用户名: 密码: 验证码:
不同水氮条件下黄瓜季保护地氮素损失研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对蔬菜需求量的增加,菜农为获得高产,盲目提高施肥与灌水量,而忽视科学水肥管理的理念。如今,蔬菜生产中不合理的水肥管理导致的土壤环境恶化、肥料利用率低以及蔬菜质量品质下降等问题已经十分严重。明确保护地土壤的氮素损失途径,探讨蔬菜生产中科学的水肥管理措施是我国设施农业可持续发展的需要。迄今为止,有关保护地中不同水氮条件下系统分析土壤的氨挥发、反硝化和N2O排放以及土壤溶液中无机氮淋失的研究较为少见。本研究在河北省辛集市马庄科园农场开展了田间试验和15N示踪的微区试验,田间试验和15N示踪的微区试验均设置6个处理,将减量灌水、减量施氮与习惯水氮处理进行对比研究:(1)习惯灌水、不施氮处理(灌水量为7470 m3·hm-2);(2)习惯灌水、减施氮25%处理(灌水与氮肥用量分别为7470 m3·hm-2和900 kg·hm-2)(;3)习惯水氮处理(灌水与氮肥用量分别为7470 m3·hm-2和1200 kg·hm-2);(4)减量灌水30%、减施氮50%处理(灌水与氮肥用量分别为5190 m3·hm-2和600 kg·hm-2)。(5)减量灌水30%、减施氮25%处理(灌水与氮肥用量分别为5190 m3·hm-2和900 kg·hm-2);(6)减量灌水30%、习惯施氮处理(灌水与氮肥用量分别为5190 m3·hm-2和1200 kg·hm-2)。研究了不同灌水与施肥条件对黄瓜季保护地的氨挥发,硝化、反硝化速率,N2O损失,硝态氮淋失,氮肥15N的动态与去向以及产量品质的影响。以期为探讨保护地蔬菜生产中氮素损失途径和建立合理的水氮优化管理技术提供科学的依据。在本试验条件下,取得以下研究结论:
     1、黄瓜生长季农田氨挥发损失总量为11.4~26.6 kg·hm-2、氨挥发量占氮肥用量的0.89%~1.27%氮肥对氨挥发的贡献率为31.8%~57.1%。在减量灌水条件下,减量施氮25%与50%处理(W2N900与W2N600)的氨挥发损失量比习惯施氮处理(W2N1200)分别降低了22.1%和37.2%;而相同氮用量下,减量灌水与习惯灌水相比,氨挥发损失量增加了3.0%~4.8%。
     2、黄瓜生长季农田总硝化速率与反硝化速率最高分别达523μgN·kg-2·h-1、351μgN·kg-2·h-1。其中在减量灌水条件下,减施氮25%和50%处理(W2N900和W2N600)与习惯施氮处理(W2N1200)相比,总硝化速率分别降低了19.9%、26.7%;反硝化速率分别降低了9.8%、20.8%。相同施氮量下,减量灌水与习惯灌水相比,总硝化速率与反硝化速率的降低幅度分别为2.5%~11.5%,19.5%~26.0%。
     3、黄瓜生长季农田N2O损失量为0.74~7.92 kg·hm-2,占氮肥用量的0.25%~0.60%,而氮肥对N2O损失的贡献率为67.8%~90.6%。在减量灌水条件下,减量施氮25%与50%处理(W2N900与W2N600)的N2O损失量比习惯施氮处理(W2N1200)分别降低了39.9%和54.1%;而相同氮用量下,减量灌水与习惯灌水处理相比,N2O损失量可降低36.8%~45.2%。
     4、黄瓜生长季农田无机氮的淋失量为120~595 kg·hm-2,占施氮量的25.6%~39.6%。硝态氮是土壤无机氮淋失的主要形式,可占到无机氮淋失总量的99.7%以上。在减量灌水条件下,减施氮25%和50%处理(W2N900和W2N600)与习惯施氮处理(W2N1200)相比,100 cm土体硝态氮的淋失量分别降低了30.0%和46.0%;而相同氮用量下,减量灌水与习惯灌水处理相比,硝态氮淋失量降低了14.9%~23.8%。
     5、在本试验中的减量灌水条件下,减施氮25%和50%处理(W2N900与W2N600)的产量比习惯施氮处理(W2N1200)分别提高了4.5%和5.4%。在减施氮25%的条件下,减量灌水处理(W2N900)比习惯灌水处理(W1N900)提高了3.4%。
     6、不同水氮处理对黄瓜品质亦有显著的影响。其中在减量灌水条件下,减施氮25%和50%处理(W2N900与W2N600)与习惯施氮处理(W2N1200)相比,果实硝酸盐含量分别降低了9.8%和13.5%,可溶性糖含量则分别增加了13.1%和12.9%。在减施氮25%的条件下,减量灌水处理(W2N900)比习惯灌水处理(W1N900)的果实硝酸盐含量降低了3.9%,而可溶性糖含量则增加了7.3%。
     7、不同水氮处理对黄瓜叶片的瞬时水分利用效率(WUE)具有显著的影响。其中在减量灌水条件下,减施氮50%处理(W2N600)与习惯施氮处理(W2N1200)相比,可提高1.2%~9.8%。在减施氮25%的条件下,减量灌水处理(W2N900)的叶片瞬时水分利用效率(生育期均值)比习惯灌水处理(W1N900)提高了6.1%。
     8、15N微区试验结果表明,不同水氮条件下黄瓜全株对氮肥15N的吸收量在177~297 kg·hm-2,果实、叶、茎、根对氮肥15N吸收量依次降低。黄瓜当季的氮肥利用率为23.6%~32.8%,在2种灌水条件下分别以减施氮25%处理(W1N900)和减施氮50%处理(W2N600)的氮肥利用率最高,与相同条件下的习惯施氮处理(W1N1200与W2N1200)相比,其利用率分别提高了4.57、6.96个百分点。
     综合分析,本试验条件下,处理W2N600和W2N900既具有较高的光合速率和氮肥利用率,又具有最高的水分利用效率,而且产量高,品质好,是较为合理的水氮组合。2年的试验研究表明,通过合理施肥、科学控制灌溉量,在当地习惯水氮管理的基础上,减量灌溉30%、减施氮25%~50%的情况下,不会影响到黄瓜产量,因此,推荐河北省保护地春季黄瓜生产,灌水量为5190 m3·hm-2,施氮量为600~900 kg·hm-2。
With the human demand of vegetables increased, farmers ignore the scientific concept of water and fertilizer management. In order to obtain high-yield of vegetable, the amount of fertilizer and irrigation water is improved blindly. Up to now, the problems of soil environment deterioration, low fertilizer use efficiency and worse vegetables quality are very serious. They are all caused by the unreasonable management of water and fertilizer in vegetable production. The way of nitrogen loss and also scientific management of water and fertilizer should be defined in vegetable production. These are urgent for sustaining development of facility agriculture. Up to date, there have few researches on comprehensive and systematic study about the ammonia volatilization, de-nitrification, N2O emissions and the leaching loss of inorganic nitrogen. Field plot experiments and micro-plot experiments of 15N tracing were established in Xinji City, Hebei Province. Our experiment included six treatments both in field trail and micro-plot experiment with 15N tracing to compare the study on reduction of irrigation, nitrogen and conventional of water and nitrogen treatments: (1) conventional water application and with no nitrogen applied (irrigation