用户名: 密码: 验证码:
Kapton/Al二次表面镜带电粒子辐照损伤效应及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依据空间能谱等效代换的原则,采用空间综合辐照设备对Kapton/Al薄膜二次表面镜进行了空间辐照地面模拟试验。深入研究了低能空间带电粒子(质子和电子)单独及综合作用下对Kapton/Al薄膜光学性能的辐照损伤,借助于AFM、UV/Vis、FTIR-ATR、XPS和MS等分析技术重点分析了辐照损伤的微观机理,在量子化学理论基础上应用模拟软件建立了辐照损伤断键模型,并提出质子辐照作用下辐照损伤的化学反应机制。
     研究结果表明,经空间带电粒子辐照后,Kapton/Al的反射性能在可见光及近红外光区发生退化,随着辐照剂量的增加,光谱反射系数不断降低。单独作用后的叠加效果要高于综合辐照的作用效果,Kapton/Al综合辐照作用后其光学性能表现出协同效应。辐照能量一定时,质子辐照Kapton/Al涂层的太阳吸收比变化Δα_s随辐照剂量的变化为线性函数关系,即Δα_s=kΦ;电子辐照Kapton/Al涂层的太阳吸收比变化Δα_s随辐照剂量的变化为幂函数关系,即Δα_s=αΦ~β。
     质子单独辐照和综合辐照后样品表面出现明显的颜色变化,电子辐照剂量达到3×10~(15)cm~(-2)后,SEM观测可见明显的充放电花纹。经AFM观测发现,辐照后Kapton/Al表面出现“指状”(质子和综合辐照)或“丘状”(电子辐照)突起,导致样品表面粗糙度增加。
     Kapton薄膜在带电粒子辐照后光谱透过率随辐照剂量的增加而降低,在可见光区出现吸收峰,并且末端吸收发生红移。吸光度的增加是由于辐照过程中有新的发色团产生,末端吸收从UV到可见的红移是由于光能隙的逐渐减小引起的。
     质子辐照过程中酰亚胺环和醚键等低键能的键发生断键,由电离和激发作用产生的自由基和离子碎片首先以易挥发的小分子形式相结合,进而逃逸出试样表面,导致试样表层氧和氮含量的显著降低以及炭含量的相对增加;而C、O和N原子间通过新键相结合形成酮亚胺(C=C=N–)、异氰基(–N=C=O)和羟胺(C–O–N)等新组分;苯环在质子辐照作用下也可能受到了一定程度的破坏,生成类似石墨结构的碳化产物。
     根据饱和径迹模型,对红外谱图中某些特征峰所做的定量分析表明,在质子辐照期间Kapton中的羰基、苯环、酰胺基和芳香醚等官能团都以相似的损伤截面参与了损伤层中的降解过程;随着电子能损值的递增,PI特征官能团的损伤截面基本上呈现出递增的趋势,说明聚合物Kapton的辐照损伤强烈依赖于离子电子能损效应,这一结论也与TRIM计算结果相吻合。
     50keV电子主要造成Kapton薄膜表层C–N键的破坏,形成N~+离子碎片,同时伴随部分醚键的断裂。所形成的N~+、O~+和C~+碎片或自由基也会形成易挥发的小分子逸出表面,造成苯环中稳定炭含量的相对增加。70keV电子辐照后,不仅发生上述断键反应,而且断键产生的离子碎片与自由基的体积浓度增大,可增加分子间交联和形成新的分子结构的可能性。随辐照能量的提高,Kapton薄膜表面碳富集趋势增加。
     在量子化学基础上,建立了Kapton的5种断键模型。热力学计算表明,5种可能的断键反应模式在热力学意义上都是易于发生的,5种断键反应发生的几率按从大到小顺序排列:C–N(酰亚胺环)> C–C(酰亚胺环)> C–N(与苯环炭相连)〉C–O–C。根据以上计算和原位质谱检测结果,再结合红外光谱和XPS分析,提出Kapton/Al二次表面镜质子辐照微观损伤的化学反应机制。
According to the equivalent substitution principle for space energetically charged particles, the ground simulation tests of space irradiation for Kapton/Al second surface mirrors were conducted by using the space synthesis irradiating facility in the thesis. The monostratum and synthetic irradiation effects of protons and electrons on the optical property of Kapton/Al films were investigated carefully. The damage mechanism was studied by means of ultraviolet/visible (UV/Vis) absorption spectra, atom force microscopy, Fourier transform infrared (FTIR) of spectra, X-ray photoelectron spectroscopy and Mass spectra. On the basis of quantum chemistry theory, bond breaking models on irradiation damage were built by simulation software. Chemical reaction mechanism on proton irradiation damage was presented.
