用户名: 密码: 验证码:
2,5-己二酮致人卵巢颗粒细胞凋亡及Sonic hedgehog信号通路调控机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正已烷(n-hexane,CAS:110-54-3),别名己烷,属于直链饱和脂肪烃类,2,5-己二酮(2,5-hexanedione,2,5-HD)是正己烷体内代谢的主要活性产物,与正己烷的毒性有关。正己烷作为有机溶剂被广泛应用的同时,如职业接触防护不当,特别是女工职业接触机会较多,会导致器官结构与功能的损伤。国内外对正己烷和2,5-HD毒性作用进行了较为广泛地研究,但主要集中在神经毒性方面,对生殖系统的毒理损伤,尤其是对女性生殖功能的影响报道较少,其毒性作用机制还有待进一步认识。2005年,有学者首次报道了来源于小鼠卵巢颗粒细胞的Hedgehog信号通路,随后研究较多的是Sonic hedgehog(SHH)。SHH信号通路对许多组织细胞增殖、分化、凋亡的调控以及在生殖腺(睾丸、卵巢)、子宫和附属性腺(前列腺、乳腺)等生殖系统中的研究是近几年的热点。因此,本研究采用体外培养的人卵巢颗粒细胞为靶细胞,通过建立和优化体外分离和培养人卵巢颗粒细胞的培养体系,研究2,5-HD致人卵巢颗粒细胞凋亡的作用机制及SHH信号通路在该过程中的调控作用,可以为明确2,5-HD对女性生殖功能的毒性损伤、作用机理以及涉及该通路的调控机制提供重要的参考依据,以期为进一步开展缓解或阻断2,5-HD致卵巢毒性损伤的研究奠定理论基础。
     目的:
     通过建立高效、稳定的体外分离、培养、鉴定人卵巢颗粒细胞的研究体系,从人卵巢颗粒细胞凋亡的形态学变化及与细胞凋亡有关的BCL-2家族(BCL-2、BAX)和CASPASE家族(CASPASE-3)的表达变化,探讨2,5-HD致卵巢毒性的作用机制。同时,研究Sonic hedgehog信号通路在2,5-HD致人卵巢颗粒细胞凋亡过程中的作用方式及其作用机制,为进一步研究如何缓解或阻断2,5-HD致卵巢毒性损伤提供新思路。
     方法:
     1.分离行辅助生殖助孕技术治疗的、符合研究纳入标准的、不孕患者的卵巢颗粒细胞,采用梯度离心、红细胞裂解液裂解及胰蛋白酶消化等方法,分离人卵巢颗粒细胞。同时,采用苏木素-伊红(HE)染色、促卵泡生成素受体(FSHR)免疫组化染色对分离细胞进行鉴定,采用CCK-8法检测细胞增殖能力,并对体外培养细胞的雌二醇(E2)、孕酮(P)分泌功能进行测定。
     2.以体外培养48h的人卵巢颗粒细胞为靶细胞,采用2,5-HD终浓度为0、16μmol/L、64μmol/L和256μmol/L的DMEM培养液体外染毒24h,通过采用HE染色、Hoechst33342荧光染色、CASPASE-3p17免疫组化染色、透射电镜以及流式细胞仪Annexin V-FITC/PI双染法检测2,5-HD诱导人卵巢颗粒细胞凋亡的改变。再进一步采用realtime PCR和Western blot法,分别检测与细胞凋亡有关的BCL-2家族(BCL-2、BAX)和CASPASE家族(CASPASE-3)的mRNA、蛋白水平随着2,5-HD染毒浓度的增加其表达量的变化情况。
     3.选择研究致人卵巢颗粒细胞凋亡效应最显著的256μmol/L2,5-HD体外染毒24h过程的颗粒细胞和正常对照组颗粒细胞为研究对象,采用realtime PCR,测定内源性SHH信号通路在2,5-HD作用24h致人卵巢颗粒细胞凋亡过程中的mRNA的表达改变;采用Western blot法,测定内源性SHH信号通路主要效应分子SHH、GLI1在2,5-HD作用24h致人卵巢颗粒细胞凋亡过程中的蛋白表达改变情况。同时,通过测定外源性重组SHH因子和SHH信号通路阻滞剂Cyclopamine对SHH信号通路的激活或阻断,来进一步验证SHH信号通路对2,5-HD致人卵巢颗粒细胞凋亡率的影响,以及对抗凋亡基因BCL-2和凋亡基因BAX mRNA、蛋白的影响。
     结果:
     1.人卵巢颗粒细胞分离、原代培养与鉴定体系的建立:(1)台盼蓝染色显示实验分离的人卵巢颗粒细胞存活率>90%,细胞表达FSHR的阳性率>95%。(2)光镜下观察到,人卵巢颗粒细胞体外生长速度较慢,培养2d后细胞明显增殖,细胞与细胞之间有丝状突起相连;第6-7d时细胞逐渐变形、退化。(3)采用CCK-8法测定细胞增殖曲线显示,人卵巢颗粒细胞随着体外培养时间的延长而增殖,培养24h时细胞处于贴壁生长期,在培养第3-5d时达到分裂高峰,随后第6-7d细胞开始逐渐退化。(4)体外培养的人卵巢颗粒细胞在重组人促卵泡激素(rFSH)作用下可明显促进E2的分泌,但分泌孕酮(P)的能力与rFSH的作用无关,体外分离、原代培养的人卵巢颗粒细胞保持了原有细胞的功能特性。
     2.2,5-HD致人卵巢颗粒细胞凋亡机制的研究:本研究建立了2,5-HD诱导的人卵巢颗粒细胞凋亡模型,由相差显微镜、光镜、荧光显微镜和透射电镜可观察到特征性的凋亡形态学改变,且随着2,5-HD染毒浓度的增加出现凋亡形态学改变的人卵巢颗粒细胞会逐渐增多。流式细胞仪Annexin V-FITC/PI双染法结果显示,2,5-HD终浓度为64μmol/L、256μmol/L时可显著增加颗粒细胞的凋亡率。realtime PCR结果显示,随着2,5-HD染毒浓度的增加,BCL-2mRNA水平呈下降趋势,BAX、CASPASE-3mRNA水平呈上升趋势。Western blot与realtime PCR结果相一致,表现为随着2,5-HD染毒浓度的增加,BCL-2蛋白表达呈下降趋势,凋亡蛋白BAX、凋亡下游执行蛋白CASPASE-3(p17)表达呈上升趋势。
