用户名: 密码: 验证码:
人工浮床不同采收方式对生物产出及水质净化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化问题已是当今世界面临的最主要的水污染问题之一。聚焦长三角地区水体治理难、富营养严重的问题,尤其针对陡直的水泥硬岸河道,恢复自然岸滩和湿地经济代价巨大,鉴于人工浮床技术治理污染河流不受水位限制,不造成河道淤积,只占水面不占地,可放可收易管理,还可以获得一定经济和社会效益,特别是运行高效,因此对该技术开展相关研究,对我国水体富营养化治理及水资源可持续利用具有重要的现实意义。目前,已有研究大部分以静态实验或封闭水体小试验为主,较少涉及河道现场实验,且仅有的现场试验,也只是局限于对浮床系统运行净化方面研究,而对浮床系统现场运行下的管理研究较少。本文针对与采收管理相关的问题开展研究,以期寻求合理有效的管理方式,对生物浮床高效运作具有重要的指导意义,可为该技术的高效应用提供科学依据。
     本文以空心菜为受试植物,采用野外实验和控制实验相结合的方法,对浮床生物进行不同采收周期(2周间隔、3周间隔、4周间隔)和留茬高度(野外试验为:15cm、25cm、35cm;控制试验:8cm、16cm、24cm)处理。野外实验主要通过观察分析植株新芽生长、生物量、茎叶比等变化,研究不同采收方式对浮床植物生物产出的影响;控制实验是针对浮床生物不同采收方式对水质净化效果设计的,主要通过对TN、NH4+-N、TP、CODcr等水质指标的测定分析,评价了不同采收方式对水质净化的功效。本论文主要研究成果如下:
     不同采收方式对生物产出的影响
     (1)采收后的植物仍能够适应过水河道环境,并在其生长周期内持续生长。经110 d的生长,分枝数提高了近5倍,最长根长27cm,平均根长15 cm,根系直径达11 cm。单株根鲜重可达146 g,每平米浮床根部可吸附颗粒物3.36 kg。
     (2)新芽生长速率随采收次数增多,均呈现先不断提高然后减小的趋势,变化幅度为0.54-3.7cm·d-1,对照组为1.63 cm·d-1。适当采收能提高新芽再生速率。单次收获生物量同新芽变化规律相似,即先逐渐增多然后减小,生物量增长速率变化幅度3.83~37.9 g·m-2·d-1。
     (3)从总生物量来说,每4周采收1次留茬25 cm、35 cm组的生物量(干重)产出最高,达2112 g·m-2;从茎叶比看,每2周采收1次3个留茬高度,及每3周采收1次留茬15 cm和25 cm方式收获植物茎叶比较佳;综合考虑产量和质量,及浮床便捷管理,每3周采收1次留茬15 cm的采收方式效果最佳,此时新芽平均生长速率1.88 cm·d-1,平均茎叶比小于1,总生物量1966 g·m-2。
     不同采收方式对水质净化效果的影响
     (1)TN含量在换水周期内随时间推移而不断降低。不论采收间隔,还是留茬高度对TN净化效果均有显著差异(P<0.05)。不采收组TN净化效果(78%)明显高于空白(48%)。从TN净化效果看,最佳采收方式是每3周采收1次留茬16cm或24cm,或者每4周采收1次留茬16cm,平均净化率80%左右。
     (2)TP含量在换水周期内随时间推移而不断降低。不论采收间隔,还是留茬高度对水体TP的去除效果均无显著影响(P>0.05),即采收不影响系统对TP去除的效果。浮床对氮(80%)的净化效果比磷(64%)好。
     (3) CODcr含量在换水周期内随时间推移呈不规则的上下波动变化。浮床系统对有机物的净化效果不明显,浮床植株采收不会影响CODcr含量变化。
     (4) NH4+-N浓度在换水周期内随时间推移不断降低。所有处理组对NH4+-N的净化率在95%以上,甚至接近100%。采收方式不影响NH4+-N的净化效果
Eutrophication is already one of the most major water pollution problems in the world today. It's very hard to solve the serious eutrophication problem in theYangtze river delta. Due to the cement embankment, the cost is extremely high to restore natural banks and wetland. However, floating treatment wetlands (FTW) can offer the advantages of providing effective treatment, easy management and economic benefits, and occupying water surface only, without being constrained by the requirement of water depth. Thus, this technology has great practical significance for remidiation of eutrophicated river and sustainable water resource management. At present, most of the existing studies are static or closed water box tests, with few river field experiments. The only field tests were also just confined to purification function. There has been very little information published to date about FTW plant management in the river. The aim of this paper is to seek effective and reasonable methods for FTW management, which can provide scientific foundation for the application of this technology.