     Experimental results show that, under irradiation of space energetically charged particles, the degradation in reflective property of Kapton/Al mainly occurred in the visible light and near infrared light region, in which the spectral reflectance reduces with increasing fluence. Superposition effects of sigle action are higher than synthetic irradiation effects. The optical property of Kapton/Al shows synergistic effect after the synthetic irradiation. When the irradiation energy is given, the change in solar absorptance under proton irradiation with fluence conforms to linear functional relation:Δα_s=kΦ. Under electron irradiation the change in solar absorptance with fluence conforms to power functional relation:Δα_s=αΦ~β.
     The obvious change in ccolour appeared on the surface of samples after sole proton irradiation and synthetic irradiation. The charged and discharged lacework is obvious by the observation of SEM when electronic fluence is up to 3×10~(15) cm~(-2). It was found by AFM that some finger-like bulges (proton irradiation and synthetic irradiation) or hummock-like bulges (electron irradiation) appeared on the surface of Kapton/Al, which results the increase of surface roughness.
     After irradiation of charged particals, the edge of optical absorption gradually shifts from UV to the visible region and a strong increase in absorbance in the visible region was observed with increasing fluence. The increase of the absorbance in the visible region is attributed to the formation of new chromophores and auxochromes.The red shifting of the end absorption edge is related to the gradually reducing of the optical energy gap.
     Due to the bond breaking of imide and ether during the irradiation, free radicals and ion fragments from ionization and excitation combined to volatilizable micromolecles that escaped from the material, which resulted in the decrease of N and O and a surplus of carbon atoms. Some new components formed such as isocyano (–N= C=O), ketimine (C=C=N–) and hydroxylamine (C–O–N). Benzene ring may be destroyed to some extent and change to carbonizing products similar to graphite structure.
     Acording to saturated track modle, some bands which represent typical function group were selected to analyze quantitatively. The results indicate that all function groups in Kapton participate in the degradation process with similar damage cross-section during the irradiation. The damage cross-section increased with the increase of electronic energy loss, indicating that irradiation damage strongly depends on electronic energy loss, this conclusion is coincident with TRIM calculation.
     The electrons with the energy of 50 keV mainly destroyed the C–N bonds in the skin of Kapton, forming N~+ ion fragment, accompany the break of partly ether linkage. The fragments of N~+, O~+ and C~+ or radicals will combine to volatilizable micromolecles that escaped from the material, which resulted in the relative increase of carbon contents in benzene ring. Under the electron irradiation of 70 keV not only the above debonding reaction will occur, but also the volume conseration of ion fragments and radicals from debonding will increase, which may increase the possibility of crosslinking between molecules and forming new structure. With the increase of irradiation energy, the trend of carbon enrichment in the surface of Kapton film will increase.
     On the basis of quantum chemistry theory, five kinds of bond breaking models on irradiation damage were built by simulation software. The thermodynamic calculation indicates that five kinds of possible debonding reaction mode are easy to occur. The probability of debonding is arranged descendingly: C–N (imide ring)> C–C (imide ring)> C–N (joined to the carbon atom of benzene ring) >C–O–C.