     3. Sonic hedgehog信号通路在2,5-HD致人卵巢颗粒细胞凋亡过程中的调控作用:(1)对照组人卵巢颗粒细胞在体外培养过程中,有少量SHH信号通路组分表达,但随时间改变无明显改变;在2,5-HD作用24h过程中,颗粒细胞SHH、PTCH1、SMO以及GLI1mRNA水平在3h、6h时分别与对照组比较差异显著;SHH、SMO和GLI1mRNA水平在24h时均有下降;GLI2和GLI3mRNA水平与对照组比较在不同时间差异均无统计学意义;人卵巢颗粒细胞SHH、PTCH1、SMO以及GLI1mRNA水平在3h、6h时升高分别为对照组的2-5倍、5-8倍,随后于24h时降到低值。(2)与realtime PCR结果相一致,对照组人卵巢颗粒细胞在体外培养过程中,SHH信号通路主要效应分子SHH、GLI1蛋白有少量表达,随时间改变无明显差异;在2,5-HD作用24h过程中,颗粒细胞SHH和GLI1蛋白水平在3h、6h时升高分别与对照组比较差异显著,在24h时均有下降。(3)外源性SHH因子可增加人卵巢颗粒细胞的存活率,减少2,5-HD作用导致的细胞凋亡;用外源性Cyclopamine阻滞SHH信号通路会增加人卵巢颗粒细胞的凋亡率。(4)在2,5-HD致人卵巢颗粒细胞凋亡过程中采用外源性重组SHH因子处理会导致抗凋亡基因BCL-2表达上调,凋亡基因BAX表达下降。
     结论:
     1.采用本研究所建立的方法可获得生长活性较好、细胞纯度高及稳定的人卵巢颗粒细胞,用HE染色和FSHR免疫组化染色法可简便快速地鉴定人卵巢颗粒细胞。
     2.2,5-HD通过诱导人卵巢颗粒细胞BCL-2家族中凋亡基因(BAX)表达上升和抗凋亡基因(BCL-2)表达下降,引起凋亡下游执行蛋白CASPASE-3(p17)表达上升,进而导致颗粒细胞的凋亡增加,有可能是其致卵巢功能受损的机制之一,明确BCL-2家族对2,5-HD致人卵巢颗粒细胞凋亡的作用机制,可以为女性生殖毒性损伤的临床诊断、确定分子治疗靶点的研究提供参考依据。
     3.体外培养的人卵巢颗粒细胞有少量SHH信号通路组分表达。在2,5-HD致人卵巢颗粒细胞凋亡过程中SHH信号通路会被激活,起到了降低颗粒细胞凋亡的保护性作用,其作用机制有可能是通过调节抗凋亡基因BCL-2和凋亡基因BAX的表达改变,来阻止或缓解2,5-HD诱导的细胞凋亡。
n-Hexane (CAS:110-54-3), alias hexane, are straight-chain saturated fattyhydrocarbon. As the main active metabolite of n-hexane in the human body, thetoxicity of2,5-hexanedione (2,5-HD) and n-hexane are related. n-Hexane is widelyused as an organic solvent. n-Hexane toxicity causes serious harm in workers,particularly in women. The toxicity of n-hexane and2,5-HD has been extensivelyresearched, but research has primarily concentrated on neural toxicity. Damage to thereproductive system, especially for female reproductive function, has been lessfrequently reported. In2005, some scholars had the first report of the Hedgehogsignaling pathway derived from mouse ovarian granulosa cells, in which sonichedgehog (SHH) signaling pathway was more researched. SHH signaling pathwaydrives cell proliferation, directs cell differentiation and promotes cell away fromapoptosis. The emerging roles for SHH signaling pathway in the gonads (testis, ovary),uterus and accessory sex glands such as the prostate and mammary gland are beingfocused on in recent years. Therefore, this study established the efficient and stableprimary culture in vitro and identification methods of human ovarian granulosa cells.We used human ovarian granulosa cells as target cells to study whether the2,5-HDinduced cell apoptosis and in which the mechanism of SHH signaling pathway. In theconclusion, we could clarify the toxic effects and mechanism of2,5-HD on femalereproductive function, as well as the regulation mechanism involved in which, so could provide an important reference about how to ease or blocked2,5-HD toxicitydamage to ovarian.
