用户名: 密码: 验证码:
丹河人工湿地对化工污水的处理效果探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来随着经济的快速发展,丹河流域发生了翻天覆地的变化,同时由于周边化工企业众多,致使丹河流域水污染状况十分严峻,它的治理存在现实意义。
     晋城市为实现蓝天碧水,规划了人工湿地工程。该工程项目包括两期,一期已全部完成,二期也正在建设中。本论文主要以丹河湿地一期工程为研究对象。整个一期工程全部建立在A区内,共建了A1、A2、A3、A4四个湿地床,A1区种植香蒲,A2区种植芦苇,A3区种植香蒲,A4区种植芦苇。
     对于从丹河湿地上游过来的化工类污水进行处理处置,并对不同植物人工湿地系统对污水的去除效果进行了比较,监测了污水去除过程中的各种指标,包括pH值、DO、COD、BOD、氨氮、总氮以及总磷,甚至对氟化物和氰化物的去除也进行监测,得出以下结果与结论:
     (1)人工湿地系统中各不同出口的pH值变化不大,基本维持在7.4-7.6之间;人工湿地系统各个出口的DO值变化较大,这是由于DO不仅与温度有关,还与水生植物的泌氧能力有关;湿地系统由于比较庞大,水体的自我调节能力比较强。
     (2)人工湿地系统中各出口的COD、 BOD、氨氮、总氮以及总磷等变化基本一致,各出口的指标均随着进口水的浓度变化而变化,说明在整个人工湿地系统中,对化工类污水有较好的的去除效果。
     (3)人工湿地系统中对于难降解的氟化物和氰化物基本没有去除,出口水平和进口基本一致,人工湿地系统对难降解的化合物基本不能去除,如果这些污染物比较严重,应考虑湿地与其他工艺的组合。
     (4)人工湿地系统对废水的COD、BOD、氨氮、总氮以及总磷的去除效果比较明显,其中对COD去除率为30.37%-61.43%,BOD的去除率为30.64%-70.29%,氨氮的去除率为7.29%-59.68%,总氮的去除率为9.05%-63.95%,总磷的去除率为-7.55%-24.05%;对废水的去除效果比较好,但是磷的去除出现负值,这是由于植物中的磷向水体中释放磷的原因。
     (5)对人工湿地植物收割后进行植物根茎叶不同部位的总氮和总磷的测定,其中芦苇对氮的吸收能力比香蒲强,但对磷的吸收能力和香蒲的差不多,二者对氮磷的吸收地上部分比地下部分多,说明收割植物是去除污水氮和磷的一种可行方法。
     (6)香蒲和芦苇吸收去除污水中的总氮和总磷分别占香蒲湿地系统和芦苇湿地系统的1.68%和39.1%,3.05%和39.0%。植物吸收对磷的去除率贡献较大,而对氮的去除贡献较小,但相对于整体去除率贡献较小,湿地系统对氮磷的去除不是以植物吸收为主。
     总之本论文对丹河人工湿地一期工程处理化工污水的效果进行了探讨,但由于时间有限和实际工程的局限,仍有很多不足之处,建议以后从工程设计开始更多的进行改进,为湿地处理污水效果提供依据。
With the rapid development of economy in recent years, there is a great change along Dan River Basin. Due to the surrounded by chemical industries, the water of Dan River Basin has been polluted very seriously and its treatment has practical significance.
     In Jincheng city, planning the project of artificial wetland will be constructed in order to achieve the blue sky and clear water. The project includes two period projects, the first period project has been completed and the second one is constructing. The paper focuses on the first period project of Danhe wetland. The first period of the project has been all built in the A region, and the wetland has been divided into A1, A2, A3and A4four wetland beds. Cattail has been planted in Al and A3area and reeds has been planted in A2and A4area.