amount, 7470 m3·hm-2); (2) conventional water application and with nitrogen decreased by 25% applied (irrigation amount, 7470 m3·hm-2; amount of nitrogen, 900 kg·hm-2); (3) conventional water and nitrogen application (irrigation amount, 7470 m3·hm-2; amount of nitrogen, 1200 kg·hm-2); (4) water decreased by 30%, nitrogen decreased by 50% applied (irrigation amount, 5190 m3·hm-2; amount of nitrogen, 600 kg·hm-2); (5) water decreased by 30%, nitrogen decreased by 25% applied (irrigation amount, 5190 m3·hm-2; amount of nitrogen, 900 kg·hm-2); (6) water decreased by 30%, conventional nitrogen application, (irrigation amount, 5190 m3·hm-2; amount of nitrogen, 1200 kg·hm-2). We studied the effects of different amount of water and nitrogen on the field ammonia volatilization, denitrification, N2O emissions, and the leaching loss of nitrate nitrogen and also the fate of 15N and cucumber quality in this research. In our experiment, the main results were as follows:
     1. During the cucumber growing season, ammonia volatilization content of the field was 11.4~26.6 kg·hm-2 and the loss ratio of nitrogen was 0.89%~1.27% and the contribution rate of nitrogen was 31.8%~57.1%. The ammonia volatilization contents of the treatment with W2N900 and W2N600 decreased by 22.1%, 37.2% respectively under the reduction of irrigation water conditions. Compared with conventional water applied (W2N1200), the ammonia volatilization content of reduction water treatment increased by 3.0%~4.8% with the same nitrogen conditions.
     2. The gross nitrification rates and denitrification rates of field were 523μg N·kg-2·h-1、351μg N·kg-2·h-1 respectively. The gross nitrification rates of the treatment with W2N900 and W2N600 decreased by 19.9%, 26.7% respectively and the denitrification rates decreased by 9.8% and 20.8% under the reduction of irrigation water conditions. The gross nitrification rates and denitrification rates decreased by 2.5%~11.5%, 19.5%~26.0% respectively in the treatment of reduction water compared to conventional water (W2N1200) under the same nitrogen conditions.
     3. The N2O loss amount of field was 0.74~7.92 kg·hm-2, and the loss ratio of nitrogen was 0.25%~0.60%, the contribution rate of nitrogen was 67.8%~90.6%. The N2O loss amount of the treatment with W2N900 and W2N600 decreased by 39.9%, 54.1% respectively under the reduction of irrigation water conditions. The treatment with reduction of water compared to conventional water, the N2O loss amount decreased by 36.8%~45.2% under the same nitrogen conditions.
     4. Inorganic nitrogen leaching amount was 120~595 kg·hm-2, account for 25.6%~39.6% of nitrogen applied. Nitrate nitrogen was the main form of the leaching loss of inorganic nitrogen, and the ratio was 99.7%. The nitrate nitrogen leaching amount of the treatments with W2N900 and W2N600 decreased by 30.3%, 46.0% respectively under the reduction of irrigation water conditions. The treatment with reduction of water compared to conventional water, the nitrate nitrogen leaching amount decreased by 14.9%~23.8% under the same nitrogen conditions.
     5. Compared with W2N1200, the yield of treatment W2N900 and W2N600 increased by 4.6%, 5.4% respectively under the reduction of irrigation water conditions. Compared with W1N900, the cucumber yield of W2N900 increased by 3.4% under the same of nitrogen applied.
     6. The effects of different water and nitrogen on quality were significantly. Compared with W2N1200, the NO3- amount of cucumber in the treatment W2N900 and W2N600 decreased by 9.8%, 13.5% respectively, and soluble sugar increased by 13.1%, 12.9% respectively under the reduction of irrigation water conditions. Compared with W1N900, the amount of NO3- in the treatment W2N900 decreased by 3.9%, while soluble sugar increased by 7.3%.
