用户名: 密码: 验证码:
黄花水龙在不同污染水体中的生长状况研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以黄花水龙(Jussiaea.stipulacea Ohwi)为研究对象,初步研究了其在不同程度富营养化水质中的生长特性和在高浓度镉污染水质中的耐受能力,探讨其在水污染生物修复工程中的广泛利用的可能性和发掘潜力。并对其在不同水深和底质条件下的生长情况进行了研究,以掌握关于它的基本生长特性的第一手资料。具体结论如下:
     1、浅水、底质肥沃是黄花水龙的最佳生境。由于黄花水龙体内有发达的气隙组织,此生境中底质的强还原性对黄花水龙不构成氧胁迫。在试验期内,当被作为漂浮类物种种植时,黄花水龙仅靠吸收水体中的营养也能保持一定速率的生物量增长。
     2、黄花水龙在富营养化水体中飘浮生长时,在三到四周内能保持良好的生长状况。而作为黄花水龙克隆繁殖构件的主茎,在实验期间始终保持着较高的伸长和生物量增长速率。
     3、富营养化水体中氮的下降效率在不同富营养化程度水体间的没有明显的变化趋势,而磷的下降效率在富营养化程度高的水体中效率较高。
     4、黄花水龙对水体中镉离子浓度有极高的耐受能力,在本实验的条件下,最高耐受值在30-60mg/L之间。
     鉴于上述实验结果,综合考虑黄花水龙的既可以根着生长又可以漂浮生长的特性,后期生物量的潜在利用价值,以及它本身作为本土物种在和外来物种相比时所具有的优越性,可以认定,黄花水龙在污染水质生物修复方面有很大的研究和应用潜力。
For the purpose to be used in polluted water bio-remedy, this paper shows the pilot study of the growth characteristic of Jussiaea. stipulacea Ohwi in different eutrophic water body and high Cd~(2+) contented water. Besides, growing in different substtrate with different overlying-water depth was studied to get first-hand information about its growth characters. The results are as follows: 1、 Fertile lake-sediment with shallow water above is the best habitat for J.stipulacea Ohwi. Although reducing conditions in lake-sediment can greatly affect the root system of aquatic macrophytes, J.stipulacea Ohwi can survive this oxygen defiant stress via its developed ventilation system. When be used as floating species, J.stipulacea Ohwi.can make its living with nutrition supplied by water body. 2、 Growing in eutrophic water bodies as a floating species, J.stipulacea Ohwi shows well growing only during the first three or four weeks. As the cloning propagation module, all the main stems of J.stipulacea Ohwi in each water treatments keep high stretch rate and biomass growing rate all the time.
    3、 The declining rates of TN in water among different eutrophic water bodies shows no obvious changing tendency. While the declining rates of TP in water is higher in severe eutrophic water bodies.
    4、 J. stipulacea Ohwi possesses a strong endurance ability to the Cd~(2+) contented in water. With our experimental condition, the top concentration of Cd~(2+) contented in water J. stipulacea Ohwi can endure lies between 30mg/L and 60mg/L.
    Considering the above experimental results, and its growth characteristic that can either rooting to substrate or floating at surface layer of water body, the biomass' potential value for use, the predominance as a kind of autochthonous aquatic plant versus those exotic species, J. rapens L. thus be judged as a new species with great value for deep research and practice utility.
引文
井艳文,胡秀琳等.利用生物浮床技术进行水体修复研究与示范.水利科学研究,2003,6:20-22.
    孔繁翔,尹大强等.环境生物学.北京:高教出版社,2000.
    王宁珠,张树藩等.《中国水生维管束植物图谱》.武汉:湖北人民出版社.1983:486-487.
    王庆安,任勇等.成都市活水公园人工湿地塘床系统的生物群落.重庆环境科学,2001,23(2):52-55.
    王忠全,温琰茂,黄兆霆等.几种植物处理含重金属废水的适应性研究.生态环境,2005,14(4):540-544.
    王斌,周莉苹,李伟.不同水质条件下菹草的净化作用及其生理反应初步研究.武汉植物学研究.2002,20(2):150-152.
    邓红兵,王青春,王庆礼等.河岸植被缓冲带与河岸带管理.应用生态学报,2001,12(6):951-954.
    韦柳兰,王开曦等.小麦、玉米对不同类型污水中镉和铬的吸收与积累.陕西农业科学,1994,5:27-28.
    冉东辉,张新华等.浅析粤北地区河流水质重金属污染的潜在危机.广东水利水电,2005,6(3):73-77.
    弗斯特纳 U.,维特曼 G.T.W.水环境的重金属.海洋出版社,1988.