     Ipomoea aquatica was used as FTW plant in both field experimentation and controled experimentation to evaluate the effects of different cutting frequency and stubble heights. With field experimentation, we assessed the effects of different cutting regimes on the output of floating plants by analyzing sprout, biomass, stem-leaf ratio; while with controlled experimentation, we evaluated the effects of cutting regimes on water purification function, by measuring TN、NF4+、-N、TP、CODcr in the water. The main research results of this study are as follows:
     The effects of cutting on plant productivity
     (1) After cutting the plants could grow healthily during its whole lifecycle. The number of tillers was 5 times that of the initial value, with the longest roots of 27 cm, average roots length of 15 cm, and average root system diameter of 11 cm. The fresh root biomass of single plant was 146 g, which could adsorb 3.36 kg suspended particulates per square meter of floating mat.
     (2) Sprout growth rate went gradually up and then down with the increase of cutting times, at the range of 0.54-3.7 cm·d-1 in different cutting treatments, compared with 1.63 cm·d-1 of no-cutting. Only appropriate cutting could promote sprout growth rate.The change of biomass harvested resembles that of sprouts, and the average biomass growth rate was between 3.83-37.9 g·m-2·d-1.
     (3) Concerning total biomass, the treatment of cutting every 4 weeks, and stubble heights at 25 cm or 35 cm could obtain maximum biomass, at 2112 g·m-2; Concerning stem-leaf ratio, the treatments of cutting every 2 weeks and every 3 weeks with stubble heights at 15 cm or 25 cm were better than other treatments; Concerning both biomass and quality, as well as management convenience, cutting every 3 weeks with stubble heights at 15 cm was the best. Under this cutting regime, sprout growth rate was 1.88 cm·d-1, stem-leaf ratio was less than 1, and the total biomass was 1966 g·m-2.
     The effect of floating treatment wetland system on water purification
     (1) The concentration of TN reduced with the time passing. Concerning cutting frequencies and stubble heights, the effects of FTW on TN removal were found to be significantly different (P<0.05) among different treatments. The removal rate for TN from the treatment of non-harvest (78%) is much higher than that from no-floating bed system (48%). Concerning TN removal, the treatment of cutting every 3 weeks and stubble height at 16 cm or 24 cm, or cutting every 4 weeks with stubble height at 16 cm will result in good performance. The average TN removal rate is about 80% for these treatments.
     (2) The concentration of TP also reduced with the time passing. No significant different (P>0.05) for TP reduction was found among all the treatments. Therefore, there was no effect of cutting on TP purification. The removal rate for TN (80%) is better than that for TP (64%), taking non-harvest treatment as an example.
     (3) The change for the concentration of CODcr was fluctuating with the time passing. The effect of floating bed on CODcr removal is not apparent.
     (4) The concentration of NH4+-N also reduced with the time passing, for which the purification rate was above 95%, even close to 100% in most of the treatments, among with, no significant different effects was found.
引文
Anslow RC. Frequency of cutting and sward production. The Journal of Agricultural Science, Cambridge,1967,68:377-384.
    Aah R and Truong P. The use of Vetiver grass wetlands for sewerage treatment in Australia. In: Proceedings of 3rd International Conference on Vetiver. Guangzhou, China,2003.
    Frame J, Hunt IV. The effects of cutting and grazing systems on herbage production from grass swards. Grass and Forage Science.1971,26:163-172.
    Garbutt P. An investigation into the application of floating reed bed and barley straw techniques for the remediation of eutrophic waters. Water Environment Journal,2004:174-180.2004.
    Headley TR and Tanner CC. Application of Floating Wetlands for Enhanced Stormwater Treatment:A Review. ARC Technical Publication No.324, Auckland Regional Council, Auckland.2006.
    Headley TR and Tanner CC. Floating Wetlands for Stormwater Treatment:Removal of Copper, Zinc and Fine Particulates, Auckland Regional Council Technical Publication No., Auckland Regional Council, Auckland, New Zealand.2007.
    Hadada, Mainea MA, Bonetto CA. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment[J]. Chemosphere,2006(63):1744-1753.
    Headley, T.R., Tanner, C.C.,2011. Constructed wetlands with floating emergent macrophytes for stormwater treatment. Critical Reviews in Environmental Science and Technology (in press).
