
    [44]Shabana. Dynamics of Multibody Systems[M]. Cambridge University Press,1998,7-10
    [45]肖文生.顶部驱动钻井装置动力学分析与虚拟样机技术的研究[D].武汉:华中科技大学,2004.
    [46]袁清鸿. TDS钻机虚拟样机原型系统研究与实践[D].武汉:华中科技大学,2004.
    [47]乔春蓉,赵伟民. TDS钻井装置吊卡动力学仿真研究[J].黑龙江八一农垦大学学报,2008,20(6):30-32.
    [48]陕小平,刘广华. ANSYS在TDS减速箱设计中的应用.第三届中国CAE工程分析技术年会论文集[C].大连:[出版者不祥],2007.
    [49]韩兵奇. TDS钻井装置动力驱动系统研究[D].青岛:中国石油大学(华东),2010.
    [50]王洪英,叶东庆,杨海波.国外顶部驱动钻井系统的最新进展[J].探矿工程,2005(10):60-63.
    [51]沈昭.国产顶部驱动钻井装置的研制与发展[J].石油机械,2001,29(3):33-37
    [52]曹卫东,房芗浓.从系统仿真谈仿真模型的生成[J].中国民航学院学报,1997,15(4):34-37.
    [53]Brouse, M. Economic/operational advantages of top-drive installations[J]. WorldOil.1996(10):63-70
    [54]Natinal oilwell Varco. Top drive drilling systems with integrated swivel [M] Avarco international company,Houston Varco BJ,1992.
    [55]Tyson R W. Why Use a Top Drive on a Land Rig, or When?[C]. SPE/IADCDrilling Conference, Amsterdam, Netherlands,1995.
    [56]Boyadjieff George I. An Overview of Top-Drive Drilling System Applications andExperiences[J]. SPE Drilling Engineering.1986,1(6):435-442.
    [57]Sedco Schlumberger. Reducing Downtime Due to Top Drive: The$1000Bet[C].SPE/IADC Drilling Conference, Dallas, Texas,1994.
    [58]叶哲伟,梁政,张梁.液压TDS能量回收系统建模与求解[J].石油机械.2010,38(6):22-25
    [59]张连山.国外液压驱动石油钻机的新进展[J].石油机械,2000,28(2):52-54
    [60]张连山.液压和电驱动TDS钻井特性分析与建议[J].钻采工艺,2000,23(3):66-71
    [61]刘宝林,桂暖银.交流变频调速技术——新型的钻机动力驱动系统[J].探矿工程.1997(5):31-36
    [62]冯德强.钻机设计.武汉:中国地质大学出版社,1993.
    [63]李汉荣,习玉光.国外500tTDS装置技术性能分析[J].国外油田工程,2004,20(1):37-39
    [64]毛志新.声频振动钻探技术研究[D].北京:中国地质大学,2007.
    [65]王献斌.奇迹2000型全液压履带式工程钻机的研制[J].探矿工程(岩土钻掘工程)2006(3):38-40
    [66]朱刘英.基于AMESim变转速泵控马达系统调速特性分析[D].合肥:安徽理工大学,2010.
    [67]许贤良,王传礼.液压传动[M].北京:国防工业出版社,2006.
    [68]沈海阔.基于能量调节的电液变转速控制系统研究[D].杭州:浙江大学,2007.
    [69]章宏甲,黄谊,王积伟.液压与气压传动[M].北京:机械工业出版社,2000.
    [70]丛伟,刘宏涛.液压系统容积调速回路特性及其在机床中的应用[J].沈阳航空工业学院学报,2003(9):20—23。
    [71]张利平.液压传动系统及设计.北京:化学工业出版社工业装备与信息工程出版中心,2005.
    [72]刘延俊,关浩,周德繁.液压与气压传动[M].北京:高等教育出版社,2007.
    [73]Frank Yeaple. Hydraulic and Pneumatic Power Control[M]. US: McGraw-Hill Inc.,1966.
    [74]马鹏飞,龙水根,杨喜龙,任世杰.全液压推土机行走驱动系统参数匹配及计算[J].建设机械技术与管理,2007,20(12):97-100.
    [75]姚怀新.行走机械液压传动与控制[M].北京:北京人民交通出版社,2002.
    [76]徐必勇,张一心.基于SolidWorks的固定式破碎机设计验证一体化研究[J].CAD/CAM与制造业信息化,2010,(9):50-53.
    [77]田东升. CINCINNATI工业机器人动态特性的研究[D].沈阳:东北大学,2006.
    [78]聂文平.修井作业机械化装置的系统仿真与实验研究[D].大庆:东北石油大学,2011.
    [79]Haug E J.机械系统的计算机辅助运动学和动力学[M].北京:高等教育出版社,1996.
    [80]Sehiehlen W O. Multibody System Dynamics-Rootsand Perspectives[M].Cambridge University Press,1997.
    [81]Gianni F, Gian A M, Paolo R. Virtual prototyping of Mechatronie Systems[J].Annual Review in Control.2004,(28):193-206
    [82] Lankaran H M, Nikravesh P E. Continuous Contact Force Models for ImpactAnalysis in Multibody Systems[J]. Nonlinear Dynamies,1994(5):193一207.