     Objective:
     To establish the efficient and stable primary culture in vitro and identificationmethods of human ovarian granulosa cells, so to lay the foundation for in vitroreproductive toxicology studies. The other purpose was to investigate the mechanismsof human ovarian toxicity induced by2,5-HD through the morphological changes andapoptosis in human ovary granulosa cells and BCL-2family (BCL-2、BAX) andCASPASE family (CASPASE-3) expression changes in which. And to investigate theSHH signaling pathway in2,5-HD induced apoptosis in human ovarian granulosacells and its mechanism, in order to provide new ideas about how to ease or blocked2,5-HD toxicity damage to ovarian.
     Methods:
     1. Primary granulosa cells were obtained from women who were meeting theinclusion criteria and undergoing artificial reproductive technology (ART). Humangranulosa cells were collected by gradient centrifugation, red blood cell lysis withlysis of red blood cells and trypsin digestion. The hematoxylin-eosin (HE) stainingand follicle-stimulating hormone (FSHR) immunohistochemistry methods were usedto identify ovarian granulosa cells. CCK-8method was used to assay the cellproliferation. Meanwhile, in vitro granulosa cell secretion of estradiol (E2) andprogesterone (P) were determined.
     2. The study used cultured human granulosa cells as target cells, which wereexposed to0,16μmol/L,64μmol/L, and256μmol/L2,5-HD in vitro for24h. The HEstaining, Hoechst33342staining, transmission electron microscopy, and flowcytometry using FITC-Annexin V/PI double staining were used to prove that2,5-HDcould lead to apoptosis in human ovarian granulosa cells. Realtime quantitative PCRand Western blot analysis were used to detect changes in the expression of theapoptosis-related BCL-2family (BCL-2, BAX) and CASPASE family (CASPASE-3) with increasing2,5-HD concentration.
     3. The study used cultured human granulosa cells as target cells, which wereexposed to0and256μmol/L2,5-HD in vitro for24h. Realtime PCR and Western blotanalysis were used to detect the endogenous expression of SHH signaling in theprocess of2,5-HD-induced granulosa cells apoptosis. At the same time, the cellapoptosis were determined when the activation or blockade of SHH signaling pathwayby the recombinant SHH and cyclopamine, as well as the impact on anti-apoptoticgene BCL-2and apoptotic gene BAX.
     Results:
     1. Separaton, Primary culture and identification of human ovarian granulosa cells:(1) trypan blue staining showed that the granulosa cell viability over90%by thismethod. Cell purity was above95%by FSHR immunohistochemical identification.(2)By the light microscopy, cells in vitro were slow to develop, and two days later thecells proliferated significantly. At the6-7d cells gradually deformed and degradated.(3) CCK-8curve showed cultured human ovarian granulosa cells in24h at adherentgrowing season. And cultured cells during the first3-5d were to reach the splittingpeak, then began to degenerate at6-7d.(4) Cultured human granulosa cells under theeffect of recombinant FSH (rFSH) could significantly promote the secretion of E2, butthe secretion of P ability had nothing to do with the role of rFSH. Primary culturedhuman ovarian granulosa cells were maintaining the original cell characteristics.
     2. The mechanism of2,5-hexanedione inducing human ovarian granulosa cellapoptosis: this study established a human ovarian granulosa cell apoptosis modelinduced by2,5-HD.2,5-HD was demonstrated to cause significant apoptosis of humanovarian granulosa cells in a dose-dependent manner. The results showed that withincreasing2,5-HD doses, the expression of BCL-2decreased. However, a markeddose-dependent increase in the expression of BAX and active CASPASE-3(p17) wasobserved in human ovarian granulosa cells.
     3. The regulation mechanism of Sonic Hedgehog signaling pathways in the processof2,5-hexanedione inducing apoptosis in human ovarian granulosa cells:(1) Control group of human ovarian granulosa cells in vitro culture, the expression of a smallamount of SHH signaling pathway components, but no significant difference inchange over time. In the2,5-HD-induced apoptosis in human ovarian granulosa cells,SHH, PTCH1, SMO, and GLI1mRNA levels in3h,6h, respectively compared withthe control group, were significantly different. SHH、SMO and GLI1mRNA levels in24h were lower. GLI2and GLI3mRNA at different times compared with the controlgroup were not statistically significant.(2) Results were consistent with the realtimePCR, SHH, GLI1protein of human ovarian granulosa cells in3h and6h wereelevated, and decreased in24h.(3) The exogenous SHH could increase the survivalrate of human ovarian granulosa cells and reduce cells apoptosis. The cyclopaminecould increase the cells apoptosis by blocking SHH signaling pathway.(4) In the2,5-HD-induced apoptosis in human ovarian granulosa cells, exogenous recombinantSHH could lead to increase expression of BCL-2and decrease expression of BAX.