     The sewage derived from chemical industries has been treated in Dan River upstream by artificial wetland and the effect of sewage treatment at different area has been compared in constructed wetland in view of pH, DO, COD, BOD, ammonia nitrogen, total nitrogen and total phosphorus, and even removal rates of fluoride and cyanide. Some conclusions are as follows:
     (1) The pH values in the different area of artificial wetland system changes smoothly, it basically maintains at between7.4-7.6. The DO values in different exports of artificial wetland system changes sharply, the main reason is that the DO value is not only related to the temperature, but also related with the ability of radial oxygen of aquatic plants. The wetland system water has the relatively strong self-regulating capacity due to large bodies of water.
     (2) The changes of each water index of different exits in artificial wetland system are almost consistent; these indexs include COD, BOD, ammonia nitrogen, total nitrogen and total phosphorus. The concentration of index in each export changes with the concentration of water inlet. These results indicated that the wetland system can be able to achieve better removal efficiency for chemical sewage.
     (3) The fluoride and cyanide which are hard to degrade in wetland system are not basically removed, and the concentration of exports and imports are almost the same. This indicates that the wetland system cannot remove the basic undegraded compounds. It should be consider a combination of wetland and other technology if these pollutants are polluted very seriously.
     (4) The removal efficiencies of COD, BOD, ammonia nitrogen, total nitrogen and total phosphorus are obvious, and the COD removal efficiency of 30.37-61.43%and the BOD removal efficiency of30.64-70.29%, ammonia nitrogen removal efficiency of7.29-59.68%and total nitrogen removal efficiency of9.05-63.95%as well as the phosphorus removal efficiency of-7.55-24.05%. The phosphorus removal rates appeared negative value; the reason is the phosphorus from plants into water.
     (5) The total nitrogen and total phosphorus has been determined for different parts of plant, such as roots, stems and leaves after the plants harvest in artificial wetland. The nitrogen absorption capacity by reeds is better than cattails, but the phosphorus absorption capacity by reeds is almost approaching to that by cattails. Not only reeds but also cattails the nitrogen and phosphorus absorption capacity of aerial parts is better than underground parts, so harvesting plants is a useful method for removal nitrogen and phosphorus of sewage.
     (6) Removal rates of total nitrogen in sewage by cattails and reeds absorption which occupies the proportion of the TN removal rate in cattails wetland system and reeds wetland system are1.68%and3.05%, but removal rates of total phosphorus in sewage by cattails and reeds absorption which occupies the proportion of the TP removal rate in cattails wetland system and reeds wetland system are39.1%and39.0%. The plants absorption on phosphorus is better than the absorption on nitrogen, but the contribution of plants absorption is small relative to the overall removal efficiency and the plants absorption is not the dominant position on removal of nitrogen and phosphorus in wetland system.
     In summary, in this paper, the removal efficiency of chemical sewage in the first period of Dan River artificial wetland has been investigated. But there are many inadequacies due to time constraints and the limitations of practical engineering, so it is essential to improve the engineering from the design and provide a foundation basis for the effect of wetland sewage treatment.
引文
[1]Dabo Guan, Klaus Hubacek. A new and integrated hydro-economic accounting and analytical framework for water resources:A case study for North China[J]. Journal of Environmental Management 88 (2008) 1300-1313.
    [2]于萍萍,张进忠,林存刚.水资源现状分析及保护对策的研究[J].资源环境与发展,2006,(2):21-27.
    [3]张伟丽,阚燕.我国水资源短缺评价进展综述[J].吉林水力,2011,(7):36-39.
    [4]周遗品,刘雯,林妙娟,等.不同人工湿地系统处理生活污水的比较研究[J].环境工程,2011,29(增刊):127-129.
    [5]杨立彬,贾新平,李清杰,等.黄河流域水资源利用与保护现状评价[J].2011,33(11):55-57.
    [6]姜曼,王彤,夏广锋,等.辽河流域水资源与水环境评价[J].安徽农业科学,2011,39(12):7378-7380,7449.
    [7]叶春.从太湖地区看中国农村水污染[J].环境保护,2007,381(10):42-44.
    [8]Futian QU, Arie KUYVENHOVEN, Xiaoping SHI, etal. Sustainable natural resource use in rural China: Recent trends and policies [J]. China Economic Review 22 (2011) 444-460.