引文
1 刘振兴. 太空物理学. 哈尔滨工业大学出版社, 2005: 3~12
    2 濮祖荫. 空间物理前言进展. 气象出版社, 1998: 22~39
    3 黄本诚. 空间环境工程学. 宇航出版社, 1993: 37~41
    4 中国科学院空间科学与应用研究中心. 宇航空间环境手册.中国科学技术出版社, 2001: 1-6
    5 G. Ambrosi. AMS, a Particle Detector in Space: Results from the Precursor Flight and Status of AMS-02. Nuclear Physics B. 2003, 125: 236~244
    6 R. Walker, C. E. Martin. Cost-effective and Robust Mitigation of Space Debris in Low Earth Orbit. Advances in Space Research. 2004, 34: 1233~1240
    7 朱光武, 李保权. 空间环境对航天器的影响及其对策研究. 上海航天. 2002, (4): 1~16
    8 Koji Fujimoto, Tadashi Shioya, Katsuhiko Satoh. Degradation of Carbon-Based Materials due to Impact of High-Energy Atomic Oxygen. International Journal of Impact Engineering. 2003, 28: 1~11
    9 J. I. Minow. Development and Implementation of an Empirical Ionosphere Variability Model. Advances in Space Research. 2004, 33: 887~892
    10 M. Garg, J.K. Quamara, Multiple relaxation processes in high-energy ion irradiated kapton-H polyimide: Thermally stimulated depolarization current study. Nucl. Instr. and Meth. B. 2006, 246: 355-363
    11 D. Bilitza. International Reference Ionosphere 2000. Radiation Science. 2001, 36: 261~275
    12 C. D. Li, D. Z. Yang, S. Y. He, Effects of proton exposure on aluminized Teflon FEP film degradation, Nucl. Instr. and Meth. B. 2005, 234: 249-255
    13 J. Borg. Extraterrestrial Samples from Low Earth Orbits: Techniques for Their Collection and Analysis. Planetary and Space Science. 2002, 50: 889~894
    14 D. R. Cooke, B. K. Joosten, M. W. Lo, K. M. Ford, R. J. Hansen. Innovations in Mission Architectures for Exploration beyond Low Earth Orbit. Acta Astronautica. 2003, 53: 387~397
    15 L. H. James, L. C. Eric, H. K. Justin. Meteoroid and Orbital Debris Risk Mitigation in a Low Earth Orbit Satellite Constellation. International Journal ofImpact Engineering. 2001, 26: 345~356
    16 A. T. Kearsley, G. A. Graham. Multi-layered Foil Capture of Micrometeoroids and Orbital Debris in Low Earth Orbit. Advances in Space Research. 2004, 34: 939~943
    17 黄本诚, 马有礼. 航天器空间环境实验技术. 国防工业出版社, 2002: 35~50
    18 都亨, 叶宗海. 低地球轨道航天器空间环境手册. 国防工业出版社, 1996: 397~520
    19 F. Spurny. Radiation Doses at High Altitudes Andduring Space Flights. 2001, (61): 301~307
    20 Yu Gao, Shengling Jiang, Dezhuang Yang, Shiyu He, Jingdong Xiao, Zhijun Li. A Study on Radiation Effect of <200 keV Protons on M40J/Epoxy Composites. Nuclear Instruments and Methods in Physics Research - Section B. 2005, 229(2):261-268
    21 P. Denkins, G. Badhwar, V. Obot. Radiation Transport and Assessment to Better Predict Radiation Exposure, Dose, and Toxicological Effects to Human Organs on Long Duration Space Flights. Acta Astronautica. 2001, 49(3): 313~319
    22 J. Kiefer. Radiation Risk in Manned Space Flights. Mutation Research. 1999, (430): 307~313
    23 赵晶. 空间环境对航天器影响的统计分析. 环模技术. 1998,(4): 41~52
    24 金恂叔. 论空间环境试验在航天器质量和可靠性保证中的作用. 环模技术. 1997, (2): 1~1
    25 闵桂荣. 航天器热控制技术. 第二版. 宇航出版社, 1998: 3~15
    26 闵桂荣, 郭舜. 航天器热控制. 科学出版社, 1985: 7~15
    27 Howard S. Kanner, C. Irvin Stuckey. Recession curve generation for space shuttle solid rocket booster thermal protection system coatings. AIAA-2002-3334
    28 文耀普, 刘强. 航天器热控技术的现状与发展趋势. 第五届空间热物理会议文集, 北京, 2000: 67-72
    29 Miria Finckenor, Jim Visentime. Coatamation, UV Radiation, and atomic oxygen effects on ISS thermal control materials. AIAA-2003-1084