     Conclusions:
     1. Good growth activity, cell purity and more stable human ovarian granulosa cellscould be obtained by the method used in this study. Human ovarian granulosa cellscould be simply and rapidly identified by HE staining and FSHR immuno-histochemistry methods.
     2. These results suggest that the mechanisms of2,5-HD causing increased apoptosisin human ovarian granulosa cells might be a marked dose-dependent on the expressionof BCL-2decreased and the expression of BAX and active CASPASE-3(p17)increased.
     3. Cultured human granulosa cells expressed a small amount of SHH signalingpathway components. SHH signaling pathway was activated and could reduce theapoptosis rate of granulosa cells during the2,5-HD-induced granulosa cells apoptosis.Its mechanism might be by regulating anti-apoptotic gene BCL-2and apoptosis geneBAX to prevent or alleviate the2,5-HD-induced granulosa cells apoptosis.
引文
[1] Mosquera OM, Correa YM, Buitrago DC, et al. Antioxidant activity of twenty fiveplants from Colombian biodiversity[J]. Mem Inst Oswaldo Cruz,2007,102(5):631-634.
    [2] Hernandez-Viadel M, Montoliu C, Monfort P, et al. Chronic exposure to2,5-hexanedione impairs the glutamate-nitric oxide-cyclic GMP pathway in cerebellarneurons in culture and in rat brain in vivo[J]. Neurochem Int,2003,42(7):525-533.
    [3]曹静婷,黄中新,程欣,等.正己烷静式染毒致SD大鼠生殖腺损伤[J].中华劳动卫生职业病杂志,2007,25(5):275-278.
    [4]欧阳江,刘瑾,庞芬,等.正己烷对雌性大鼠性腺毒性作用实验研究[J].海峡预防医学杂志,2009,15(4):4-6.
    [5] Sallmén M, Neto M, Mayan ON. Reduced fertility among shoe manufacturingworkers[J]. Occup Environ Med,2008,65(8):518-524.
    [6] Host E, Gabrielsen A, Lindenberg S, et al. Apoptosis in human cumulus cells inrelation to zona pellucida thickness variation,maturation stage, and cleavage ofthe corresponding oocyte after intra-cytoplasmic sperm injection[J]. Fertil Steril,2002,77(3):511-515.
    [7] Raman RS, Chan PJ, Corselli JU, et al. Comet assay of cumulus cell DNA statusand the relationship to oocyte fertilization via intra-cytoplasmic sperm injection[J].Hum Reprod,2001,16(5):831-835.
    [8] Ogawa Y, Shimizu H, Kim SU.2,5-Hexanedione induced apoptosis in culturedmouse DRG neurons[J]. Int Arch Occup Environ Health,1996,68(6):495-497.
    [9] Cui N, Li S, Zhao X, et al.Expression of Bcl-2, Bax and Caspase-3in nerve tissuesof rats chronically exposed to2,5-hexanedione[J]. Neurochem Res,2007,32(9):1566-1572.
    [10] Blanchard KT, Allard EK, Boekelheide K. Fate of germ cells in2,5-hexanedioneinduced testicular injury. I. Apoptosis is the mechanism of germ cell death[J].Toxicol Appl Pharmacol,1996,137(2):141-148.
    [11] Moffit JS, Bryant BH, Hall SJ, et al.Dose-dependent effects of sertoli celltoxicants2,5-hexanedione,carbendazim, and mono-(2-ethylhexyl)-phthalate inadult rat testis[J]. Toxicol Pathol,2007,35(5):719-727.
    [12] Mishra DP, Pal R, Shaha C. Changes in cytosolic Ca2+levels regulate Bcl-xS andBcl-xL expression in spermatogenic cells during apoptotic death[J]. J Biol Chem,2006,281(4):2133-2143.
    [13] Nüsslein-Volhard C, Lohs-Schardin M, Sander K, et al.A dorso-ventral shift ofembryonic primordia in a new maternal-effect mutant of Drosophila[J]. Nature,1980,283(5746):474-476.
    [14] Rahnama F, Shimokawa T, Lauth M, et al. Inhibition of Gli1gene activation byPatched1[J]. Biochem J,2006,394(Pt1):19-26.
    [15] Wijgerde M, Ooms M, Hoogerbrugge JW, et al.Hedgehog signaling in mouseovary: indian hedgehog and desert hedgehog induce target expression indeveloping theca cells[J]. Endocrinology,2005,146(8):3558-3566.
    [16] Russell MC, Cowan RG, Harman RM, et al. The hedgehog signaling pathway inthe mouse ovary[J]. Biol Reprod,2007,77(2):226-236.
    [17] Dai RL, Zhu SY, Xia YP, et al.Sonic hedgehog protects cortical neurons againstoxidative stress[J]. Neurochem Res,2011,36(1):67-75.
    [18] Havelock JC, Rainey WE, Carr BR.Ovarian granulosa cell lines[J]. Mol CellEndocrinol,2004,228(1-2):67-78.
    [19] Smith SD, Mikkelsen A, Lindenberg S. Development of human oocytes maturedin vitro for28or36hours[J]. Fertil Steril,2000,73(3):541-544.
    [20] Makarevich AV, Markkula M. Apoptosis and cell proliferation potential ofbovine embryos stimulated with insulin-like growth factor I during in vitromaturation and culture[J]. Biol Reprod,2002,66(2):386-392.