    [9]沈竞,林振山.大中城市水污染状况及治理措施研究[J].自然资源学报,2010,25(12):2165-2170.
    [10]彭举威,康春莉,崔玉波,等.表面流人工湿地处理糠醛生产废水的应用[J].吉林大学学报(地球科学版),2010,40(6):1419-1424.
    [11]孙遥,孙传敏,徐冠立.成都锦江下游建立多级复合人工湿地净化污水的可行性研究[J].四川地质学报,2011,31(1):67-70.
    [12]韩瑞瑞,袁林江,孔海霞.复合垂直流人工湿地净化污水厂二级出水的研究[J].中国给水排水,2009,25(21):50-52.
    [13]Monzur Alam Imteaz, Takashi Asaeda, David A. Lockington. Modeling the effects of inflow parameters on lake water quality. Environmental Modeling and Assessment[J]. Kluwer Academic Publishers, Netherlands.2003,8:63-70.
    [14]Bizsel, O. Uslu. Phosphate, nitrogen and iron enrichment in the polluted Izmir Bay, AegeanSea.Marine[J]. Environmental Research,2000,49:101-122.
    [15]Momez E, Durillom C. Phosphate adsorption and release from sediments of brackish lagoons:pH,O2 and loading influence[J]. Water Research,1999,33(10):2437-2447.
    [16]Gale.P.M, Reddy K R, Graetz D A. Mineralization of sediment organic matter under anoxic condition[J].Environ Qual,1992,21:394-400.
    [17]I.Badran, P.Foster. Environmental quality of the Jordanian coastal waters of the Gulf of Aqaba Red Sea[C],Aquatic Ecosystem and Management 1998,1:75-89.
    [18]Marit,J.H.,Fitzwater, S., Broenhow:phytoplankton/iron studies in the Gulf fAlaska.Deep-Sea Research[Z],1989,36:649-680.
    [19]HAMMER D A. Constructed wetlands for wastewater treatment[J].Michigan:Lewis Publishers Inc.,1989,5-20.
    [20]Brix H. Use of constructed wetland in water pollution control:Historical development, present status, and future perspectives [J]. Wat Sic Tech,1994,30 (8):209-223.
    [21]国超,刘圣勇,李幸芳,等.人工湿地处理低浓度生活污水的现状分析[J].河南科学,2009,29(6):742-745.
    [22]刘峰,梁文艳,隋丽丽,等.垂直流-表流串联人工湿地处理生活污水的研究[J].中国给水排水,2011,27(5):12-15.
    [23]关艳艳,佘宗莲,周艳丽,等.人工湿地处理污染河水的研究进展[J].水处理技术,2010,36(10):10-15.
    [24]谭茂兰,方荣杰.表面流人工湿地控制农田排水污染物的作用[J].水利科技与经济,2011,17(1):15-18.
    [25]李娟,张龙庄,段亮,等.人工湿地废水处理技术的研究现状及展望[J].南方农业学报,2011,42(1):69-73.
    [26]马涛.潜流人工湿地污水处理技术进展[J].环保科技,2010,(26):328-329.
    [27]孙文杰,佘宗莲,关艳艳,等.垂直流人工湿地净化污水的研究进展[J].安全与环境工程,2011,18(1):25-29.
    [28]梁骥,周云新,冼萍,等.垂直流人工湿地净化生活污水的试验研究[J].工业用水与 废水,2010,41(4):47-49.
    [29]李晓东,孙铁珩,李海波,等.人工湿地除磷研究进展[J].生态学报,2007,27(3):1226-1232.
    [30]JAMES N C. Constructed wetlands in treating urban stormwater runoff[J]. Water Environment Research,2000,72(3):295-304.
    [31]王萍,王学东人工湿地处理城市地表径流的研究进展[J].当代化工,2011,40(3):322-326.
    [32]童巍,朱伟,阮爱东.垂直流人工湿地填料的淤堵机理初探[J].湖泊科学,2009,19(1):25-31.
