用户名: 密码: 验证码:
热循环及Co-60γ辐照环境下陶瓷封装电容器的性能退化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用空间环境地面模拟设备和Co-60γ辐照装置,研究了热循环和辐照对陶瓷封装电容器电容量和损耗角正切值的影响规律。利用扫描电镜观察了陶瓷封装电容器结构和失效形式,并利用能谱仪对金属电极、陶瓷电介质等进行了成分分析。建立了陶瓷封装电容器横截面二维有限元模型,分析了陶瓷封装电容器电极和电介质层的热应力分布规律。
     实验结果表明,在热循环过程中,随着温度的升高,陶瓷封装电容器的电容量变化率存在一个峰值,电容量变化率与温度呈Lorentz峰值函数的变化关系;随着温度的升高,其损耗角正切值是单调递减的。随着循环次数(循环时间)的增加,电容器的电容量是减小的,瓷片电容器的电容量变化率与循环次数满足抛物线函数变化关系;其损耗角正切值是单调递增的,损耗角正切值与循环次数满足线性的函数关系。
     在热循环过程中,金属电极发生氧化,引起电容量减小;电容器内部电介质和金属电极之间的热错配应力对其结构造成损伤,当这种损伤累积到一定程度,就表现为电介质和电极层间开裂,导致电容体失效。
     在热循环的上下限温度,靠近陶瓷电介质和金属电极界面位置附近存在等效应力极大值,这与试验中观察到电容器的失效形式相对应。经过rad、rad和rad三种递增剂量Co-60γ
     辐照后,陶瓷封装电容器的电容量递减,损耗角正切值D是递增的。5.36×1055.05×1061.26×107
Effects of thermal cycling and irradiations on the property degradation of the ceramic encapsulation capacitor were investigated by space environment simulators for thermal cycling and Co-60γirradiation. The structure and invalidation pattern of the ceramic encapsulation capacitor were analyzed by means of scanning electron microscopy. The composition of metal electrode and ceramic medium layer was studied by the energy spectrometer. The planar finite element mode for the cross section of the ceramic encapsulation capacitor was set up. The thermal stress distribution for the structure layers was analyzed.
     The experimental results show that the change ratio of capacity presents a peak value with increasing temperature in heating stage of thermal cycling. There is a relationship of Lorentz between the change rate of the capacity and temperature. The tangent angle of wastage decreases in heating stage of thermal cycling. The capacity decreases with increasing the cycles, and there is a relationship of parabola between the change rate of capacity and cycles. The tangent angle of wastage increases with increasing the cycles. There is a relationship of liner between the tangent angle of wastage and cycles.
     During thermal cycling, the metal electrodes are oxidated that results in the decreasing in the value of capacity. The thermal mismatch stresses between the metal electrode and ceramic medium generate damage to the structure of capacitor. When the damage was accumulated to a certainty extent, the structural fracture of the layers will occur and result in the invalidation of capacitor.
     The maximal equivalent stress existed in the segment near the interface between metal electrode and ceramic medium at up and down limit temperature during thermal cycling, which was corresponding with the invalidation pattern of capacitor
     The capacity of ceramic encapsulation capacitor decreases and the tangent angle of wastage increases after Co-60γradiation in three dosages of 5×105rad、5×106rad and 1×107rad.
引文
1张国定,湛永钟.低地球轨道环境对材料的影响.宇航材料工艺. 2003, (1):1~2
    2都亨,叶宗海.低轨道航天器空间环境手册.国防工业出版社, 1996:402~404
    3薛仁经,彭宝霞.军用电容器的应用可靠性. 1994, (6):2~4
    4李贺军.碳/碳复合材料.新型碳材料. 2001, 16(2):79~80
    5雷毅,王俊山.碳/碳复合材料用基体先驱体研究进展.宇航材料工艺. 2000, 20(5):6~9
    6李崇俊,马伯信,金志浩.酚醛树脂前驱体C/C复合材料研究:硼酚醛树脂理化性能分析及固化热解过程研究.新型炭材料. 2001, 16(1) :19~24
    7 Junich Ozaki, Wataru Ohizumi, Asao Oya. ATG-MS study of poly(vinyl-butyral)/ phenol-formaldehyde resin blend fiber. Carbon. 2000, 38(10):1499~1524
    8 L. E. Ayala. Some observations of multi-layer penetration by micrometeoroid particles in low-earth orbit. Script Metallurgicaet Material. 1994, 31(10):1409~1412
    9 M. Zolensky, D. Atkinson. Meteoroid and orbital debris record of the Long Duration Exposure Facility frame. Journal of Spacecraft. 1991, 28(2):204~209
    10 L. J. Berthoud. Mandeville Material damage in space micro-particle impact. Journal of Materials Science. 1997, 32(11):3043~3048
    11 J. P. Lavine, J. T. Vette. Model of the Trapped Radiation Environment. High Energy Protons. 1970, 28:3028~3032
    12 L. Vette. Model of the Trapped Radiation Environment. Inner and Outer Zone Electrons.1996, 30:3024~3030