    [21] Lobb DK, Younglai EV. A simplified method for preparing IVF granulosa cellsfor culture[J]. J Assist Reprod Genet,2006,23(2):93-95.
    [22]白晓红,糜若然,岳天孚,等.体外培养人卵巢黄素化颗粒细胞的鉴定及其分泌功能变化[J].中华妇产科杂志,2005,40(5):351-352.
    [23] Simoni M, Gromoll J, Nieschlag E. The follicle-stimulating hormone receptor:biochemistry, molecular biology, physiology, and pathophysiology[J]. EndocrRev,1997,18(6):739-773.
    [24] Jancar N, Kopitar AN, Ihan A, et al. Effect of apoptosis and reactive oxygenspecies production in human granulosa cells on oocyte fertilization andblastocyst development[J]. J Assist Reprod Genet,2007,24(2-3):91-97.
    [25] Rodgers RJ, Irving-Rodgers HF, van Wezel IL, et al. Dynamics of the membranagranulosa during expansion of the ovarian follicular antrum[J]. Mol CellEndocrinol,2001,171(1-2):41-48.
    [26] Van den Driesche S, Smith VM, Myers M, et al. Expression and regulation ofoestrogen receptors in the human corpus luteum[J]. Reproduction,2008,135(4):509-517.
    [27] Duncan WC, Gay E, Maybin JA. The effect of human chorionic gonadotrophinon the expression of progesterone receptors in human luteal cells in vivo and invitro[J]. Reproduction,2005,130(1):83-93.
    [28] Sasson R, Rimon E, Dantes A, et al. Gonadotrophin-induced gene regulation inhuman granulosa cells obtained from IVF patients. Modulation of steroidogenicgenes, cytoskeletal genes and genes coding for apoptotic signalling and proteinkinases[J]. Mol Hum Reprod,2004,10(5):299-311.
    [29] Park HJ, Choi BC, Song SJ, et al. Luteinizing hormone-stimulated pituitaryadenylate cyclase-activating polypeptide Ssystem and its role in progesteroneproduction in human luteinized granulosa cells[J]. Endocr J,2010,57(2):127-134.
    [30] Michael P, Grossman MP, Nakajima ST, et al. Müllerian-inhibiting substanceinhibits cytochrome P450aromatase activity in human granulosa lutein cellculture[J]. Fertil Steril,2008,89(5Suppl):1364-1370.
    [31] Iwata T, Mori H, Dakeishi M, et al. Effects of mixed organic solvents onneuromotor functions among workers in Buddhist altar manufacturingfactories[J]. J Occup Health,2005,47(2):143-148.
    [32] Opanashuk LA, He DK, Lehning EJ, et al. Gamma-diketone peripheralneuropathy III. Neurofilament gene expression[J]. Neurotoxicology,2001,22(2):215-220.
    [33] Carratù MR, Labate M, De Santis S, et al. Lectin binding pattern of Schwanncells and macrophages in2,5-hexanedione-induced axonal degeneration inrats[J]. Arch Toxicol,1995,69(3):160-164.
    [34] Kim MS, Park HR, Park M, et al. Neurotoxic effect of2,5-hexanedione on neuralprogenitor cells and hippocampal neurogenesis[J]. Toxicology,2009,260(1-3):97-103.
    [35] Liu ZH, Yue KZ, Ma SF, et al. Effects of pregnant mare serum gonadotropin(eCG) on follicle development and granulosa-cell apoptosis in the pig[J].Theriogenology,2003,59(3-4):775-785.
    [36] Shiota M, Sugai N, Tamura M, et al. Correlation of mitogen-activated proteinkinase activities with cell survival and apoptosis in porcine granulosa cells[J].Zoolog Sci,2003,20(2):193-201.
    [37] Chen Q, Yano T, Matsumi H, et al. Cross-talk between Fas/Fas ligand system andnitric oxide in the pathway subserving granulosa cell apoptosis: a possibleregulatory mechanism for ovarian follicle atresia[J]. Endocrinology,2005,146(2):808-815.
    [38] Doonan F, Cotter TG. Morphological assessment of apoptosis[J]. Methods,2008,44(3):200-204.
    [39] Verma Y, Rana SV. Endocrinal toxicity of industrial solvents-a mini review[J].Indian J Exp Biol,2009,47(7):537-549.
    [40] Wennborg H, Bodin L, Vainio H, et al. Solvent use and time to pregnancy amongfemale personnel in biomedical laboratories in Sweden[J]. Occup Environ Med,2001,58(4):225-231.
    [41] Chen PC, Hsieh GY, Wang JD, et al. Prolonged time to pregnancy in femaleworkers exposed to glycol ethers in semiconductor manufacturing[J].Epidemiology,2002,13(2):191-196.
    [42] Agnesi R, alentini F, Mastrangelo G. Risk of spontaneous abortion and maternalexposure to organic solvents in shoe industry[J]. Int Arch Occup Environ Health,1997,69(5):311-316.
    [43] McMartin KI, Chu M, Kopecky E, et al. Pregnancy outcome following maternalorganic solvent exposure: a meta-analysis of epidemiologic studies[J]. Am J IndMed,1998,34(3):288-292.