     7. The effects of different water and nitrogen conditions on WUE were significantly. Compared with W2N1200, the water use efficiency of treatment W2N600 decreased by 1.2%~9.8% with the reduction of irrigation water conditions. Compared with W1N900, the water use efficiency of treatment W2N900 decreased by 6.1% with the same amount of nitrogen applied.
     8. Micro-plot experiment with 15N tracing showed that absorbed of nitrogenous fertilizer 15N by cucumber was 177~297 kg·hm-2. The amount of absorption by fruit, leaf, stem, and root were reducing in turn. Nitrogen use efficiency was 23.6%~32.8%. The treatments W2N900 and W2N600 had the highest nitrogen use efficiency. Compared with the treatment W1N1200 and W2N1200, they increased by 4.57, 6.96 percentage respectively.
     In conclusion, the treatments W2N900 and W2N600 were much more reasonable management approach. Because they not only had the higher growth characteristics, water and nitrogen use efficiency, but also with the higher cucumber yield and quality. Two years experiment showed that the water decreased by 30% and nitrogen decreased by 25%~50% would not affect the yield of cucumber. So we recommended that the water irrigate amount was 5190 m3·hm-2, and the amount of nitrogen was 600~900 kg·hm-2 in this area.
引文
1.蔡万涛,陈阜,张海林等.不同氮肥水平对黄瓜产量、土壤硝态氮累积及土壤水溶液硝态氮含量的影响.华北农学报,2009,24 (3):189-193.
    2.曹兵,李新慧,张琳,邹国元等.冬小麦不同基肥施用方式对土壤氨挥发的影响.华北农学报,2001,16 (2):83-86.
    3.曹兵,贺发云,徐秋明等.南京郊区番茄地中氮肥的效应与去向.应用生态学报,2006a,17(10):1839-1844.
    4.曹兵,贺发云,徐秋明等.南京郊区番茄地中氮肥的气态氮损失.土壤学报,2006b,43(1):62-68.
    5.曾清如,沈杰,周细红等.施用尿素对温室内N2O和NH3气体积累的影响.农业环境科学学报,2004,23(5):857-860.
    6.陈贵林,张进文.河北省设施蔬菜生产可持续发展问题的探讨.沈阳农业大学学报,2000,
    31(1):29-31.
    7.陈晓歌,马耀光.不同灌水和施氮对黄土性土壤中NO3-- N迁移和淋失的影响.水土保持研究,2008,15(5):109-115.
    8.陈永山,戴剑锋,罗卫红等.叶片氮浓度对温室黄瓜花后叶片最大总光合速率影响的模拟.农业工程学报,2008,24(7):13-19.
    9.陈友.保护地蔬菜栽培及病虫防治技术.北京:中国农业出版社,1999.
    10.陈振华,陈利军,武志杰等.辽河下游平原不同水分条件下稻田氨挥发.应用生态学报,2007,18(12):2771-2776.
    11.邓美华,尹斌,张绍林等.不同施氮量和施氮方式对稻田氨挥发损失的影响.土壤,2006,38(3):263-269.
    12.丁洪,蔡贵信,王跃思等.华北平原几种主要类型土壤的硝化及反硝化活性.农业环境保护,2001,20(6):390-393.
    13.丁洪,王跃思,项虹艳等.菜田氮素反硝化损失与N2O排放的定量评价.园艺学报,2004,31 (6):762-766.
    14.丁洪,蔡贵信,王跃思等.玉米-小麦轮作系统中氮肥反硝化损失与N2O排放量.农业环境科学学报,2003,22(5):557-560.
    15.董文旭,胡春胜,张玉铭.华北农田土壤氨挥发原位测定研究.中国生态农业学报,2006,14 (3):46-48.
    16.董章杭,李季,孙丽梅.集约化蔬菜种植区化肥施用对地下水硝酸盐污染影响的研究—以“中国蔬菜之乡”山东省寿光市为例.农业环境科学学报,2005,24(6):1139-1144.
    17.段立珍,汪建飞,于群英.长期施肥对菜地土壤氮磷钾养分积累的影响.中国农学通报,2007,23(3):293-296.
    18.冯嘉玥,邹志荣,陈修斌.土壤水分对温室春黄瓜苗期生长与生理特性的影.西北植物学报,2005,25(6):1242-1245.
    19.葛晓光,王晓雪,付亚文等.长期定位施氮条件下菜田氮素循环的研究.中国蔬菜,1999,(1):13-17.
    20.郭佩秋,李絮花,王克安等.氮肥用量对日光温室黄瓜和土壤硝态氮含量的影响.华北农学报,2009,24 (1):185-188.
    21.何华,杜社妮,梁银丽等.土壤水分条件对温室黄瓜需水规律和水分利用的影响.西北植物学报,2003, 23 (8):1372-1376.
    22.贺发云,尹斌,金雪霞等.南京两种菜地土壤氨挥发的研究.土壤学报,2005,42(12):253-259.
    23.贺发云,尹斌,曹兵等.南京郊区大白菜生长期氮素的供应及利用.土壤,2006,38(6):692- 697.
    24.侯爱新,陈冠雄.不同种类氮肥对土壤释放N2O的影响.应用生态学报,1998,9(2):176-180.
    25.侯晶,陈振楼,许世远等.大田蔬菜地春季硝态氮淋溶特征研究.土壤通报,2006,37(4):691-695.
    26.黄国宏,陈冠雄,韩冰.土壤含水量与N2O产生途径研究.应用生态学报,1999,10 (1):53-56.
    27.黄树辉,吕军.农田土壤N2O排放研究进展.土壤通报,2004,35(4):516-522.
    28.黄耀,焦燕,宗良纲等.土壤理化特性对麦田N2O排放影响的研究.2002,22(5):598-602.