    30 T. W. Strganac, A. Letton, N. I. Rock. Space environment effects on damping of polymer matrix carbon fiber composites. Journal of spacecraft and rockets,2000, 37(4): 519-525
    31 C. D. Li, D. Z. Yang, S. Y. He, S. Q. Yang. Degradation of Teflon film under radiation of protons and electrons. Journal of spacecraft and rockets. 2004, 41(3): 373-376
    32 G. Bitetti, M. Marchetti, S. Mileti, F. Valente and S. Scaglione. Degradation of the surfaces exposed to the space environment. Acta Astronautica. 2007, 60(3): 166-174
    33 Youichi Nakayama, Kichiro Imagawa.Evaluation and analysis of thermal control materials under ground simulation test for space environment effects. High Performance Polymers, 2001,13: S433-S451
    34 R. Mishira, S. P. Tripathy, D. Sinha. Optical and electrical properties of some electron and proton irradiated polymers. Nuclear instruments and methods in physics research B, 2000, 168:59-64
    35 卢榆孙,冯煜东,王陇民. 柔性热控材料性能的实验方法研究. 真空与低温. 2000, 6(1): 8-14
    36 Claire Tonon,Magdeleine Dinguirard, Claude Pons.Model of the Degradation of Thermal Control Coatings in Space Envrironment.5th International Symposium on Materials in a Space Envrionment.Arcachon France, 2000: 57~61
    37 王衡禹, 李春萱. LEO 原子氧对空间材料侵蚀的数值模拟. 北京航空航天大学学报. 2005, 31(3): 293-296
    38 K.K.de Groh, J.D.Gummow, Effect of Air and Vacuum Storage on the Tensile Properties of X-Ray Exposed Aluminized-FEP. High Performance Polymers. 2001, 13 (3): S421-S431
    39 D.A.Russell, L.B.Fogdall, G.Bohnhoff-Hlavacek. Simulated Space Environmental Testing on Thin Films. NASA-CR-2000-210101, Washington, April 2000
    40 赵小虎, 沈志刚, 王忠涛. 空间 Kapton 材料的原子氧?温度?紫外效应实验研究. 北京航空航天大学学报. 2001, 27(6): 670-674
    41 Jo?o Carlos Miguez Suarez, Ronaldo Sergio de Biasi. Effect of Gamma Irradiation on the Ductile-to-Brittle Transition in Ultra-High Molecular Weight Polyethylene. Polymer Degradation and Stability. 2003, 82: 221–227
    42 E. Grossman, I. Gouzman. Space Environment Effects on Polymers in Low Earth Orbit. Nuclear Instruments and Methods in Physics Research B. 2003,208: 48–57
    43 张蕾, 严川伟, 孙刚. 原子氧对 Kapton 侵蚀及 ZnO-有机硅涂层防护效应研究. 航空材料学报. 2003, 23(4): 26-31
    44 K.K.de Groh, J.A.Dever, J.K.Sutter, J.R Gaier, J.D.Gummow, D.A.Scheiman, C.He. Thermal Contributions to the Degradation of Teflon FEP on the Hubble Space Telescope. High Performance Polymers. 2001, (13): S401~S420
    45 Claire Tonon,Carole Duvignacq,Gilbert Teyssedre,Magdeleine Dinguirard. Degradation of the optical properties of ZnO-based thermal control coatings in simulated space environment.Journal of Physics D: Applied Physics. 2001, 34: 124~130
    46 J. A.Dever, K.K.de Groh, B.A.Banks, J.A.Townsend, J.L.Barth, S.Thomson, T.Gregory, W.Savage. Environmental Exposure Conditions for Teflon FEP on the Hubble Space Telescope. High Performance Polymers. 2000, 12(1): 125~139
    47 卢榆孙, 冯煜东, 翟厚明. 国产星用 Kapton 基热控材料的制备与性能. 第五届空间热物理会议文集, 北京, 2000: 303~308
    48 R. Verker, N. Eliaz, I. Gouzman. The effect of simulated hypervelocity space debris on polymers. Acta materialia, 2004, 52:5539~5549
    49 湛永钟,张国定. 低地球轨道环境对材料的影响. 宇航材料与工艺,2003(1): 1~5
    50 K.K.de Groh, J.R.Gaier, R.L.Hall, M.P.Espe, D.R.Cato, J.K.Sutter, D. A.Scheiman. Insights into the Damage Mechanism of Teflon FEP from the Hubble Space Telescope. High Performance Polymers. 2000, 12(3): 83~104
    51 T. Kaneko, M. Watamori, H. Makita, C. Araujo, G. Kano. Damage evaluation after ion beam irradiation on polyimide films using ERD and RBS techniques simultaneously. Nuclear instruments and methods in physics research B, 2004, 219~220: 236~240