    [44] Carney R, Dardis C, Cullen WK, et al. Early spatial memory deficit induced by2,5-hexanedione in the rat[J]. Toxicol Lett,2002,128(1-3):107-115.
    [45] Williams GT, Smith CA. Molecular regulation of apoptosis:genetic controls oncell death[J]. Cell,1993,74(5):777-779.
    [46] Wyllie AH.Apoptosis: An overview[J]. Br Med Bull,1997,53(3):451-465.
    [47] Boekelheide K, Fleming SL, Johnson KJ, et al. Role of Sertoli cells in injuryassociated testicular germ cell apoptosis[J]. Proc Soc Exp Biol Med,2000,225(2):105-115.
    [48] Mattison DR, Plowchalk DR, Meadows MJ, et al. Reproductive toxicity: maleand female reproductive systems as targets for chemical injury [J]. Med ClinNorth Am,1990,74(2):391-411.
    [49] Depalo R, Nappi L, Loverro G, et al. Evidence of apoptosis in human primordialand primary follicles[J]. Hum Reprod,2003,18(12):2678-2682.
    [50] Yu YS, Sui HS, Han ZB, et al. Apoptosis in granulosa cells during follicularatresia: relationship with steroids and insulin-like growth factors[J]. Cell Res,2004,14(4):341-346.
    [51] O'Shea JD, Hay MF, Cran DG. Ultrastructural changes in the theca interna duringfollicular atresia in sheep[J]. J Reprod Fertil,1978,54(1):183-187.
    [52] Morita Y, Perez GI, Maravei DV,et al. Targeted expression of Bcl-2in mouseoocytes inhibits ovarian follicle atresia and prevents spontaneous andchemotherapy-induced oocyte apoptosis in vitro[J]. Mol Endocrinol,1999,13(6):841-850.
    [53] Sharabidze N, Burkadze G, Sabakhtarashvili M. Cell adhesion and apoptosis inovarian stromal hyperplasia and hyperthecosis[J]. Georgian Med News,2006,(131):33-37.
    [54] Hsu SY, Lai RJ, Finegold M, et al. Targeted overexpression of Bcl-2in ovaries oftransgenic mice leads to decreased follicle apoptosis, enhanced folliculogenesis,and increased germ cell tumorigenesis[J]. Endocrinology,1996,137(11):4837-4843.
    [55] Ratts VS, Flaws JA, Kolp R, et al. Ablation of bcl-2gene expression decreasesthe numbers of oocytes and primordial follicles established in the post-natalfemale mouse gonad[J]. Endocrinology,1995,136(8):3665-3668.
    [56]周东蕊,杨利国,姜勋平,等.外源bcl-2基因和脂质体对鸡卵泡颗粒细胞体外分裂和凋亡的影响[J].南京农业大学学报,2001,24(2):75-78.
    [57] Sasson R, Amsterdam A. Stimulation of apoptosis in human granulosa cells fromin vitro fertilization patients and its prevention by dexamethasone: involvementof cell contact and bcl-2expression[J]. J Clin Endocrinol Metab,2002,87(7):3441-3451.
    [58] Mathai JP, Germain M, Shore GC. BH3only BIK regulates BAX, BAK-dependent release of Ca2+from endoplasmic reticulum stores and mitochondrialapoptosis during stressinduced cell death[J]. J Biol Chem,2005,280(25):23829-23836.
    [59] Ranjan P, Boss JM. C/EBPbeta regulates TNF induced MnSOD expression andprotection against apoptosis[J]. Apoptosis,2006,11(10):1837-1849.
    [60] Métrailler-Ruchonnet I, Pagano A, Carnesecchi S, et al. Bcl-2protects againsthyperoxia-induced apoptosis through inhibition of them itochondria-dependentpathway[J]. Free Radic Biol Med,2007,42(7):1062-1074.
    [61] Krajewski S, Krajewska M, Shabaik A, et al.Immunohistochemical determinationof in vivo distribution of Bax, a dominant inhibitor of Bcl-2[J]. Am J Pathol,1994,145(6):1323-1336.
    [62] Perez GI, Robles R, Knudson CM, et al. Prolongation of ovarian lifespan intoadvanced chronological age by Bax-deficiency[J]. Nature genetics,1999,21(2):200-203.
    [63] Kugu K, Ratts VS, Piquette GN, et al. Analysis of apoptosis and expression ofbcl-2gene family members in the human and baboon ovary[J]. Cell Death Differ,1998,5(1):67-76.
    [64] Vaskivuo TE, Anttonen M, Herva R, et al. Survival of human ovarian folliclesfrom fetal to adult life: apoptosis, apoptosis-related proteins, and transcriptionfactor GATA-4[J]. J Clin Endocrinol Metab,2001,86(7):3421-3429.
    [65] Zhivotovsky B. Caspases:the enzymes of death[J]. Essays Biochem,2003,39:25-40.
    [66] Lakhani SA, Masud A, Kuida K, et al. Caspases3and7: key mediators ofmitochondrial events of apoptosis[J]. Science,2006,311(5762):847-851.
    [67] Brauchi S, Cea C, Farias JG, et al. Apoptosis induced by prolonged exposure toodorants in cultured cells from rat olfactory epithelium[J]. Brain Res,2006,1103(1):114-122.