    29.纪锐琳,朱义年,佟小薇等.竹炭包膜尿素在土壤中的氨挥发损失及其影响因素.桂林工学院学报,2008,28(1):113-118.
    30.金雪霞,范晓晖,蔡贵信.菜地土氮素的主要转化过程及其损失.土壤,2005,37(5):492-499.
    31.寇长林,巨晓棠,张福锁.三种集约化种植体系氮素平衡及其对地下水硝酸盐含量的影响.应用生态学报,2005,16 (4):660-667.
    32.雷杨莉,王林权,薛亮等.交替施肥灌溉对夏玉米农田土壤氨挥发的影响.农业工程学报,2009,25(4):41-46.
    33.李贵桐,李保国,陈德立.大面积冬小麦夏玉米农田土壤的氨挥发.华北农学报,2002,17 (1):76-81.
    34.李晓欣,胡春胜,程一松.不同施肥处理对作物产量及土壤中硝态氮累积的影响.干旱地区农业研究,2003,21(3):38-42.
    35.李鑫,巨晓棠,张丽娟等.不同施肥方式对土壤氨挥发和氧化亚氮排放的影响.应用生态学报,2008,19(1):99-104.
    36.李宗新,王庆成,刘开昌等.不同施肥模式下夏玉米田间土壤氨挥发规律.生态学报,2009,29(1):307-314.
    37.李俊良,朱建华,张晓晟等.保护地番茄养分利用及土壤氮素淋失.应用于环境生物学报,2001,7(2):126-129.
    38.李俊良,崔德杰,孟祥霞等.山东寿光保护地蔬菜施肥现状及问题的研究.土壤通报,2002,33(2):126-128.
    39.梁东丽,同延安,Ove Emteryd等.菜地不同施氮量下N2O逸出量的研究.西北农林科技大学学报(自然科学版),2002,30(2):73-77.
    40.林杉,冯明磊,阮雷雷等.三峡库区不同土地利用方式下土壤氧化亚氮排放及其影响因素.应用生态学报,2008,19 (6):1269-1276.
    41.刘宏斌,李志宏,张云贵等.北京市农田土壤硝态氮的分布与累积特征.中国农业科学,2004,37(5):692-698.
    42.刘义,陈劲松,刘庆等.土壤硝化和反硝化作用及影响因素研究进展.四川林业科技,2006,27(2):36-41.
    43.刘艳军,姜勇,梁文举等.蔬菜温室土壤某些化学性质的演变特征.应用生态学报,2005,16(11):2218-2220.
    44.刘兆辉,江丽华,张文君等.氮、磷、钾在设施蔬菜土壤剖面中的分布及移动研究.农业环境科学学报,2006,25(增刊):537-542.
    45.卢昌艾,胡万里,孔令明.滇池流域集约化菜田NO与N2O排放的研究.植物营养与肥料学报,2008,14(5):900-906.
    46.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
    47.吕福堂,张秀省,董杰等.日光温室土壤速效养分的累积和淋移特征研究.水土保持学报,2009,23(5):191-194.
    48.米国全,袁丽萍,龚元石等.不同水氮供应对日光温室番茄土壤酶活性及生物环境影响的研究.农业工程学报,2005,21(7):124-127.
    49.闵炬,施卫明.不同施氮量对太湖地区大棚蔬菜产量、氮肥利用率及品质的影响.植物营养与肥料学报,2009,15(1):151-157.
    50.宁建凤,邹献中,杨少海等.有机无机氮肥配施对土壤氮淋失及油麦菜生长的影响.农业工程学报,2007,23 (11):95-100.
    51.牛勇,刘洪禄,吴文勇.不同灌水下限对日光温室黄瓜生长指标的影响.灌溉排水学报,2009,28(3):81-84.
    52.潘强,黄之栋,马承伟.华北型连栋塑料温室节能对策与实践.农业工程学报,1999,15 (2):155-158.
    53.潘文维,罗庆熙,李军.我国温室产业现状及发展建议.北方园艺,2002 (3):4-5.
    54.彭世彰,杨士红,徐俊增.节水灌溉稻田氨挥发损失及影响因素.农业工程学报,2009,25(8):35-39.
    55.秦巧燕,贾陈忠,曲东等.我国设施农业发展现状及施肥特点.湖北农学院学报,2002,22(4):373-375.
    56.史春余,张夫道,张俊清等.长期施肥条件下设施蔬菜地土壤养分变化研究.植物营养与肥料学报,2003,9 (4):437-441.
    57.宋勇生,范晓晖.稻田氨挥发研究进展.生态环境,2003,12(2):240-244.
    58.宋勇生,范晓晖,林德喜等.太湖地区稻田氨挥发及影响因素的研究.土壤学报,2004,41(2):265-269.
    59.孙军利,赵宝龙,蒋卫杰等.不同施肥对日光温室春茬黄瓜生长、产量和品质影响.石河子大学学报(自然科学版),2006,24(6):689-693.
    60.张学军,赵营,陈晓群等.氮肥施用量对设施番茄氮素利用及土壤NO3--N累积的影响.生态学报,2007a,27 (9):3761-3768.
    61.张学军,赵营,陈晓群等.滴灌施肥中施氮量对两年蔬菜产量、氮素平衡及土壤硝态氮累积的影响.中国农业科学,2007b,40(11):2535-2545.
    62.孙文涛,张玉龙,娄春荣等.灌溉方法对温室番茄栽培尿素氮利用影响的研究.核农学报,2007,2l(3):295-298.
    63.苏芳,黄彬香,丁新泉等.不同氮肥形态的氨挥发损失比较.土壤,2006,38 (6):682-686.