    52 Y. M. Sun, Z. Y. Zhu, C. L. Li. Correlation between the structure modification and conductivity of 3 MeV Si ion-irradiated polyimide. Nuclear instruments and methods in physics research B, 2002, 191: 805-809
    53 J. M. Costantini, F. Couvreur, J. P. Salvetat, S. Bouffard. Micro-Raman study of the carbonization of polyimide induced by swift heavy ion irradiations. Nuclear instruments and methods in physics research B, 2002, 194: 132~140
    54 J. M. Costantini, J. P. Salvetat, F. Couvreur, S. Bouffard. Carbonization of polyimide by swift heavy ion irradiations: Effects of stopping power and velocity. Nuclear instruments and methods in physics research B, 2005, 234: 458~466
    55 J. T. Hill, J. L. Hopewell. Effects of 3MeV proton irradiation on the mechanical properties of polyimide films. Radiation Physics and Chemistry. 1996, 48 (5): 533~537
    56 H. D. Hendricks, W. E. Miller. A study to determine the presence of voltage breakdown due to proton irradiation in polymeric materials. NASA TMX-1688, 1996
    57 M. Garg, J. K. Quamara. Multiple relaxation processes in high-energy ion irradiated kapton-H polyimide: Thermally stimulated depolarization current study. Nuclear instruments and methods in physics research B, 2006, 246: 355~363
    58 谭必恩, 郝志永, 曾一兵等. 低太阳吸收率加成型有机硅热控涂层的研制. 中国空间科学技术. 2001, 21(3): 16~22
    59 A. F. Whitaker, S. A. Little, R. J. Harwell. Orbital atomic oxygen effect on control and optical materials: STS-8 results. AIAA 85-041514
    60 M. M. Finckenor, R. R. Kamenetzky, J. A. Vaughn. Further investigations of the Passive Optical Sample Assembly (POSA)—I flight experiment. AIAA-2001-0098
    61 曾一兵, 熊春晓, 王慧等. 防静电白色热控涂层的空间环境性能试验. 中国空间科学技术, 2002, 22(2): 63~66
    62 冯伟泉, 丁义刚, 闫德葵等. 地球同步轨道长寿命卫星热控涂层太阳吸收率性能退化研究. 中国空间科学技术. 2005, (2): 34-40
    63 Youichi Nakayama,Kichiro Imagawa.Evaluation and analysis of thermal control materials under ground simulation test for space environment effects.High Performance Polymers.2001, 13: S433~S451
    64 H.Yano, S. Kibe, S. P. Deshpande. The fist results of meteoroid and debris impact analyses on space flyer unit. Advanced space research, 1997, 20(8): 1489~1494
    65 G. Ambrosi. AMS, a Particle Detector in Space: Results from the Precursor Flight and Status of AMS-02. Nuclear Physics B. 2003, 125: 236-244
    66 C. D. Li, D. Z. Yang, S. Y. He. Effect of electron exposure on optical properties of aluminized polyimide film, Journal of material research. 2002, 17(9): 2442~2446
    67 X. D. Wang, S. Y. He, D. Z. Yang. Low-energy electron exposure effects on the optical properties of ZnO/K2SiO3 thermal control coating. Journal of material research. 2002, 17(7): 1766~1771
    68 J. W. Lucas. Heat Transfer and Spacecraft Thermal Control. New-York: Energy sources, 1970: 5~23
    69 H. B. Garrett. Space Radiation Models. AIAA – 1994-0590: 1~12
    70 T. K. Mookherji. Handbook on passive thermal control coating. NASA N84-23698
    71 李成功, 傅恒志, 于翘等. 航空航天材料. 国防工业出版社, 2002: 123~142
    72 江经善. 热控涂层. 宇航材料工艺. 1993,(6): 1~7
    73 丁孟贤, 何天白. 聚酰亚胺新型材料. 科学出版社, 1998: 1~4
    74 Jacqueline A Townsend,Patricia A Hansen,Joyce A Dever.Hubble Space Telescope metallized Teflon FEP thermal control materials: on-orbit degradation and post-retrieval analysis.High Performance Polymers. 1999,(11): 81~99
    75 L. B. Fogdall,S. J. Leet,M. C. Wilkinson,D. A. Russell.Effects of Electrons, Protons, and Ultraviolet Radiation on Spacecraft Thermal Control Materials. AIAA -1999-3678: 1~9
    76 J. A. Dever, K. K.de Groh, R. K. Messer, M. W. McClendon, M. Viens, L. L. Wang, J. D.Gummow. Mechanical Properties of Teflon? FEP Retrieved From the Hubble Space Telescope. High Performance Polymers. 2001, 13(3): S373~S390