    [33]靖玉明,张建,张成禄,等.潜流人工湿地污染河水处理系统中的填料堵塞问题研究[J].环境污染与防治,2007,29(10):770-773.
    [34]熊佐芳,周云新,冼萍,等.水力负荷对垂直流人工湿地堵塞影响研究[J].水处理技术,2011,37(7):34-37.
    [35]熊佐芳,冼萍,周云新,等.自然导气措施对垂直流人工湿地堵塞的影响[J].中国给水排水,2011,27(13):26-29.
    [36]李艳红,解庆林,白少元.利用人工湿地系统深度处理城市污水尾水[J].环境工程,2006,24(3):86-90.
    [37]郑翀,王洪艳.不同类型水生植物在人工湿地中的净化效果研究进展[J].广东化工2009,36(7):121-123.
    [38]李林锋,年跃刚,蒋高明.人工湿地植物研究进展[J].环境污染与防治,2006,28(8)616-621.
    [39]牛晓君.我国人工湿地植物系统的研究进展[J].四川环境,2005,24(5):45-47.
    [40]刘倩,胡冲,谢冰,等.芦苇人工湿地对垃圾渗滤液总氮去除能力的研究[J].水处理技术,2010,36(12):39-42.
    [41]张迎颖,丁为民,陈秀娟,等.复合垂直流人工湿地的脱氮机理及影响因素分析[J].环境工程,2009,27(5):36-40.
    [42]刘建,张文龙,李轶,等.境内分泌干扰物在人工湿地中的去除[J].环境工程,2011,28(2):24-27.
    [43]郭本华,宋志文,李捷,等.3种不同基质潜流湿地对磷的去除效果[J].环境污染治理 技术与设备,2006,7(1):110-113.
    [44]柳文丽,刘波,陈玉成,等.3种人工湿地填料对磷的动态吸附特征[J].四川环境,2011,30(1):26-29.
    [45]刘慎坦,王国芳,谢祥峰,等.不同基质对人工湿地脱氮效果和硝化及反硝化细菌分布的影响[J].东南大学学报(自然科学版),2011,41(2):400-405.
    [46]郑洁敏,黄国宁,牛天新.不同人工湿地填料对水体中铵根吸附能力的比较[J].杭州农业与科技,2011,(1):30-32.
    [47]郑洁敏,牛天新.不同人工湿地填料对水体中磷素吸附能力的比较[J].杭州农业与科技,2009(2):32-34.
    [48]黄玲,何绪文.钢渣-灰岩人工湿地去除生活污水中的氮素[J].水处理技术,2011,37(9):109-112.
    [49]李怀正,叶建锋,徐祖信.几种经济型人工湿地基质的除污效能分析[J].中国给水排水,2007,23(19):27-30.
    [50]赵占军,王玉杰,王云琦.人工湿地不同级配填料净水效果研究[J].湖南农业科学,2011,(13):83-85.
    [51]张跃峰,刘慎坦,谢祥峰,等.人工湿地处理农村生活污水的脱氮影响因素[J].江苏大学学报(自然科学版)2011,32(4):1671-7775.
    [52]胡红艳,董小群,董瑞斌.人工湿地基质对制革废水的研究[J].皮革与化工,2011,28(2):13-16.
    [53]邵文生,张建,何苗,等.人工湿地系统处理污染河水的填料选配[J].中国给水排水,2006,22(3):65-68.
    [54]陈晓,贾晓梅,侯文华,等.人工湿地系统中填充基质对磷的吸附能力[J].环境科学研究,2009,22(9):1068-1073.
    [55]曹杰,罗安程,方照平,等.人工湿地对氮、磷的去除效率及其空间分布研究[J].科技通报,2009,25(6):848-854.
    [56]徐建新,崔栋,赵振国,等.北方人工湿地植物对污水净化效果研究[J].安徽农业科学,2010,38(30):17049-14051,17062.
    [57]陈润,陈中祥,莫李娟.不同基质和植物人工湿地净化效果试验[J].水资源保护,2010,26(4):62-66.
    [58]苑丹丹,付为国,李萍萍.不同配置人工湿地系统农村生活污水处理效果[J].工业安全与环保,2010,36(8):1-2,7.