    64.汤丽玲,陈清,张宏彦等.不同灌溉与施氮措施对露地菜田土壤无机氮残留的影响.植物营养与肥料学报,2002,8(3):282-287.
    65.唐咏,梁成华,刘志恒等.日光温室蔬菜栽培对土壤微生物和酶活性的影响.沈阳农业大学学报(自然科学版),1999,30(1):16-19.
    66.王建锋,李天来,杨丽娟.长期施用无机NPK肥对保护地黄瓜光合特性及产量的影响.土壤通报,2005,36(4):545-548.
    67.王立刚,李虎,邱建军.黄淮海平原典型农田土壤N2O的排放特征.中国农业科学,2008,4l(4):1248-1254.
    68.王立河,孙新政,赵喜茹等.有机肥与氮肥配施对日光温室黄瓜产量和品质的影响.中国农学通报,2006,22(11):237-242.
    69.王柳,张福墁,魏秀菊.不同氮肥水平对日光温室黄瓜品质和产量的影响.农业工程学报,2007,23(12):225-229.
    70.王荣莲,于健,赵永来等.滴灌施肥水肥耦合对温室无土栽培水果黄瓜产量的影响.节水灌溉,2009,(3):15-22.
    71.王兴武,于强,张国梁等.鲁西北平原夏玉米产量与土壤硝态氮淋失.地理研究,2005,24(1):140-150.
    72.王新元,李登顺,张喜英.日光温室冬春茬黄瓜产量与灌水量的关系.中国蔬菜,1999, (1):18-21.
    73.王秀斌.优化施氮下冬小麦/夏玉米轮作农田氮素循环与平衡研究. [博士学位论文],中国农业科学院,2009.
    74.王朝辉,宗志强,李生秀等.蔬菜的硝态氮累积及菜地土壤的硝态氮残留.环境科学,2002a,23 (3):79-83.
    75.王朝辉,刘学军,巨晓棠等.北方冬小麦/夏玉米轮作体系土壤氨挥发的原位测定.生态学报,2002b,22(3):359-365.
    76.魏玉云.热带地区砖红壤上不同土壤pH和含水量对尿素氨挥发的影响研究[硕士学位论文],华南热带农业大学,2006.
    77.吴海卿,杨传福,孟兆江.应用15N示踪技术研究土壤水分对氮素有效性的影响.土壤肥料,2000 (1):16-18.
    78.吴琼,杜连凤,赵同科等.蔬菜间作对土壤和蔬菜硝酸盐积累的影响.农业环境科学学报,2009,28(8):1623-1629.
    79.肖时运,刘强,荣湘民等.不同施氮水平对莴苣产量、品质及氮肥利用率的影响.植物营养与肥料学报,2006,12(6):913-917.
    80.习斌,张继宗,左强等.保护地菜田土壤氨挥发损失及影响因素研究.植物营养与肥料学报,2010,16(2):327-333.
    81.谢军飞,李玉娥.土壤温度对北京旱地农田N2O排放的影响.中国农业气象,2005,26(1):7-10.
    82.徐华,邢光熹,蔡祖聪等.土壤质地对小麦和棉花田N2O排放的影响.农业环境保护,2000,19(1):1-3.
    83.徐坤范,艾希珍,张晓慧等.氮素水平对日光温室黄瓜品质的影响.西北农业学报,2005,14(1):162-166.
    84.徐坤范,李明玉,艾希珍.氮对日光温室黄瓜呈味物质、硝酸盐含量及产量的影响.植物营养与肥料学报,2006,12 (5):717-721.
    85.徐万里,刘骅,张云舒等.新疆灰漠土区不同肥料配比土壤氨挥发原位监测.生态学报,2009,29(8):4565-4571.
    86.徐文彬,刘维屏,刘广深.温度对旱田土壤N2O排放的影响研究.土壤学报,2002,39(1):1-8.
    87.徐玉裕,曹文志,黄一山等.五川流域农业土壤反硝化作用测定及其调控措施.农业环境科学学报,2007,26(3):1126-1131.
    88.杨云,黄耀,姜纪峰.土壤理化特性对冬季菜地N2O排放的影响.农村生态环境,2005,21 (2):7-12.
    89.杨治平,陈明昌,张强等.不同施氮措施对保护地黄瓜养分利用效率及土壤氮素淋失影响.水土保持学报,2007,21(2):58-60.
    90.姚志生,郑循华,周再兴等.太湖地区冬小麦田与蔬菜地N2O排放对比观测研究.气候与环境研究,2006,11(6):692-701.
    91.殷永娴,刘鸿雁.设施栽培下土壤中硝化、反硝化作用的研究.生态学报,1996,16(3):246-250.
    92.宇万太,张璐,马强等.施肥进步在粮食增产中的贡献及其地理分异.应用生态学报,2003,14(11):1855-1858.
    93.于亚军,朱波,荆光军.成都平原土壤—蔬菜系统N2O排放特征.中国环境科学,2008,28(4):313-318.
    94.袁新民,李晓林,同延安等.陕西关中地区蔬菜地土壤的NO3--N累积.土壤侵蚀与水土保持学报,1999,5(5):102-105.
    95.袁新民,王周琼.硝态氮的淋洗及其影响因素.干旱区研究,2000a,17(4):46-52.
    96.袁新民,同延安,杨学云等.灌溉与降水对土壤NO3--N累积的影响.水土保持学报,2000b,(3):71-74.
    97.翟胜,梁银丽,王巨媛等.干旱半干旱地区日光温室黄瓜水分生产函数的研究.农业工程学报,2005,21 (4):136-139.
    98.张福锁,马文奇.肥料投入水平与养分资源高效利用的关系.土壤与环境,2000,9 (2): 154-157.