    Hosoi Y, Kido Y, Miki M, et al. Field examination on reed growth, harvest and regeneration for nutrient removal [J]. Water Science & Technology,1998,38(1):351-359.
    Hubbard R.K, Gascho G J and Newton G L. Use of floating vegetation to remove nutrients from swine lagoon wastewater. Transactions of the ASAE,47 (6):1963-1972.2004.
    Hudosn J J, Taylon W D,Schindler D W.Phosphate concertrations in lakes. Nature,2000,406 (6):54-56.
    Kansiime F, Oryem-origa H and Rukwago S. Comparative assessment of the value of papyrus and cocyams for the restoration of the nakivubo wetland in Kampala, Uganda. Physics and Chemistry of the Earth,30:698-705.2005.
    Nahlik A M and Mitsch W J. Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecological Engineering,28(3):246-257.2006.
    Nakamura,K.,Shimatani,Y.Water purification and environmental enhancement by the floating wetland[C].Proceeding of 6th IAWQ Asia-Pacific regional conference in korea,1997.
    Sekiranda S B K and Kiwanuka S. A study of nutrient removal efficiency of Phragmites mauritianus in experimental reactors in Uganda. Hydrobiologia,364:83-91.1998.
    Smith M.P and Kalin M. Floating Wetland Vegetation Covers for Suspended Solids Removal, In: Treatment Wetlands for Water Quality Improvement, Proceedings of Quebec 2000 Conference, CH2MHILL, Canada.2000.
    Tang Xian-qiang, Huang Sui-liang. Mechanism of pollutant removal in constructed wetlands and their application both at home and abroad[J]. Water Treatment Technology,2007,33 (2):9-13.
    Todd J, Browne J and Wells E. Ecological design applied. Ecological Engineering,20:421-440. 2003.
    Vanacker J, Buts L, Thoeye C et al. Floating plant beds:BAT for CSO Treatment. In:Book of Abstracts from International Symposium on Wetland Pollutant Dynamics and Control.Sept. 4-8, Ghent Belgium, pp.186-187.2005.
    Yang Z, Zheng S, Chen J, et al.2008. Purification of nitrate-rich agricultural runoff by a hydroponic system. Bioresource Technology,99:8049-8053.
    白峰青,郑丙辉,田自强.水生植物在水污染控制中的生态效应.环境科学与技术.2004,27(4)99-110.
    白晓慧.城市内河污染修复技术及其健康生态重建研究[D].2001,博士后论文,浙江大学.
    操家顺,李欲如,陈娟.水蕹菜对重污染河道净化及克藻功能.水资源保护.2006.22(2):36-38.
    车越.中国东部平原河网地区水源地的环境管理:理论、方法与实践[M].华东师范大学博士论文,2005.5.
    陈振楼,许世远,徐启新等.长江三角洲地表水环境污染规律初探.福建地理.2000,15(3):16-22.
    陈文瑞.长江三角洲水资源可持续利用的对策.中国给水排水,2001,17(3):25-28.
    陈家长,孟顺龙,胡庚东等.空心菜浮床栽培对集约化养殖鱼塘水质的影响.生态与农村环境学报.2010,26(2):155-159.
    陈立婧,顾静,张饮江等.从浮游藻类的变化分析人工浮岛在治理上海白莲泾中的作用.水产科技情报.2008,35(3):135-137,142.
    陈平,韦余广,罗静.河道人工湿地的构建及其对河道水流的影响.河海大学学报(自然科学版),2007,35(4):374-378.
    程树培,丁树荣,胡惠明.利用人工基质无土栽培水蕹菜净化缫丝废水研究.环境科学.1991,12(4):47-51,46.
    戴全裕,蒋兴昌,张珩等.水蕹菜对啤酒及饮食废水净化与资源化研究.环境科学报.1996,16(2):249-251.
    戴全裕,蒋兴昌,汪耀斌等.太湖入湖河道污染物控制生态工程模拟研究.应用生态学报.1995,6(2):201-205.
    杜健鹰.水蕹菜水面浮植技术.水利渔业.1987,(4):25-28.
    范洁群,邹国燕,宋祥甫等.浮床黑麦草对城市生活污水氮循环细菌繁衍和脱氮效果的影响.生态学报.2010,30(1):265-271.
    付子轼,邹国燕,宋祥甫等.适应近郊污染河道治理工程的生态浮床植物筛选.上海农业科技.2007,(5):19-20.
    高阳俊,赵振,孙从军.组合生态浮床在滇池入湖河流治理中的应用.中国给水排水.2009,25(15):46-48.