    77 J. A. Dever, K. K. de Groh, B. A.Banks, J. A. Townsend. Effects of Radiation and Thermal Cycling on Teflon? FEP. High Performance Polymers. 1999, 11(3): 123~140
    78 K. K.de Groh, D. C.Smith. Investigation of Teflon FEP Embrittlement on Spacecraft in Low Earth Orbit. Prepared for the 7th International Symposium on Materials in a Space Environment cosponsored by ONERA, CERT, and ESA/ESTEC, Toulouse, France, June 16-20, 1997, NASA-TM-113153
    79 N.A.阿德洛瓦. 聚酰亚胺. 机械工业出版社, 1981: 54~65
    80 卢榆孙, 范本尧, 冯煜东. 卫星柔性热控材料性能及其稳定性研究. 中国空间科学技术. 2002, (6): 43~48
    81 H. S. Virk. Physical and chemical response of 70 MeV carbon ion irradiated Kapton-H polymer. Nuclear instruments and methods in physics research B, 2002, 191: 739~743
    82 张蕾, 严川伟, 孙刚. 聚酰亚胺侵蚀机理及防护效应研究. 高等学校化学学报. 2003, 24(6): 1080~1084
    83 多树旺, 李美栓, 张亚明. 原子氧环境中聚酰亚胺的质量变化和侵蚀机制. 材料研究学报. 2005, 19(8): 337~339
    84 M. R. Raddy. Review: Effect of low earth orbit atomic oxygen on spacecraft materials. Journal of material science, 1995, 30(2): 281~307
    85 初文毅, 杨士勤,何世禹. 原子氧对 Kapton/Al 薄膜性能影响研究. 航空材料学报. 2006, 26(1): 29~35
    86 S. Packirisamy, D. Schwam, M. H. Litt. Atomic oxygen resistant coatings for low earth orbit space structures. Journal of material science. 1995, 30(2): 308~320
    87 李金桂, 肖定全. 现代表面工程设计手册. 国防工业出版社, 2000: 457
    88 达道安, 崔敬忠. 表面科学技术在空间的应用. 物理. 1999, 9: 567~571
    89 孙亦宁. 金刚石薄膜的空间应用. 真空与低温. 1996, 1: 31`38
    90 李敬起, 郭晚土, 孙亦宁. 金刚石红外增透保护膜. 1996, 3: 131~133
    91 丁晓磊, 卢榆孙. 卫星天线抗静电技术研究的进展. 中国空间科学技术. 1999, 5: 41~47
    92 史月艳, 潘文辉, 殷志强. 氧化铟( ITO)膜的光学及电学性能. 真空科学与技术. 1994, 14(1): 35~40
    93 茅昕辉, 陈国平. ITO 膜的化学稳定性与刻蚀特性. 真空. 1994, 5: 25~27
    94 K. daoudi, B. Canut, M. G. Blanchin, C. S. Sandu, V.S. Teodorescu, J.A. Roger. Tin-doped indium oxide thin films deposited by sol-gel dip-coating technique. Materials Science and Engineering C, 2002, 21: 313~317
    95 华诚生. 中国空间科学技术,1996, (4): 34~41
    96 М.В.Помазанов, В.А.Егоров. Солнечный парус: принципы конструкции, управление и перелёты к астероидом. Космические исследования. 1999, 37(4): 397~404
    97 Ю.П.Семёнов, В.Н.Бранец, Ю.И.Григорьев, и др. Космическийэксперимент по развёртыванию плёночного бескаркасного отражателя D=20m (?Знамя-2?). Космические исследования. 1994, 32(4-5): 186~193
    98 Н.Н.Тихий. Космический полёт с солнечным парусом. М:Энергоиздат, 1986: 218~276
    99 A. Kondyurin, B. Lauke and R. Vogel. Photopolymerisation of composite material in simulated free space environment at low Earth orbital flight. European Polymer Journal. 2006, 42(10):2703-2718
    100 V.S.Seiromyatnikov, V.A.Koshelev et al. Cleaning the garbage in Near-Earth space using large size thin film reflector spread by centrifugal force without frames. Aerospace research (in Russian).1994, 32(4-5): 218~ 220
    101 宋礼庭. 从太阳到地球. 湖南教育出版社, 1994: 82~85
    102 国家自然科学基金委员会. 空间物理学. 科学出版社, 1998: 90~109
    103 贾乃华. 宇航物理. 科学出版社, 1990:19-20
    104 安道尔. 空间真空技术. 宇航出版社, 1995: 423~426
    105 G. A.Mansilla. Equatorial and low latitude ionosphere during intense geomagnetic storms. Journal of Atomspheric and Solar-Terrestrial Physics. 2006, 68(18):2091-2100
    106 A. T. Kearsley, G. A. Graham. Multi-layered Foil Capture of Micrometeoroids and Orbital Debris in Low Earth Orbit. Advances in Space Research. 2004,34: 939–943
    107 柯受全主编. 卫星环境工程和模拟试验(下). 宇航出版社, 1996:283~295
    108 赵仁扬. 太阳射电辐射理论. 科学出版社, 1999:19~42
    109 林元章. 太阳物理导论. 科学出版社, 2000:539~546
    110 [美]Margaret G. Kivelson Christopher T. Russell. 曹晋滨, 李磊, 吴季等译, 空间辐照物理. 科学技术出版社, 2000:222~250
    111 F.S.Johnson. The Solar Constant. Journal Meterological.1954, 11(6): 431~439