    99.张光亚,陈美慈,闵航等.设施栽培土壤氧化亚氮释放及硝化、反硝化细菌数量的研究.植物营养与肥料学报,2002,8(2):239-243.
    100.张光亚,方柏山,闵航等.设施栽培土壤氧化亚氮排放及其影响因子的研究.农业环境科学学报,2004,23(1):144-147.
    101.张庆利,张民,杨越超等.碳酸氢铵和尿素在山东省主要土壤类型上的氨挥发特性研究.土壤通报,2002,33(1):32-34.
    102.张瑞杰,林国林,胡正义等.氮肥减施及双氰胺施用对滇池北岸蔬菜地土壤氮素流失影响.水土保持学报,2008,22(5):34-37.
    103.张树兰,杨学云,吕殿青等.温度、含水率及不同氮源对土壤硝化作用的影响.生态学报,2002,22(12):2147-21 53.
    104.张淑艳,松中照夫.不同施肥法及土壤对氨挥发影响的比较研究.中国农学通报,2003,19(6):176-180.
    105.张彦才,李巧云,翟彩霞等.河北省大棚蔬菜施肥状况分析与评价.河北农业科学,2005,9(3):61-67.
    106.张艳玲,宋述尧,王艳等.氮素营养对黄瓜生长发育及产量的影响.吉林农业科学,2008,33(1):43-46.
    107.张玉铭,黄文旭,曾江海等.玉米地土壤反硝化速率与N2O排放通量的动态变化.中国生态农业学报,2001,9(4):70-72.
    108.张玉铭,胡春胜,董文旭.农田土壤N2O生成与排放影响因素及N2O总量估算的研究.中国生态农业学报,2004,12(3):119-123.
    109.张云舒,徐万里,刘骅.土壤盐渍化特性和施肥方法对氮肥氨挥发影响初步研究.西北农业学报,2007,16(1):13-16.
    110.张振贤,华珞,尹逊霄等.农田土壤N2O的发生机制及其主要影响因素.首都师范大学学报(自然科学版),2005,26(3):114-120.
    111.张自坤,刘作新,张颖等.日光温室黄瓜地下滴灌灌溉制度的试验研究.干旱地区农业研究,2008,26(6):76-81.
    112.郑循华,王明星,王跃思等.稻麦轮作生态系统中土壤湿度对N2O产生与排放的影响.应用生态学报,1996,7(3):273- 279.
    113.郑循华,王明星,王跃思等.温度对农田N2O产生与排放的影响.环境科学,1997,18 (5):1-5.
    114.邹国元,张福锁,巨晓棠等.冬小麦-夏玉米轮作条件下氮素反硝化损失研究.中国农业科学,2004,37(10):1492-1496.
    115.邹建文,黄耀,宗良纲等.稻田CO2、CH4和N2O排放及其影响因素.环境科学学报,2003,23 (6):758-764.
    116.周博,周建斌,韩东锋等.日光温室土壤剖面硝态氮在休闲期的运移研究.西北农业学报,2008,17(2):118-121.
    117.周建斌,翟丙年,陈竹君等.西安市郊区日光温室大棚番茄施肥现状及土壤养分累积特性.土壤通报,2006,37(2):287-290.
    118.周静,崔键,王霞.红壤不同含水量对尿素氨挥发的影响.土壤,2008,40(6):930-933.
    119.周细红,曾清如,蒋朝辉等.尿素施用对土壤pH值和模拟温室箱内NH3和N2O浓度的影响.土壤通报,2004,35(3):374-376.
    120.庄舜尧,孙秀廷.肥料氮在蔬菜地中的去向及平衡.土壤,1997,29 (2):80-83.
    121.朱新华,郭文川,贺卫涛.我国温室设施的现状和发展对策.农村能源,2001,(3):6-7.
    122.朱兆良.农田氮肥的损失与对策.土壤与环境,2000,9 (1):1-6.
    123.朱兆良,Simpon J R,张绍林等.石灰性稻田土壤上化肥氮损失的研究.土壤学报,1989,26(4):337-343.
    124. Anderson I C, Poth M A. Controls on Fluxes of Trace Gases from Brazilian Cerrado Soils. Journal of Environmental Quality, 1998, 27: 1117-1124.
    125. Angoa Perez M V, Gonzalez Castaneda J, Frias-Hernandez J T, Franco-Hernández O, Van Cleemput O, et al. Trace gas emissions from soil of the central highlands of Mexico as affected by natural vegetation: a laboratory study. Biology and Fertility of Soils, 2004, 40: 252-259.
    126. Asman W A H,Sutton M A, Schjorring J K. Ammonia:Emission,atmospheric transport and deposition.New Phytologist Trust, 1998, 139: 27-48.
    127. Babiker I S, Mohamed A. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environment International, 2004, 29(8):1009-1017.
    128. Barthelmiea R J, Pryora S C. Implications of ammonia emissions for fine aerosol formation and visibility impairment a case study from the lower fraser valley, British Columbia. Atmospheric Environment, 1998, 32(3):345-352.
    129. Bergstrom L, Brink N. Effects of differentiated applications of fertilizer N leaching losses and distribution of inorganic N in the soil.Plant and Soil, 1986 93 (3):333-345.
    130. Bouwman A F, Boumans L J M, Batjes N H. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Global Biogeochemical Cycles, 2002, 16(2):1024-1039.
    131. Breuer L, Kiese R, Butterbach-Bahl K.Temperature and Moisture Effects on Nitrification Rates in Tropical Rain-Forest Soils.Soil Science Society of America Journal, 2002, 66:834-844.
    132. Cai G X, Zhu Z L. An assessment of N loss from agricultural fields to the environment in China.Nutrition Cycle in Agro ecosystems, 2000, 57:67-73.