    申建波,张福锁,毛达如.植物矿质营养的生态意义:Ⅱ.植物对矿质养分的吸收、利用和分配.生态农业研究,1997,6:11-14.
    伊澄清.内陆水-陆交错带的生态功能及其保护与开发前景.生态学报,1995,9:331-335.
    孙鹏,王志芳.遵从自然过程的城市河流和滨水区景观设计.城市规划,2000,24(9):19-22。
    成水平,况琪军等.香蒲、灯心草人工湿地的研究-净化污水的效果.湖泊科学,1997,9(4):351-358.
    成水平等.香蒲、灯心草人工湿地的研究.净化污水的空间.湖泊科学,1997,10(1):62-66,
    朱斌,陈飞星.利用水生植物净化富营养化水体的研究进展.上海环境科 学,2002,21(9):564-567
    吴振斌等.复合垂直流构建湿地的设计方法及净化效果.武汉大学学报(工学版).2003,36(1):12-16.
    张玉芬,张大勇.克隆植物生态学与进化.见:张大勇主编.植物生活史进化与繁殖生态学.北京:科学出版社.2004:181-222
    张志良,瞿伟菁主编.植物生理学实验指导(第三版).北京:高等教育出版社,2003.
    张建春,彭补拙.河岸带研究及其退化生态系统的恢复与重建.生态学报,2003,23(1):56-63.
    张明,曹梅英.浅谈城市河流整治与生态环境保护.中国水土保持,2002(9):33-34.
    张金彪,黄维南.镉对植物的生理生态效应的研究进展.生态学报,2000,20(3):514-523.
    李大辉,施国新等.Hg~(2+)Cd~(2+)对菱幼苗生长及其超氧化物歧化酶、过氧化物酶活性的影响.武汉植物学研究,1999,17(3):206-210.
    李友第,薛祥骥.水龙草治疗带状疱疹.浙江中医杂志.2002,10:436.
    李天煜,李洪敬.谢素霞.水生维管植物克隆繁殖方式的多样性.广西植物,2000,20(3):233-238.
    李天煜.《稀脉萍和紫萍的重金属生理生态学研究》.武汉大学博士论文.2003,10.
    李文朝.富营养水体中常绿水生植被组建及净化效果研究.中国环境科学,1997,17(1):53-57.
    李伟,钟扬编译.水生植被研究的理论与方法.华中师范大学出版社,1992.
    李合生主编.植物生理生化实验原理和技术.北京:高等教育出版社,2000.
    李修岭,李伟.几种植物去除高度富营养化湖水中氮磷及抑藻效果的初步研究.武汉植物学研究,2005,23(1):53-57.
    李修龄.城市湖泊水质修复与保持技术研究.中国科学院武汉植物园硕士论文,2004.
    李振宇,谢炎.中国外来入侵种.中国林业出版社,2002
    杨丹慧.重金属离子对高等植物光合膜结构与功能的影响.植物学通报,1991,8(3):26-29.
    杨明杰,林咸永等.Cd对不同种类植物生长和养分积累的影响.应用生态学报,1998,9(1):89-94.
    杨清心.富营养化水体中沉水植物与浮游藻类相互竞争的研究.湖泊科学,1996,8,增刊:17-24.
    沈治蕊.南京煦园太平湖富营养化及其防治.湖泊科学,1997,9(4):377-379.
    沈韫芬、章宗涉.水污染生物学问题.刘建康,高级水生生物学.科学出版社,1999:305-337.
    谷巍,施国新等.汞、镉污染对轮叶狐尾藻的毒害.中国环境科学,2001,21(4):371-375.
    陈开宁,邹晶等.五里湖富营养水体生态重建试验.现代城市研究,2005,5:47-52.
    周红卫,施国新等.Cd2+污染对水花生生理生化及超微结构的影响.应用生态学,2003.14(9):1581~1584.
    周启星,宋玉芳.污染土壤修复原理与方法.北京:科学出版社,2004.
    周钧.江苏水生态修复中的新技术应用.水利技术监督,2004,2:49-51.
    孟紫强.环境毒理学.中国环境科学出版社.2003:135-140.
    金相灿、刘鸿亮等.中国湖泊富营养化.中国环境科学出版社,1990.
    施国新,杜开和等.汞、镉污染对黑藻叶细胞伤害的超微结构研究.植物学报,2000,42(4):373-378.
    种云霄胡洪营等.大型水生植物在水污染治理中的应用研究进展.环境污染治理技术与设备,2003,4(2):36-40.
    胡焕斌,周化民等.人工湿地处理矿山炸药污水.环境科学与技术,1997,(3):17-19.
    赵亚楠,杨海军,内田泰三等.受损河岸生态系统生态修复材料的研究.东北师大学报自然科学版,2004,36(1):107-113.