    [59]奉小忧,宋永会,曾清如,等.不同植物人工湿地净化效果及基质微生物状况差异分析[J].环境科学研究,2011,24(9):1035-1041.
    [60]刘芬芬,王德建.垂直流人工湿地出水口位置与植物种类对农村生活污水净化效果的影响[J].中国生态农业学报,2011,19(4):912-917.
    [61]胡小兵,鲍静,周俊.垂直流人工湿地处理生活污水的影响因素分析[J].中国给水排水,2011,27(11):69-71.
    [62]仝昭昭,王延华,顾中铸.垂直潜流湿地对生活污水的净化效能研究[J].安徽农业科学,2011,39(13):8035-8037,8045.
    [63]刘春常,安树青,夏汉平,等.几种植物在生长过程中对人工湿地污水处理效果的影响[J].生态环境,2007,16(3):860-865.
    [64]李志刚,李素丽,梅利民,等.美人蕉(Canna indica Linn.)和芦苇(Phragmites australisL.)人工湿地对含铬生活污水的净化效果及植物的生理生态变化[J].农业环境科学学报2011,30(2):358-365.
    [65]魏彩春,梁宁,王敦球,等.模拟人工湿地系统净化生活污水研究[J].安徽农业科学,2010,38(31):17636-17639,17698.
    [66]付融冰,杨海真,顾国维,等.潜流人工湿地对农村生活污水氮去除的研究[J].水处理技术,(1):18-22.
    [67]张荣社,李广贺,周琪,等.潜流人工湿地负荷变化对脱氮效果的影响研究[J].环境科学,2006,27(2):253-256.
    [68]刘树元,阎百兴,王莉霞.潜流人工湿地中植物对氮磷净化的影响[J].生态学报,2011,31(6):1538-1546.
    [69]李建娜,胡曰利,吴晓芙,等.人工湿地污水处理系统中的植物氮磷吸收富集能力研究[J].环境污染与防治,2007,29(7):506-509.
    [70]高天霞,李毅,郭婷,等.人工湿地系统改善滇池入湖水水质[J].净水技术,2011,30(2):28-32.
    [71]翟旭,吴树彪,侯保朝,等.人工湿地植物净化效果研究[J].安徽农业科学,2009,37(31):15368-15370.
    [72]郭杏妹,刘素娥,张秋云,等.三种人工湿地植物处理农村生活污水的净化效果[J].华南师范大学学报(自然科学版),2010,(1):105-110.
    [73]刘颖,李虹,袁平成,等.生活污水处理场主要湿地植物吸氮纳磷的生态功能[J].江西农业大学学报,2010,32(6):1291-1296.
    [74]陈龙,李杰,钟成华,等.植物床人工湿地处理养殖废水研究[J].环境工程学报,2011,5(7):1542-1547.
    [75]林静,凌云,徐亚同.表面流人工湿地中磷的季节性迁移转化规律[J].湖北农业科学,2011,50(16):3307-3309.
    [76]丁晔,韩志英,吴坚阳,等..不同基质垂直流人工湿地对猪场污水季节性处理效果的研究[J].环境科学学报,2006,26(7):1093-1100.
    [77]修海峰.不同季节潜流与表流人工湿地氨氮去除动力学对比研究[J].吉林农业,2011,(8):70-72.
    [78]崔芳.季节变化对人工湿地净化城市湖泊水体的影响[J].人民黄河,2011,33(7)79-80.
    [79]杨璇,石雷.两级人工湿地用于村镇污水脱氮的长期运行特性研究[J].生态环境学报,2011,20(3):515-520.
    [80]于慧卿,何延新,黄宇广,等.人工湿地处理生活污水的研究[J].湖南农业科学,2011,(5):63-65.
    [81]张建,何苗,邵文生,等.人工湿地处理污染河水的持续性运行研究fJ].环境科学,2006,27(9):1760-1764.
    [82]聂志丹,年跃刚,李林锋,等.水力负荷及季节变化对人工湿地处理效率的影响[J].给水排水,2006,32(11):28-31.