    133. Cai G X, Chen D L, White R E, et al. Gaseous nitrogen losses from urea applied to maize on a calcareous fluvo-aquic soil in the North China Plain. Australian Journal of Soil Research, 2002, 40(5): 737-748.
    134. Cantarella1 H, Mattos Jr D, Quaggio J A, Rigolin A T. Fruit yield of Valencia sweet orange fertilized with different N sourcesand the loss of applied N. Nutrient Cycling in Agroecosystems 2003, 67:215-223.
    135. Daniel R S, Ali M S, Gregory W M. Effect of soil water content on denitrification during cover crop decomposition. Soil Science, 2000, 165(4):365-371.
    136. Delgado J A, Mosier A R. Mitigation alternatives to decrease nitrous oxides emissions and urea nitrogen loss and their effect on methane flux. Journal of Environmental Quality, 1996, 25: 1105-1111.
    137. Di H J, Cameron K C. Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutrient Cycling in Agro ecosystems, 2002, 64(3): 237-256.
    138. Dong Y, Scharffe D, Qi Y C, Peng G B. Nitrous oxide emissions from cultivated soils in the North China Plain.Tellus B, 2001, 53(1): 1-9.
    139. Dorland S, Beauchamp E. Denitrification and ammonification at low soil temperatures. Soil Science, 1991, 71(3): 293-303.
    140. Dou Z, Fox R H, Toth J D, Seasonal soil nitrate dynamics in corn as affected by tillage and nitrogen–source. Soil Science Society of America Journal, 1995, 59(3):858-864.
    141. Fang J, Ding Y J. Assessment of groundwater contamination by NO3? using geographical information system in the Zhangye Basin, Northwest China.Environmental Earth Sciences, 2010, 60(4): 809-816.
    142. Fenn L B, Hosser L R. Ammonia volatilization from ammonium forming fertilizers. Advanced Soil Science, 1985, 1:123-169.
    143. Ferm M. Atmospheric ammonia and ammonium transport in Europe and critical loads:A review. Nutrient Cycling in Agroecosystems, 1998, 51:5-17.
    144. Ferguson R B, Kissel D E.Effects of soil drying on ammonia volatilization from surface 2applied urea.Soil Science Society of America Journal, 1986, 50:485-490.
    145. Fillery I R P, Simpson J R, De Datta S K.Influence of field environment and fertilizer management on ammonia loss from flooded soil. Soil Science Society of America Journal, 1984, 48:914-920.
    146. Fillery I R P, De Datta S K. Ammonia volatilization from nitrogen volatilization as a N loss mechanism in flooded rice fields. Fertilize Research, 1986, 9: 78-98.
    147. Fischer R A, Turner N C. Plant productivity in the arid and semiarid zones. Annual Review of Plant Physiology, 1978, 29: 299-311.
    148. Fumie Akimoto, Aritaka Matsunami, Yuichi Kamata, et al. Cross-correlation analysis of atmospheric trace concentrations of N2O, CH4 and CO2 determined by continuous gas-chromatographic monitoring. Energy, 2005, 30(2-4):299-311.
    149. Goodroad, L L, Keeney D R. Nitrous oxide production in aerobic soils under varying pH, temperature and water content.Soil Biology and Biochemistry, 1984, 16(1):39-43.
    150. Hansen S, M?hlum J E, Bakken L R. N2O and CH4 fluxes in soil influenced by fertilization and tractor traffic.Soil Biology and Biochemistry, 1993, 25(5):621-630.
    151. Heinz W Z. Remarks on the effects of nitrogen deposition to forest ecosystems. Plant and Soil, 1990, 128:83-89.
    152. Henault C, Devis X, Lucas J L, Germon J C. Influence of different agricultural practices (type of crop, form of N-fertilizer) on soil nitrous oxide emissions. Biology and Fertility of Soils, 1998, 27(3):299-306.
    153. Kraft G J, Stites W. Nitrate impacts on groundwater from irrigated-vegetable systems in a humid north-central US sand plain. Agriculture, ecosystems & environment, 2003, 100(1):63-74.
    154. Iain P, Taggart M, Tsuruta H. The influence of controlled release fertilisers and the form ofappliedfertiliser nitrogen on nitrous oxide emissions from an andosol.Nutrient Cycling in Agroecosystems, 2003, 67:47-54.
    155. Ingwersen J, Butterbach-Bahl K, Gasche R, et al. Barometric process separation: new method for quantifying nitrification, denitrification, and nitrous oxide sources in soils. Soil Science Society of America Journal, 1999, 63: 117-128.
    156. Liu G D, Li Y C, Alva A K. Moisture Quotients for Ammonia Volatilization from Four Soils in Potato Production Regions. Water Air Soil Pollution, 2007, 183:115-127.
    157. Luo J, Saggar S, Bhandral R, et al.Effects of irrigating dairy-grazed grassland with farm dairy effluent on nitrous oxide emissions. Plant Soil, 2008, 309:119-130.
    158. Malla G., Bhatia A, Pathak H, et al. Mitigating nitrous oxide and methane emissions from soil in rice–wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors. Chemosphere, 2005, 58: 141-147.
    159. Matsushima M, Lim S S, Kwak J H, et al. Interactive effects of synthetic nitrogen fertilizer and composted manure on ammonia volatilization from soils. Plant and Soil, 2009, 325:187-196.
    160. McLay C D A, Dragten R, Sparling G, et al. Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environmental Pollution, 2001, 115:191-204.
    161. Mengel K, Robin P, Salsac L. Nitrate Reductase Activity in Shoots and Roots of Maize Seedlings as Affected by the Form of Nitrogen Nutrition and the pH of the Nutrient Solution. Plant Physiol, 1983, 71:618-622.