    饶钦止,章宗涉.武汉东湖浮游植物的演变(1956-1975)和富营养化问题.水生生物集刊.1980,7(1):1-17
    候宽昭主编.广州植物志.北京:科学出版社,1956:164.
    倪乐意,李纯厚,黄祥飞.在富营养型水体中重建沉水植被的研究.刘建康主编.东湖生态学(二).北京:科学出版社,1995:302-310.
    倪乐意.大型水生植物.见:刘建康主编.高级水生生物学.北京:科学出版社,1999:224-240.
    徐楠 施国新等.Hg、Cd及其复合污染对浮萍叶片的毒害研究.南京师大学报(自然科学版),2002,25(3):109-115.
    涂淑玲,汪先明.鄱阳湖水体重金属污染的现状评价.江西科学,2005,23(6):796-798.
    郭笃发.环境中铅和镉的米源及其对人和动物的危害.环境科学进展,1994,2(3):71-76.
    屠清瑛,章永泰,杨贤智.北京什刹海生态修复试验工程.湖泊科学.2004,16(1):62-66
    常福辰,施国新等.水龙营养器官的形态结构与生态适应.南京师大学报,2003,26(1):105-105
    黄会一,李书鼎等.木本植物对Cd的吸收及其在体内的分配.生态学报,1982,2(2):139-145.
    黄时达 王庆安等.从成都市活水公园看人工湿地系统处理工艺.四川环境,2000,19(2):8-12.
    黄祥飞等,湖泊生态调查观测与分析.北京:中国标准出版社,2000
    靖元孝,杨丹菁,陈章和,陈兆平.两栖榕在人工湿地的生长特性及其对污水的净化效果.2003,23(3):614-619.
    颜素珠,范允平等.黄花水龙与水龙形态及结构的比较观察.广西植物,1997,17(2):152-157.
    颜素珠,粱东.8种水生植物对污水中重金属—铜的抗性及净化能力的探讨.中国环境科学,1990,10(3):166-170.
    颜素珠.中国水生高等植物图说.北京:科学出版社,1983:131.
    魏树和,周启星,王新等.一种新发现的镉超积累植物龙葵(Solanum nigrum L).科学通报(科研论文),2004,49(24):2568-2573.
    Armstrong J,Armstrong W, Wu Z, et al.A role for phytotoxins in the Phragmites die-back syndrome? Folia Geobot Phytotax, 1996,31:127-142
    Armstrong J., Armstrong W. & Beckett P.M. Phragmites australis: Venturi- and humidity-induced convections enhance rhizome aeration and rhizosphere oxidation. New Phytologist.1992, 120, 197~207.
    Armstrong W.渍水土.见:环境与植物生态学.埃塞林顿 J.R.科学出版社.1989,215-245.
    Baker, A.J.M. Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 1981, 3: 643-654.
    Billore S K; Singh N; Sharma J K; Nelson R M. Horizontal subsurface flow gravel bed constructed wetland with Phragmites karka in central India. Water Science and Technology, 1999, 40 (3), 163-171.
    Bonser A M, Lynch J P, Snapp S. Effect of phosphorus deficiency on growth angle of basal roots in phaseolus vulgaris . New Phytology, 1996,132:281- 288.
    Bratli J.L.,Skiple A.,Mjelde M. Restoration of Lake Borrevannet - self-purification of nutrients and suspended matter through natural reed-belts. Water Science and Technology 1999, 40, 3: 325-332.
    
    Brix H. Treatment of wastewater in the rhizo-sphere of wetland plants: the root-zone method. Water Science and Technology, 1987, 19: 107-118.
    Coleman J., Hench K., Garbutt K., et.al. Treatment of Domestic Wastewater by Three Plant Species in Constructed Wetlands . Water, Air, Soil Pollution.2001, 128 (3-4): 283-295.
    Dorthe N. Jespersen, Brian K. Sorrell. Growth and root oxygen release by Typha latifolia and its effects on sediment methanogenesis. Aquatic Botany, 1998, 61:165-180.
    Engler, R. M. and Fitzpatrick W. H., Stability of manganese, iron, zinc, copper and mercury in flooded soil. Soil Science, 1975, 119: 217-221.
    Fennessy M.S., Cronk J.K., Mitsch W.J. Macrophyte productivity and community development increated freshwater wetlands under experimental hydrological conditions . Ecological Engineering, 1994, 3(4):469-484.
    Giovannini S.GT.and Marques da Motta D.M.L. Establishment of three emergent macrophytes under different water regimes. Water Science and Technology, 1999,40(3):233-240.