    112 大林辰藏. 日地空间物理. 北京师范大学出版社, 1984: 320~322
    113 J. P. Lavine, J. T. Vette. Model of the Trapped Radiation Environment, VI: High Energy Protons, NASA SP-3024, 1970
    114 L. I. Vette. Model of the Trapped Radiation Environment, II: Inner and Outer Zone Electrons, NASA SP-3024, 1966
    115 . I. Minow. Development and Implementation of an Empirical Ionosphere Variability Model. Advances in Space Research. 2004, 33: 887–892
    116 薛丙森, 叶宗海. 进地轨道宇宙线的强度分布. 宇航学报. 1998, 19(2): 99-104
    117 Raja ReddyM. Effect of Low Earth Orbit Atomic Oxygen on Spacecraft Materials. J. Mater. Sci. 1995, 30: 281~307
    118 W. Q. Feng, Z. L. yang, Y. G. Ding, C. C. WANG, J. F. Cui, D. K. Yan. Development of a Combined Environment Effects Test Facility for Studying Degradation of Surface Properties of Spacecraft Materials. 8th International Symposium on “Materials in a Space Environment”, 5th International Conference on “Protection of Materials and Structures from the LEO Space Environment”. Arcachon – France, 5~9 June 2000
    119 J. Dever, R. Messer, C. Powers, J. Townsend, E. Wooldridge. Effect of Vacuum Ultraviolet Radiation on Thin Polyimide Films. 8th International Symposium on “Materials in a Space Environment”, 5th International Conference on “Protection of Materials and Structures from the LEO Space Environment”. Arcachon – France, 5~9 June 2000
    120 R. Walker, C. E. Martin. Cost-effective and Robust Mitigation of Space Debris in Low Earth Orbit. Advances in Space Research. 2004, 34: 1233–1240
    121 Пояса Земли радиационные естественные (модель пространстве -нно-энергетического распределения плотности потока электронов) ГОСТ 25645.139
    122 В.И.Верхотуров. Потоки частиц радиационных поясов Земли и магнитосферной плазмы на геостационарной орбите ИСЗ. Исследования по геомагнетизму, аэронавтике и физике Солнца. 1991, (94): 17~22
    123 T. W. Graham Solomons and C. B. Fryhle, Organic Chemistry, eighth edition, John Wiley & Sons, 2004: 30-70
    124 D. E. Bowles, S. S. Tompkins, G. F. Sykes. Journal of spacecraft and rockets, 1986, 23(6): 625~629
    125 H. Tahara, T. Kawabate, L. L. Zhang, et al. Nuclear instruments and methods in physics research B, 1997, 121:446~449
    126 A.Molle, M. N. Bhuiyan, G. Tallarida. And M. Fanciulli. Formation and stability of germanium oxide induced by atomic oxygen exposure. Materials Science in Semiconductor Processing. 2006, 9(4):673-678
    127 J. W. Chamberlain. Theory of planetary atmospheres. New York: AcademicPress, 1978: 26
    128 J. Han and C. Kim. Low earth orbit space environmemt simulation and its effects on graphite/epoxy composites. Composite Structures. 2006, 72(2): 218-226
    129 X. Wang, X. Zhao, M. Wang and Z. Shen. The effects of atomic oxygen on polyimide resin matrix composite containing nano-silicon dioxide. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2006, 243(2): 320-324
    130 A. F. Whitaker, S.A. Little, R.J. Harwell, et al. Orbital atomic oxygen effect on control and optical materials: STS-8 results. AIAA 85-041514
    131 X. Zhao, Z. Shen, Y. Xing and S. Ma. An experimental study of low earth orbit atomic oxygen and ultraviolet radiation effects on a spacecraft material-polytetrafluoroethylene. Polymer Degradation and Stability. 2005, 88(2): 275-285
    132 刘海, 何世禹, 王怀义. 质子和电子对光学反射镜辐射效应的研究. 航天返回与遥感. 2002, 23(1): 13-17
    133 李清源. 航天器对空间碎片撞击危害的被动防护技术. 强度与环境. 2002, 29(4): 45~50
    134 高耀明, 李云生. 带电粒子在等离子体中的能量沉积. 强激光与粒子束. 1996, 8(2): 233~238
    135 曹建中. 半导体材料的辐射效应. 科学出版社, 1993: 66~125
    136 李世昌. 高温辐射物理与量子辐射理论. 国防工业出版社, 1999: 60~65