    [68] Philchenkov AA. Caspases as regulators of apoptosis and other cell functions[J].Biochemistry(Mosc),2003,68(4):365-76.
    [69] Qualtrough D, Buda A, Gaffield W, et al. Hedgehog signalling in colorectaltumour cells: induction of apoptosis with cyclopamine treatment[J]. Int J Cancer,2004,110(6):831-837.
    [70] Mehdi HS, Subrata S, Mohammad A,et al. Role of Sonic hedgehog signalingpathway in neuroblastoma development[J]. Biol Med,2009,19(4):1-6.
    [71] Aza-Blanc P, Kornberg TB.Ci: a complex transducer of the hedgehog signal[J].Trends Genet,1999,15(11):458-462.
    [72] Bai CB, Joyner AL. Gli1can rescue the in vivo function of Gli2[J]. Development,2001,128(24):5161-5172.
    [73] Karlstrom RO, Tyurina OV, Kawakami A,et al. Genetic analysis of zebrafish gli1and gli2reveals divergent requirements for gli genes in vertebrate development[J]. Development,2003,130(8):1549-1564.
    [74] Hochman E, Castiel A, Jacob-Hirsch J, et al. Molecular pathways regulatingpro-migratory effects of Hedgehog signaling[J]. Biol Chem,2006,281(45):33860-33870.
    [75] Mao Ling, Xia YP, Zhou YN, et al. A critical role of sonic hedgehog signaling inmaintaining the tumorigenicity of neuroblastoma cells[J]. Cancer Sci,2009,100(10):1848-1855.
    [76] Bar EE, Chaudhry A, Farah MH, et al. Hedgehog signaling promotes medullo-
    blastoma survival via Bc/Ⅱ[J]. Am J Pathol,2007,170(1):347-355.
    [1] Nüsslein-Volhard C, Lohs-Schardin M, Sander K, et al. A dorso-ventral shift ofembryonic primordia in a new maternal-effect mutant of Drosophila[J]. Nature,1980,283(5746):474-476.
    [2] Rahnama F, Shimokawa T, Lauth M, et al. Inhibition of Gli1gene activation byPatched1[J]. Biochem J,2006,394(Pt1):19-26.
    [3] Ding Q, Fukami S, Meng X, et al. Mouse suppressor of fused is a negativeregulator of sonic hedgehog signaling and alters the subcellular distribution ofGli1[J]. Curr Biol,1999,9(19):1119-1122.
    [4] Pearse RV, Collier LS, Scott MP, et al. Vertebrate homologs of Drosophilasuppressor of fused interact with the Gli family of transcriptional regulators[J].Dev Biol,1999,212(2):323-336.
    [5] Stone DM, Murone M, Luoh SM, et al. Characterization of the human suppressor offused, a negative regulator of the zinc-finger transcription factor Gli[J]. J Cell Sci,1999,112(Pt23):4437-4448.
    [6] Murone M, Luoh SM, Stone D, et al. Gli regulation by the opposing activities offused and suppressor of fused[J]. Nat Cell Biol,2000,2(5):310-312.
    [7] Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehogsignaling proteins in animal development[J]. Science,1996,274(5285):255-259.
    [8] Pepinsky RB, Zeng C, Wen D, et al. Identification of a palmitic acid-modifiedform of human sonic hedgehog[J]. J Biol Chem,1998,273(22):14037-14045.
    [9] Chamoun Z, Mann RK, Nellen D, et al. Skinny hedgehog, an acyltransferaserequired for palmitoylation and activity of the hedgehog signal[J]. Science,2001,2939(5537):2080-2084.
    [10] Kalderon D. Transducing the hedgehog signal[J]. Cell,2000,103(3):371-374.
    [11] Aza-Blanc P, Kornberg TB. Ci: a complex transducer of the hedgehog signal[J].Trends Genet,1999,15(11):458-462.
    [12] Bai CB, Joyner AL. Gli1can rescue the in vivo function of Gli2[J]. Development,2001,128(24):5161-5172.
    [13] Karlstrom RO, Tyurina OV, Kawakami A, et al. Genetic analysis of zebrafishgli1and gli2reveals divergent requirements for gli genes in vertebratedevelopment[J]. Development,2003,130(8):1549-1564.
    [14] Aoto K, Nishimura T, Eto K, et al. Mouse GLI3regulates Fgf8expression andapoptosis in the developing neural tube, face, and limb bud[J]. Dev Biol,2002,251(2):320-332.
    [15] Persson M, Stamataki D, te Welscher P, et al. Dorsal-ventral patterning of thespinal cord requires Gli3transcriptional repressor activity[J]. Genes Dev,2002,16(22):2865-2878.
    [16] Ruiz I, Altaba A, Palma V, et al. Hedgehog-Gli signalling and the growth of thebrain[J]. Nat Rev Neurosci,2002,3(1):24-33.
    [17] Huangfu D, Anderson KV. Cilia and Hedgehog responsiveness in the Mouse [J].Proc Natl Acad Sci USA,2005,102(32):11325-11330.
    [18] Weed M, Mundlos S, Olsen BR. The role of sonic hedgehog in vertebratedevelopment[J]. Matrix Biol,1997,16(2):53-58.