    [83]聂志丹,年跃刚,金相灿,等.3种类型人工湿地处理富营养化水体中试比较研究[J].环境科学,2007,27(8):1675-1680.
    [84]何成达,王惠民,钱小青,等.波式潜流人工湿地基质与污水磷素去除关系研究[J].农业环境科学学报2006,25(1):175-178.
    [85]张姝,尚佰晓,周莹.莲花湖人工湿地对污水的净化效果研究[J].中国给水排水,2011,27(9):25-28.
    [86]崔丽娟,张曼胤,李伟,等.人工湿地处理富营养化水体的效果研究[J].生态环境 学报2010,19(9):2142-2148.
    [87]于水利,修春海,杨月杰.人工湿地基质对微污染原水中有机物的去除效果[J].中国给水排水,2011,27(3):56-58.
    [88]李超然.人工湿地深度处理医院污水的研究[J].给水排水,2010,36(11):86-89.
    [89]于慧卿,赵建强,何延新,等.人工湿地水体改善试验研究[J].黑龙江农业科学,2011,(2):40-41.
    [90]王晓娟,张荣社.人工湿地微生物硝化和反硝化强度对比研究[J].环境科学学报,2006,26(2):225-229.
    [91]帖靖玺,郑志宏,郑正,等.三种不同内部结构的潜流式人工湿地特性研究[J].工业水处理,2009,29(9):51-54.
    [92]肖宇芳,王文忠,王文,等.水平潜流和垂直流湿地处理蓟运河水的效果比较[J].中国给水排水,2010,26(7):12-15.
    [93]张涛,宋新山,严登华,等.不同回流位置对潜流人工湿地氮分布及去除效果的影响[J].环境工程学报,2011,5(10):2204-2208.
    [94]徐德福,李映雪.不同人工湿地基质对污水总有机碳去除能力初探[J].环境工程学报,2010,4(12):2740-2744.
    [95]朱文玲,郑离妮,崔理华,等.不同碳氮比条件下4种可控因素对垂直流人工湿地总氮去除的影响[J].农业环境科学学报,2010,29(6):1187-1192.
    [96]秦爱国,蹇兴超,冯庆革,等.出水口位置对垂直潜流人工湿地净化的影响[J].环境污染与防治,2010,32(3):64-67.
    [97]赵联芳,朱伟,赵建.人工湿地处理低碳氮比污染河水时的脱氮机理[J].环境科学学报,2006,26(11):1821-1827.
    [98]贾文林,吴娟,武爱国,等.碳氮比对人工湿地污水处理效果的影响[J].环境工程学报,2010,4(4):767-769.
    [99]陆松柳,张辰,王国华.碳源强化对人工湿地反硝化过程的影响研究[J].环境科学学报,2011,31(9):1949-1954.
    [100]佘丽华,贺锋,徐栋,等.碳源调控下复合垂直流人工湿地脱氮研究[J].环境科学,2009,30(11):3300-3305.
    [101]李丽娜,李亚治,达良俊.复合垂直流人工湿地处理废纸造纸废水的研究[J].中国造 纸,2009,28(9):43-46.
    [102]张洪刚,马安娜,洪剑明.垂直流人工湿地的设计及净化功能初探[J].节水灌溉,2006,(6):31-34.
    [103]关艳艳,佘宗莲,周艳丽,等.人工湿地处理污染河水的研究进展[J].水处理技术,2010,36(10):10-15.
    [104]李宗辉,唐文浩,宋志文.人工湿地处理污水时水生植物形态和生理特性对污水长期浸泡的响应[J].环境科学学报,2007,27(1):75-79.
    [105]徐和胜,付融冰,褚衍洋.芦苇人工湿地对农村生活污水磷素的去除及途径[J].生态环境,2007,16(5):1372-1375.
    [106]李建娜,胡曰利,吴晓芙,等.人工湿地污水处理系统中的植物氮磷吸收富集能力研究[J].环境污染与防治,2007,29(7):506-509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700