    [83]Zweiri Y H. Model-based Automation for Heavy-duty Mobile Exeavator[C].IEEE/RSJ Int. Conference on Intelligent Robots and Systems,2002(3):2967~2972.
    [84]陈立平,张云清等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    [85]R Schwertasek, R E Robcrson. Dynamics of Multi-body System[M]. Berlin:Springer-Vedag,1986.
    [86]SUN Shaojun, ZHENG Yong, NI Guangjian. Multi-Body Dynamics Analysis andLow Noise Optimization of X6170ZC Diesel[J]. Transactions of Tianjin University,2007,13(4):297-302.
    [87]G Bianchi. Dynamics of Multi-body System[M]. Berlin:Springer-Veflag,1986.
    [88]A A Shabana. Dynamics of Multi-body System[M]. New York: Wiley,1989.
    [89]W Kortum. Review of Multi-body Computer Codes for Vehicle SystemDynamics[J]. Vehicle System Dynamics,1993(22):66-69.
    [90]W Schiehlen. Multi-body System Handbook[M]. Berlin: Springer-Vedag,1990.
    [91]Leung A Y T. Subspace Iteration for Complex Symmetrie Exigent Problems[J].Journal of Sound and Vibration,1995,184(4):627~637.
    [92]夏爽.基于四分之一悬架模型与整车虚拟样机的主动悬架控制系统仿真研究[D].2008.东北大学.
    [93]Peng Shuang, Song Jian. Simulation of vehicle fide comfort performance inAdams[C]. Proceedings of Asian Simulation Conference:System Simulation andScientific Computing,2002(2):738-742
    [94]张岩.大型风电机组齿轮箱动力学特性仿真与分析[D].北京:华北电力大学,2009.
    [95]潘继生.滤波减速器的创新研究[D].重庆:重庆大学,2007.
    [96]Kahraman K. Planetary gear train dynamics[J]. Journal of Mechanical Design.1994,116(9):33-39.
    [97]陈忠维.基于Solid Works COSMOS Motion的凸轮轮廓线设计[J].计算机应用技术,2008,35(4):35-37.
    [98].刘天祥,宋广明,王明,韩霞.基于COSMOS Motion水稻栽植机秧针轨迹的运动分析[J].机械工程师,2009(2):102-103
    [99]田冬艳,孙淑霞,姜彤,韩丽.基于COSMOS Motion的汽车半主动悬架仿真研究[J].机械传动,2010,34(7):77-79.
    [100]王策选,刘红兵,王国平. Solidworks2009中文版三维设计基础与实践教程.电子工业出版社,2009.
    [101]易鹏,周红.系统仿真验证车辆结构设计[J].装备机械,2009(1):32-39.
    [102]付永领,祁晓野. AMEsim系统建模和仿真一从入门到精通[M].北京:北京航空航天大学出版社,2006.
    [103]吴任欧.矿用汽车全液压转向系统动态特性研究[D].北京:北京科技大学,2009.
    [104]惠纪庄,纪真,邹亚科.基于AMESim的钻井泵液压系统动态特性仿真[J].石油机械,2009,37(8):21-25.
    [105]桑月仙.闭式液压系统补油泵研究[D].成都:西南交通大学,2007.
    [106]林青.关于仿真系统建模的探讨[J].计算机仿真,2000,17(6):11-12.
    [107]康凤举,杨慧珍.现代仿真技术与应用[M].北京:国防工业出版社,2006:200-204.
    [108]彭晓源.系统仿真技术[M].北京:北京航空航天出版社,2006:16-19.
    [109]王子才,张冰,杨明.仿真系统的校核、验证与验收(VV&A)\:现状与未来[J].系统仿真学报,1999, l1(5):321-340.
    [110]张晓华.系统建模与仿真.北京:清华大学出版社,2006.
    [111]杨兵.典型的泵一马达闭式循环回路分析[J].液压与气动,1999.
    [112]李娜.汽车碰撞中人体头颈部损伤有限元模型研究[D].长沙:中南大学,2010.
    [113]李人宪.有限元法基础[M].国防工业出版社,2004.
    [114]秦宇. ANSYS11.0基础与实例教程[M].北京:化学工业出版社,2009.
    [115]陈传尧.疲劳与断裂[M].武汉:华中科技人学出版社,2002.
    [116]王国军.疲劳分析理论与应用实例指导[M].北京:机械工业出版社,2007.
    [117]赵少汴.抗疲劳设计.北京:机械工业出版社,1994.
    [118]龚曙光,谢桂兰,邱爱红等. ANSYS工程应用实例解析[M].北京:机械工业出版社,2003.
    [119]李黎明. ANSYS有限元分析实用教程[M].北京:清华大学出版社,2005.
    [120]谢海东,周照耀.斜齿轮精确建模及有限元模态分析[J].现代制造工程,2004(11):25-29.
    [121]管迪华.模态分析技术[M].北京:清华大学出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700