    郭沛涌,朱荫湄,宋祥甫等.陆生植物黑麦草对富营养化水体修复的围隔实验研究-氨氮的净化效应及其动态过程.浙江大学学报理学版.2007,34(1):76-79.
    郭沛涌,朱荫湄,宋祥甫等.浮床黑麦草去除富营养化水体-总氮的试验研究.华中科技大学学报:城市科学版,2007,24(2):33-35,40.
    郭沛涌,朱荫湄,宋祥甫等.陆生植物黑麦草对富营养化水体修复的围隔实验研究-氨氮的净化效应及其动态过程.浙江大学学报:理学版,2007,34(1):76-79.
    郭沛涌,朱荫湄,宋祥甫等.陆生植物黑麦草对富营养化水体修复的围隔实验研究-总磷的净化效应及其动态过程.浙江大学学报:理学版,2007,4(5):560-564.
    国家环保局《水和废水监测分析方法》编写组.水和废水监测分析方法[M].北京:中国环境科学出版杜,1989,230-351.
    国家环保保护总局.地表水环境质量标准.2000.北京:中国标准出版社.
    国家环境保护总局.中华人民共和国环境保护行业标准.水质-化学需氧量的测定-快速消解分光光度法HJ/T399-2007.中国环境科学出版社.2008.06.
    胡洪营,钱易.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备.2003,4(2):36-40.
    胡绵好,袁菊红,向律成,杨肖娥.富营养化水体中水生植物氮代谢酶特性与不同形态氮去除的关系.农业环境科学学报.2008,27(4):1489-1494.
    胡绵好,袁菊红,杨肖娥.水生经济植物根际氮循环细菌及其作用的研究.水资源与水工程学报.2009,20(5):49-54.
    黄田,周振兴,张劲等.富营养化水体的水芹菜浮床栽培试验.污染防治技术,2007,20(3):17-19.
    李艳蔷,姜应和,李兆华等.陆生经济植物浮床去除富营养化水中氮素研究.环境科学与技术.2010,33(8):103-107.
    李雪梅,杨中艺,简曙光等.有效微生物群控制富营养化湖泊蓝藻的效应.中山大学学报(自然科学版):2000,39(1):81-85.
    李海英,冯慕华,李玲等.微曝气生态浮床净化入湖河口污染河水原位模型实验.湖泊科学,2009,21(6):782-788.
    李欲如.植物浮床技术对苏州古城区河水净化效果及规律研究.河海大学,硕士论文.2006.
    李先宁,宋海亮,朱光灿等.组合型浮床生态系统的构建及其改善湖泊水源地水质的效果.湖泊科学,2007,19(4):367-372.
    李秀珍,贾悦.2009.生物浮床应用的国内外研究进展[EB/OL].
    李雪梅,杨中艺,简曙光等.有效微生物群控制富营养化湖泊蓝藻的效应.中山大学学报(自然科学版).2000,39(1):81-85.
    李英杰,金相灿,年跃刚等.人工浮岛技术及其应用.水处理技术.2007,33(10):49-51,77.
    李兆华,卢进登,马清饮,等.湖泊水上农业试验研究.中国农业资源与区划.2007,27(6):34-37.
    李止正,黄国宏,倪晋山.太湖大水面无土栽培高等陆生植物研究.植物学报.1991,33(3):614-620.
    林东教,唐淑军,何嘉等.漂浮栽培蕹菜和水葫芦净化猪场污水的研究.华南农业大学学报.2004,25(3):14-17.
    刘士哲,林东教,何嘉文等.猪场污水漂浮栽培植物修复系统的组成及净化效果研究.华南农业大学学报.2005,26(1):46-49.
    刘书宇,马放,姜钦鹏.优势菌群在复合生态床修复景观水体中的强化能力研究.环境科学.2007,28(6):1206-1208.
    刘娅琴,邹国燕,宋祥甫等.框式复合型生态浮床对富营养水体浮游植物群落结构的影响.水生生物学报.2010,34(1):196-203.
    卢进登,陈红兵,赵丽娅等.人工浮床栽培7种植物在富营养化水体中的生长特性研究.环境染治理技术与设备.2006,7(7):58-61.
    罗固源,卜发平,许晓毅.温度对生态浮床系统的影响.中国环境科学.2010,30(4)499-503.
    马风有,李强,邓辅商.人工浮岛载体设计研究.中国农村水利水电.2007,5:85-87.
    彭近新,陈慧君.水质富营养化与防治.北京:中国环境科学出版社,1988.