    13濮祖荫.空间物理前言进展.气象出版社, 1998:22~39
    14赵晶.空间环境对航天器影响的统计分析.环境模拟技术. 1998, (4):41~52
    15大林辰藏.日地空间物理.北京师范大学出版社, 1984:320~322
    16黄本城,马有礼.航天器空间环境实验技术.国防工业出版社, 2002:5~38
    17陈国珍.合成材料空间辐射效应的地面模拟.中国空间科学技术.1998, 45~50
    18张国定,湛永钟.低地球轨道环境对材料的影响.宇航材料工艺. 2003, (1):5~8
    19高禹.空间环境下碳纤维/环氧复合材料的损伤效应及机理.哈尔滨工业大学博士论文. 2005:2~8
    20姜利祥.空间环境下纳米粒子增强环氧基复合材料损伤效应与机理.哈尔滨工业大学博士论文. 2003:10~13
    21 J. H. Lau. Component, Packaging and Manufacturing Technology. IEEE Trans. 1996, 19(4):728~730
    22 V. Gektin, A. Bar-Cohen. Component, Packaging and Manufacturing Technology. IEEE Trans. 1997, (20):317~319
    23 Y. Sha, C.Y. Hui, E. J. Kramer. MRS on Electronic Packaging Materials Science. In Proc . 1996, (9):3~5
    24 S. Rzepka, M. A. Korhonen. Electronic Packaging. IEEE Trans. 1998, (120):342~346
    25 ZHOU De-jian, PAN Kai-lin, WU Zhao-hua. Chinese Journal of Semiconductors. 1999, 20(1):47~49
    26 LU Ji-cun, ZONG Xiang-fu, WU Jian-hua. Chinese Journal of Semi conductors.1999, 20(10): 906~910
    27朱光武,李保权.空间环境对航天器的影响及其对策研究.上海航天. 2002, 6:45~48
    28黄欣,梁辉.高压陶瓷电容器发展概况及其应用.河北陶瓷. 2000, 28(1):15~17
    29白花珍,张之圣,胡明. BaTiO3陶瓷的击穿与电容器的耐压.天津大学学报. 1999, 32(6):2~3
    30万荣根.交流陶瓷电容器的发展. 1994, (6):7~11
    31周勇辉,徐国跃,周斌,凌栋.降温过程对BaTiO3陶瓷本征PTC效应的影响.电子元件与材料. 2006, (3):2~4
    32方佩敏.贴片式多层陶瓷电容器及其应用.电子元器件与材料. 2003, (5):1~5
    33李涛.射频陶瓷贴片电容的测试.仪器仪表学报. 2005, (8):26~28
    34陈昭宪.电子元器件的失效分析.电子产品可靠性与环境试验. 1996, (1):67~68
    35盛志林.可靠性物理.广东科技出版社, 2002:58~64
    36薛仁径,彭宝霞.多层陶瓷电容器的低压失效及提高可靠性的措施控制工程. 1993, (3): 30~34
    37胡力.金属膜电阻器和陶瓷电容器的加速寿命试验的初步研究.西安交通大学学报1976, (2):22~24
    38庄奕琪.微电子器件应用可靠性技术.电子工业出版社, 1996:22~24
    39 I. Sandor. Fundamentals of Crystal Stress and Strain. The University of Wisconsin Press. 1972, 24:68~73
    40 H. J. Grover. Fatigue of Aircraft Structures. Government Printing Office. Washington, D C. 1966, (35):42~47
    41 S. V. Serensen. Design of Construction Elements Under low-cycle loading. Proceedings of the Third Conference on Dimensioning and Strength Calculations. 1968, (35):227~234
    42里基茨.电子器件核加固基础(译).国防工业出版社, 1978, 34:119~122
    43薛泉林. BaTiO3系低温烧成高介质X7R电容器瓷料.江苏陶瓷. 1999, 32(2):4~6
    44刘明治.可靠性试验.第三版.北京电子工业出版社, 2004:10~11
    45胡力.金属膜电阻器和陶瓷电容器的加速寿命试验的初步研究.西安交通大学学报1976, (2):22~24
    46 C. L. Wei , C. R. Kao. Liquid/ solid and solid/ solid reactions between Sn-Ag-Cu lead-free solders and surface finish. Proceedings of the 4th International Symposium on Electronic Materials and Packaging. 2002:330~334
    47 C. M. Chang, P. C. Shi. Interfacial reaction between Sn-Ag-Cu, Sn-Ag-Cu-Ni-Ge lead-free solders and metallic substrates. Proceedings of the 4th International Symposium on Electronic Materials and Packaging. 2002:360~366
    48 J. W. Yoon, S. B. Junq. Effect of isothermal aging on inter-metallic compound layer growth at the interface between Sn-3.5Ag-0.75Cu solder and Cu substrate. Journal of Materials Science. 2004, 39(13):4211~4217
    49 P. T. Vianco, J. A. Rejent Hlava. Solid-state inter-metallic compound layer growth and 95.5Sn-3.9Ag-0.6Cu solder. Journal of Electronic Materials. 2004, 33(9):990~1004
    50 A. Shawkret, S. L. Mei. Effects of static thermal aging and thermal cycling on the microstructure and shear strength of Sn3. 8Ag0. 7 Cu/ solder joints. Journal of Materials Research . 2001, 16(10):2914~2921
    51 Ma Xin, WANG Feng-jiang, QIAN Yi-yu. Ddevelopment of Cu-Sn inter-metallic compound at Pb-free solder/ Cu joint interface. Materials Letters. 2003(57):3361~3365
    52 J. H. Lau Lee S-W R. Chip Scale Package. New York McGraw-Hill. 1999, (9):24~26
    53齐丽华,黄继华,张建纲. Sn-Ag-Cu/Cu和Sn-Pb/Cu界面热剪切循环条件下化合物的生长行为.中国有色金属学报. 2006, 16(10):1706~1708
    54 Mark.多层陶瓷电容器新得可靠性试验.电子产品可靠性与环境试验. 1995, (5):57~59
    55魏建中.银钯内电极与多层陶瓷电容器(MLC)的可靠性.可靠性物理与失效分析技术. 2002, (3):1~3
    56何传大.长寿命应用卫星的空间环境模拟试验问题.中国空间科学技术. 1987, (6):32~34
    57王守武.半导体研究与进展.科学出版社, 1988:25~29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700