    Gopal B.. Natural and constructed wetlands for wastewater treatment: Potentials and problems. Water Science and Technology, 1999, 40(3): 27-35.
    Grosse W., Armstrong, J. Armstrong W.. A history of pressurized gas-flow studies in plants. Aquatic Botany, 1996, 54:87-100.
    Haberl R. Constructed wetlands: A chance to solve wastewater problems in developing countries. Water Science and Technology, 1999, 40(3): 11-17.
    Hartog C.D.,Kevt J, Sukopp H. Reed: A common Species in decline,Aquatic.Botany, 1989, 35:1-4
    John T., Beth J. The design of living technologies for waste treatment. Ecological Engineering, 1996,6(1): 109-136.
    Jupp B.P., Spence D. H. N. Limitations on macrophytes in a eutrophic lake,Loch Leven. I. Effectd of phytoplsnkton. Journal of Ecology, 1977, 65:175-186.
    Lambers H., Poot P. Book review: Structure and Functioning of Cluster Roots and Plant Responses to Phosphate Deficiency . 2003. Journal of Plant Physiology. 2005,162: 722-724
    Liu, D., Jiang, W., Gao, X. Effects of cadmium on root growth, cell division and nucleoli in root tips of garlic. Biology of Plant, 2004, 47, 79-83.
    Lynch J.P. Root architecture and plant productivity. Plant Physiology, 1995, 109: 7-13.
    Benyamine M., Backstrom M.et al. Multi-Objective Environmental Management in Constructed Wetlands. Environmental Monitoring and Assessment, 2004, 90 (1-3): 171-185.
    Niko S., Harri V., and Jukka L.. Vegetation is the main factor in nutrient retention in a constructed wetland buffer. Plant and Soil, 2004, 258(1): 179 - 187.
    Nyakango J.B. and Bruggen J.J. A. Combination of a well functioning constructed wetland with a pleasing landscape design in Nairobi, Kenya. Water Science and Technology, 1999, 40(3): 249-256.
    Ostendorp W . "Die-back"of reeds in Europe—A critical review of literature. Aquatic Botany, 1989,35:5-26
    Petr Grau. Low cost wastewater treatment. Water Science and Technology, 1996, 33(8): 39-46
    Robert H. Kadlec. Chemical, physical and biological cycles in treatment Wetlands . Water Science and Technology, 1999, 40(3):37-44
    Ryszard B., Sadzide M. Soil clogging phenomena in constructed wetlands with subsurface flow. Water Science and Technology, 1997, 35(5): 183-188.
    Sim, C.H. The use of constructed wetlands for wastewater treatment . Published by Wetland International - Malaysia Office . 2003.
    Skene K.R. Cluster roots: model experimental tools for key biological problems. Experimental Botany, 2001, 52: 479-485.
    Solano M.L.; Soriano P.; Ciria M.P. Constructed wetlands as a sustainable solution for wastewater treatment in small villages . Biosystems Engineering, 2004, 87 (1): 109-118.
    Song Z.W, Zheng Z.P., Jie Li, etc. Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China . Ecological Engineering, 2006, 26: 272-282.
    Sorrell B. K. Effect of external oxygen demand on radial oxygen loss by Juncus roots in titanium citrate solutions. Plant, Cell and Environment, 1999, 22:1587-1593.
    Stobart A K, Griffiths W T,Ameen-Bukhari I, et al. The effect of Cd~(2+) on the biosynthesis of chlorophy II in leaves of barley. Physiology of Plant, 1985, 63:293-298.
    Stottmeister U., Kuschk P. et.al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances, 2003,22:93-117.
    Susan B. Peterson, John M. Teal The role of plants in ecologically engineered wastewater treatment systems. Ecological Engineering, 1996, 6(1):137-148.
    Tanner, C.C. Plants as ecosystem engineers in subsurface flow treatment wetlands. Water Science and Technology, 2001, 44, 9-17.
    Wat.T.M., Evans J.R. Proteoid roots, physiology and development. Plant Physiolory,1999, 121:317-323.
    Wittgren, H.B., Maehlum, T. Wastewater treatment wetlands in cold climates. Water Science and Technology, 1997, 35, 45-53.
    Wojcik M, Tukendorf A. Cd-tolerance of maize,rye and wheat seedlings. Acta Physiol. Plant, 1999,21, 99-107.
    Xie Y.H., An S.Q., Yao X. Short-time response in root morphology of Vallisneria natans to sediment type and water-column nutrient. Aquatic Botany, 2005, 84:85-96.
    Martin M. K.,Robert J.F.,Charles P.G.et al. Management of dairy waste in the sonor and esertusing constructed wetland technology. Water Science and Technology, 1999,40(3):57-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700