    施积炎,袁小风,丁贵杰.作物水分亏缺补偿与超补偿效应的研究现状.山地农业生物学报.2000,19(3):223-226.
    宋祥甫,邹国燕,吴伟明等.浮床水稻对富营养化水体中氮,磷的的去除效果及规律研究.环境科学学报.1998,18(5):489-494.
    苏志烽,缪为民,袁新华等.两种净化方式对养殖池塘主要水质因子的影响.水产渔业科学.2008,24(6):482-486.
    孙连鹏,刘阳,冯晨等.不同季节浮床美人蕉对水体氮素等污染物的去除.中山大学学报:自然学版,2008,47(2):127-130,139.
    屠清瑛,章永泰,杨贤智.北京什刹海生态修复试验工程.湖泊科学.2004,16(1):61-67.
    屠鹤鸣,韩昌来.上海市污染源普查分析与治理对策.水系污染与保护.2002,(1):37-40.
    魏瑞霞,武会强,张锦瑞等.植物浮床-微生物对污染水体的修复作用.生态环境学报.2009,18(11):68-74.
    汪松年.浅析上海水资源状况.上海建设科技.2001(6).
    吴伟,胡庚东,金兰仙等.浮床植物系统对池塘水体微生物的动态影响.中国环境学.2008,28(9):791-795.
    王敏,黄宇驰,吴建强.植被缓冲带径流渗流水量分配及氮磷污染物去除定量化研究.环境科学.2010,31(11):2607-2711.
    徐续,操家顺.河道曝气技术在苏州地区河流污染治理中的应用.水资源保护.2006,22(1):30-33.
    徐晓锋,郭永新.污水浓度对水培净化系统净化效果的影响.安徽农业科学.2007,35(13):3983-3985,4005.
    杨飞,王国祥,周晓红,2009.水芹浮床对重污染河道净化作用研究.人民黄河,31(8):57-58,60.
    杨海清,李秀艳,赵丹,等.植物-水生动物-填料生态反应器构建和作用机理.环境工程学报,2008,2(6):852-857.
    杨加文,陈椽,张明时等.不同方法测定污水中总氮总磷的比较研究.贵州师范大学学报(自然科学版),2008,26(3):45-47.
    杨凯.平原河网地区水系结构特征及城市化响应研究[M].华东师范大学博士论文,2006.
    杨婷婷,操家顺,周勇等.原位围隔耐寒高羊茅浮床对苏州重污染河道水体的净化.湖泊科学.2007,19(5):618-621.
    杨波.亚硝化细菌应用于生物滤池及反渗透深度处理城市污水现场中试研究.山东:山东大学,2007:7.
    由文辉,刘淑媛,钱晓燕.水生经济植物净化受污染水体研究.华东师范大学学报(自然科学版),3(1):98-102.
    余俊任,林聪,张新平等.水生植物在猪场废水净化中的耐污性研究.猪业科学,2006,(12):64-66.
    张丽萍,梅朋森,程加丽等.人工浮岛栽培蔬菜及花卉对水质的净化作用研究.三峡大学学报:自然科学版.2008,30(1):93-96.
    张彦海,罗固源,许晓毅等.美人蕉浮床去除临江河N、P的动态试验研究.三峡环境与生态.2009,2(2):30-35.
    种云霄,胡洪营,钱易.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备.2003,4(2):36-40.
    周小平,徐晓峰,王建国等.3种植物浮床对冬季富营养化水体氮磷的去除效果研究.2007,15(4):102-104.
    周晓红,王国祥,杨飞等.采收对生态浮床植物黑麦草光合作用及其对氮磷等净化效果的影响.环境科学.2008,29(12):3393-3399.
    周晓红,王国祥,杨飞等.空心菜对不同形态氮吸收动力学特征研究.水土保持研究.2008,15(5).
    周婷,彭少麟,任文韬.东江河岸缓冲带景观格局变化对水体恢复的影响.生态学报.2009,29(1):231-239.
    周怀东.水污染与水环境修复[M].北京:化学工业出版社,2005.
    赵安娜,冯慕华,郭萧.沉水植物氧化塘对污水厂尾水深度净化效果与机制的小试研究.湖泊科学.2010,22(4):538-544.
    朱健,李捍东,王平.环境因子对底泥释放COD、TN和TP的影响研究.水处理技术.2009,35(8).
    中村圭吾,岛谷幸広.人工浮岛の机能と技术の现状.土木技术资料.1999,41(7):26-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700