    137 Y Miyagawa, H Nakadate, F Djurabekova. Dynamic-sasamal: simulation software for high –dose ion implantation. Surface and Coatings Technology, 2002, 158(159): 87–93
    138 王同权, 沈永平, 张若棋. 空间辐射效应的蒙特-卡罗模拟. 强激光与粒子束. 2000, 12(3): 339-341
    139 陈世彬, 张义门, 陈雨生. 质子和 1MeV 中子在硅中能量沉积的模拟计算.高能物理与核物理. 2001, 25(4): 365-370
    140 J. F. Ziegler, J. P. Biersack, U. Littmark. The stopping and range of ions in solids. Vol.1. New York: Pergamon Press, 1985
    141 裴鹿成, 王仲奇. 蒙特卡罗方法及其应用. 海洋出版社, 1998
    142 F. S. Johnson. The solar constant. Journal Meterological. 1954, 11(6): 431-439
    143 Г.Д.Карташов. О гипотезе Майнера и принципе Сдекина. Техническая кибернетика. 1966, (3): 121~132
    144 李春东. 薄膜二次表面镜空间辐照效应评价及预测. 哈尔滨工业大学工学博士学位论文, 2003:80-83
    145 М.М.Михайлов. Прогнозирование оптической деградации терморегулирующих покрытий космических аппаратов. Новосибирск: Наука, 1999, 5: 5~72
    146 В.И.Тупиков, Э.Р.Клиншпонт, В.К.Милинчук. Проблемы стойкости полимерных материалов в условиях космического пространства. Химия высоких энергий. 1996, 30(1): 49~57
    147 В.К.Милинчук, Э.Р.Клиншпонт, В.И.Тупиков. Радиационная стойкости органических материалов в условиях космического пространства. Химия высоких энергий. 1991, 25 (6): 483~491
    148 Y. M. Sun, Z. Y. Zhu, Y. F. Jin, C. L. Liu, Z.G. Wang, Q. X. Zhang. The effects of high electronic energy loss on the chemical modification of polyimide. Nucl. Instr. and Meth. B, 2002,193: 214~220
    149 C. L. Li, Y. M. Sun, Y. F. Jin. Latent track effects of swift argon ions in polyimide. Nucl. Instr. and Meth. B, 1998, 135: 234~238
    150 朱明, 唐国弈, 陈锡花. 高能离子注入聚合物薄膜耐磨机理研究. 高分子学报. 2000, 6: 791~794
    151 G. Beamson, D. Briggs. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. John Wiley & Sons Ltd, 1992: 214
    152 M. K. Ghosh, K. L. Mittal. Fundamentals and Applications. Marcel Dekker Inc, New York, 1996: 222
    153 荆煦瑛, 陈式棣, 么恩云等. 红外光谱实用指南. 天津: 天津科学技术出版社, 1992:280~287
    154 孙友梅, 朱智勇, 李长林. MeV 离子辐照聚酰亚胺的化学结构及电性能转变. 核技术. 2003, 26(12): 931~932
    155 N. Shah, N. L. Singh, C. F. Desai, K. P. Singh. Microhardness and radiation damage studies of proton irradiation Kapton films. Radiation Measurements, 2003, 36: 699~702
    156 M. Garg, J. K. Quamara. Electrical conduction behaviour of high energy ion irradiated Kapton-H polyimide film. Nucl. Instr. and Meth. B, 2001, 179:389~396
    157 J. Schirmer, G. Angonoa. On Green’s Function Caculations of the Static Self-Energy Part, the Ground State Energy and Expectation Values. J. Chem. Phys. 1989, 91(3): 1754~1761
    158 J. A. Cioslowski. New Robust Algorithm for Fully Automated Determination of Attractor Interaction Lines in Molecules. Chem. Phys. Lett., 1994, (219): 151~157
    159 杨频, 高孝恢. 性能-结构-化学键. 高等教育出版社, 1987: 47~49
    160 J. A. Cioslowski. New Robust Algorithm for Fully Automated Determination of Attractor Interaction Lines in Molecules. Chem. Phys. Lett., 1994, (219): 151~157
    161 B. G. Johnson, M. J. Frisch. Analytic Second Derivatives of the Gradient-Corrected Density Functional Energy. Effect of Quadrature Weight Derivatives. Chem. Phys. Lett. 1993, (216): 133~138
    162 R. E. Stratmann, J. C. Burant, G. E. Scuseria. Zmproving Harmonic Vibrational Frequencies Calculations in Density Functional Theory. J. Chem. Phys. 1997, (106): 10175~10181
    163 T. Steckenreiter, E. Balanzat, H. Fuess, C. Trautmann. Chemical degradation of polyimide and polysulfone films under the irradiation with heavy ions of several hundred MeV. Journal of Polymer Science: Part A: Polymer Chemistry. 1999, 37: 4318-4329
    164 丁孟贤. 聚酰亚胺. 科学出版社, 2006: 187~205
    165 拿骚. 颜色的物理与化学. 科学出版社, 1991: 130~180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700