    162. Moiser A R, Duxbury J M , Freney J R, et al. Nitrous oxide emission from agricultural fields : Assessment, measurement and mitigation. Plant and Soil, 1996, 18(1):95-108.
    163. Mummey D L, Smith J L, Bolton J R H. Nitrous oxide flux from a Shrub- steppe ecosystem: sources and regulation. Soil Biology and Biochemistry, 1994, 26 (2): 279-286.
    164. Owens L B, Edwards W M, Shipitalo M J. Nitrate leaching through lysimeters in a corn-soybean rotation.Soil Science Society of America Journal, 1995, 59(3):902-907.
    165. Parkin T B. Soil microsites as a source of denitrification variability. Soil Science Society of America Journal, 1987, 51:1194-1199.
    166. Rao D L N, Batra L. Ammonia volatilization from applied nitrogen in alkali soils. Plant and soil, 1983, 70:219-228.
    167. Ryden J C, Lund L J. Nature and Extent of Directly Measured Denitrification Losses from Some Irrigated Vegetable Crop Production Units.Soil Science Society of America, 1980, 44:505-511.
    168. Sigunga D O, Janssen B H, Oenema O. Denitrification risks in relation to fertilizer nitrogen losses from vertisols and phaoezems. Communications in soil science and plant analysis, 2002, 33(3-4): 561-578.
    169. Singurindy O, Molodovskaya M, Richards B K, et al. Gaseous Nitrogen Emission from Soil Aggregates as Affected by Clay Mineralogy and Repeated Urine Applications. Water Air Soil Pollut, 2008, 195:285-299.
    170. Song X Z, Zhao C X, Wang X L, et al. Study of nitrate leaching and nitrogen fate under intensive vegetable production pattern in northern China. Competes Rends Biologist, 2009, 332(4):385-392.
    171. Stevens R J, Laughlin R J, Mosier A. Measurement of Nitrous Oxide and Di-nitrogen Emissions from Agricultural Soils, International Workshop on Dissipation of N from the Human N-Cycle, and Its Role in Present and Future N2O Emissions to the Atmosphere. Nutrient Cycling in Agroecosystems, 1998a, 52 (3):131-139.
    172. Stevens R J, Laughlin R J, Malone J P. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biology and Biochemistry, 1998b, 30(8-9):1119-1126.
    173. Thompson R B, Meisinger J J. Gaseous nitrogen losses and ammonia volatilization measurement following land application of cattle slurry in the mid-Atlantic region of the USA. Plant and Soil, 2004, 266:231-246.
    174. Tian G M, Cao J L, Cai Z C, et al. Ammonia volatilization from wheat field top-dressed with urea. Pedosphere, 1998, 8(4):331-336.
    175. Trindade H, Coutinho J, Scholefield D, et al. Nitrate leaching from sandy loam soils under a double - cropping forage system estimated from suction - probe measurements. Plant and soil, 1997, 195(2):247-256.
    176. Van Genuchten M Th. A closed form equation for predicting the hydraulic conductivity of unsaturated soils.Soil Science Society of America, 1980, 40:892-898.
    177. Vazquez N, Pardo A, Suso M L, et al. A methodology for measuring drainage and nitrate leaching in unevenlyirrigated vegetable crops.Plant Soil, 2005, 269: 297-308.
    178. Velthof G L, Oudendag D, Witzke H R, et al.Integrated Assessment of Nitrogen Losses from Agriculture in EU-27 using MITERRA-EUROPE. Journal Environmental Quality, 2009, 38(2): 402-417.
    179. Vlek P L G, Stumpe J M.Effects of solution chemistry and environmental conditions on ammonia volatilization losses from aqueous systems.Soil Science Society of America, 1978, 42: 416-421.
    180. Waddell J T, Gupta S C, Moncrief J F, et al. Irrigation- and nitrogen-management impacts on nitrate leaching under potato. Journal of Environmental Quality, 2000, 29(1): 251-261.
    181. Wei Y P, Chen D L, Kelin H, et al.Policy incentives for reducing nitrate leaching from intensive agriculture in desert oases of Alxa,Inner Mongolia, China.Agricultural Water Management, 2009, 96(7): 1114-1119.
    182. Weier K L, MacRae I C, Myers R J K. Denitrification in a clay soil under pasture and annual crop: Estimation of potential losses using intact soil cores. Soil Biology and Biochemistry, 1993, 25 (8):991-997.
    183. Wrage N, Velthof G L, Beusichem M L, et al. Role of nitrifier denitrification in the production of nitrous oxide.Soil Biology and Biochemistry, 2001, 33:1723-1732.
    184. Xu J G, Heeraman D A, Wang Y. Fertilizer and temperature effects on urea hydrolysis in undisturbed soil. Biology and Fertility of Soils, 1993, 16:63-65.
    185. Yan X Y, Akimoto H, Ohara T. Estimation of nitrous oxide, nitric oxide and ammonia emissionsfrom croplands in East, Southeast and South Asia.Global Change Biology, 2003, 9(7):1080-1096.
    186. Zheng X H, Wang M X, Wang Y S, et al. Comparison of manual and automatic methods for measurement of methane emission from rice paddy fields.Advances in Atmospheric Sciences, 1998, 15 (4):569-579.
    187. Zheng X H, Han Sh H, Huang Yao, et al. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochemical Cycles, 2004, 18: GB2018.doi:10.1029/2003GB002167.
    188. Zhu Z L, Cai G X, Simpson J R. Processes of nitrogen loss from fertilizers applied to flooded rice fields on a calcareous soil in north-central China. Fertilizer Research, 1989, 18:101-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700