    [19] Bitgood MJ, Shen L, McMahon AP. Sertoli cell signaling by desert hedgehogregulates the male germLine[J]. Curr Biol,1996,6(3):298-304.
    [20] Clark AM, Garland KK, Russell LD, et al. Desert hedgehog (Dhh) gene isrequired in the mouse testis for formation of adult-type Leydig cells and normaldevelopment of peritubular cells and seminiferous tubules[J]. Biol Reprod,2000,63(6):1825-1838.
    [21] Yao HH, Whoriskey W, Capel B. Desert Hedgehog/Patched1signaling specifiesfetal Leydig cell fate in testis organogenesis[J]. Genes Dev,2002,16(11):1433-1440.
    [22] Carpenter D, Stone DM, Brush J, et al. Characterization of two patched receptorsfor the vertebrate hedgehog protein family[J]. Proc Natl Acad Sci USA,1998,95(23):13630-13634.
    [23] Summersgill B, Goker H, Weber-Hall S,et al. Molecular cytogenetic analysis ofadult testicular germ cell tumours and identification of regions of consensuscopy number change[J]. Br J Cancer,1998,77(2):305-313.
    [24] Kroft TL, Patterson J, Won Yoon J, et al. GLI1localization in the germinalepithelial cells alternates between cytoplasm and nucleus; upregulation intransgenic mice blocks spermatogenesis in pachytene[J]. Biol Reprod,2001,65(6):1663-1671.
    [25] Lum L, Beachy PA. The hedgehog response network: sensors,switches, androuters[J]. Science,2004,304(5678):1755-1759.
    [26] Cunha GR, Donjacour AA, Cooke PS, et al. The endocrinology anddevelopmental biology of the prostate[J]. Endocr Rev,1987,8(3):338-362.
    [27] Cunha GR, Alarid ET, Turner T,et al. Normal and abnormal development of themale urogenital tract.Role of androgens, mesenchymal-epithelial interactions,and growth factors[J]. J Androl,1992,13(6):465-475.
    [28] Podlasek CA, Barnett DH, Clemens JQ, et al. Prostate development requiressonic hedgehog expressed by the urogenital sinus epithelium[J]. Dev Biol,1999,209(1):28-39.
    [29] Lamm M, Catbagan W, Laciak R, et al. Sonic hedgehog activates mesenchymalGli1expression during prostate ductal bud formation[J]. Dev Biol,2002,49(2):349-366.
    [30] Barnett DH, Huang HY, Wu XR, et at. The human prostate expresses sonichedgehog during fetal development[J]. J Urol,2002,168(5):2206-2210.
    [31] Carson DD, Bagchi I, Dey SK, et al. Embryo implantation[J]. Dev Biol,2000,223(2):217-237.
    [32] Takmoto N, Zhao B, Tsai SY, et a1. Identification of Indian hedgehog as aprogesterone-responsive gene in the murine uterus[J]. Mol Endocrinol,2002,16(10):2338-2348.
    [33] Matsumoto H, Zhao X, Das SK, et al. Indian hedgehog as a progesterone-responsive factor mediating epithelial-mesenchymal interactions in the mouseuterus[J]. Dev Bid,2002,245(2):280-290.
    [34] Ingham PW, McMahon AP. Hedgehog signaling in animal development:paradigms and principles[J]. Genes Dev,2001,15(23):3059-3087.
    [35] Paria BC, Ma W, Tan J, et al. Cellular and molecular responses of the uterus toembryo implantation can be elicited by locally applied growth factors[J]. ProcNatl Acad Sci USA,2001,98(3):1047-1052.
    [36]沈丽萍,胡萍萍,吴晓红,等. Shh、Patched和PCNA在子宫肌瘤中的表达[J].江苏医药,2010,36(9):1024-1026.
    [37] Xie T, Spradling AC. Decapentaplegic is essential for the maintenance anddivision of germLine stem cells in the Drosophila ovary[J]. Cell,1998,94(2):251-260.
    [38] Wijgerde M, Ooms M, Hoogerbrugge JW, et al. Hedgehog signaling in mouseovary: indian hedgehog and desert hedgehog induce target expression indeveloping theca cells[J]. Endocrinology,2005,146(8):3558-3566.
    [39] Russell MC, Cowan RG, Harman RM, et al. The hedgehog signaling pathway inthe mouse ovary[J]. Biol Reprod,2007,77(2):226-236.
    [40] Reifenberger J, Wolter M, Weber RG, et al. Missense mutations in SMOH insporadic basal cell carcinomas of the skin and primitive neuroectodermal tumorsof the central nervous system[J]. Cancer Res,1998,58(9):1798-1803.
    [41] Lewis MT, Ross S, Strickland PA, et al. The Gli2transcription factor is requiredfor normal mouse mammary gland development[J]. Dev Biol,2001,238(1):133-144.
    [42] Lewis MT, Ross S, Strickland PH, et al. Defects in mouse mammary glanddevelopment caused by conditional haploinsufficiency of patched-1[J].Development,1999,126(22):5181-5183.
    [43] Lewis MT. Hedgehog signaling in mouse mammary gland development andneoplasia[J]. J Mammary Gland Bio Neoplasia,2001,6(1):53-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700