用户名: 密码: 验证码:
杂散电流与氯离子共存环境下钢筋混凝土劣化机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地铁工程混凝土结构往往处于杂散电流与氯离子共存的腐蚀环境中,二者对混凝土耐久性劣化的相互促进作用使得这类工程混凝土面临更为严重的耐久性问题,其耐久性的劣化机理也比单因素作用更加复杂。本文围绕着杂散电流与氯离子共存环境下,钢筋混凝土的劣化特征、劣化机理以及相应的高耐久性材料制备开展了深入的系统的研究工作,其获得的研究成果对地铁等地下工程混凝土材料的耐久性设计与应用,具有重要的理论和实践指导意义。
     论文进行的主要工作和取得的重要成果有:
     通过系统研究杂散电流与氯离子共存环境下,受腐蚀钢筋电化学当量和锈蚀特征的依时变化规律,以及相应混凝土力学性能退化特点,掌握了该环境条件下钢筋混凝土的钢筋锈蚀速度快、锈蚀程度严重以及混凝土抗压强度和弹性模量失效快的劣化特征。同时采用电化学测试技术,探明了氯离子引发钢筋锈蚀极限浓度值随杂散电流强度增加而下降的变化规律,首次提出了杂散电流与氯离子共存环境下的、氯离子引发钢筋锈蚀极限浓度值的表征方法:[Cl~-]/[OH~-]=2.33e~(-0.12A)。建立了该环境条件下的钢筋混凝土锈蚀破坏模型,与已有单一因素影响下的同类模型相比,该模型对钢筋混凝土锈蚀破坏过程,特别是锈蚀诱导期,进行了更为详细的描述:诱导期应分为两个阶段,第一阶段为诱导发展期,主要由杂散电流诱发钢筋锈蚀;第二阶段为诱导加速期,该阶段主要由氯离子诱发钢筋锈蚀。
     深入研究了杂散电流对水泥石内部固化态氯离子稳定性的影响规律,研究结果表明杂散电流会对水泥石固化氯离子的能力产生不利影响,随杂散电流强度增加和通电时间延长,氯离子由固化态向游离态的转变趋势越为显著。采用C_3A和C-S-H凝胶制备等宏观试验方法,以及X射线衍射(XRD)、热重分析(TG)、表面电位等微观测试手段探明了杂散电流对固化态氯离子稳定性的不利影响,主要与以物理吸附形式固化的氯离子稳定性有关。同时采用Stern凝胶双电层理论对这种影响机理进行了详细的论述与分析。此外,根据杂散电流影响下氯离子由固化态向游离态的转变规律,提出了水泥石内部化学键合和物理吸附两种固化态氯离子的分离方法。
     系统研究了杂散电流对氯离子向混凝土内部迁移过程的影响规律,探明了氯离子在杂散电流影响下会加速向钢筋表面区域汇聚的迁移特征。通过分析杂散电流在混凝土内部所形成电场的分布特点,根据电渗流理论和X射线能谱(EDXA)等微观测试分析结果,提出了“扩散电迁移”假说对杂散电流影响下的氯离子迁移机制进行解释。同时在考虑杂散电流对混凝土固化氯离子能力和氯离子分布影响的基础上,建立了杂散电流存在情况下氯离子向混凝土内部的迁移方程。
     根据杂散电流与氯离子共存环境下钢筋混凝土的劣化特征和劣化机理,提出了该环境条件下地铁工程混凝土材料:56d电阻率>100kΩ·cm,28d电通量≤350C,氯离子扩散系数0.5-0.8×10~(-13)m~2/s的高阻抗、高抗渗的设计要求与设计方法。从材料学角度出发,采用材料复合制备原理,利用矿物掺合料、轻集料和绝缘型聚合物等功能材料复合使用的方法,成功的制备出了56d混凝土电阻率为110.5kΩ·cm,28d电通量为223C的能够满足地铁工程高阻抗和高抗渗要求的新型高性能混凝土。
The concrete structure of subway project usually is in stray currents and chloride ion coexisted corrosion environment. Because of stray currents and chloride ion mutual promoter action on the concrete durability deterioration, the concrete durable problem of this kind of project is more serious, and its durable deteriorated mechanism is also more complex than the single factor function. In this thesis, the deteriorated characteristic and mechanism of reinforced concrete, as well as the corresponding high durable material preparation have been researched in system and depth. There are important theory and practice guiding meaning of the results of this research for the durable design and the application of the subway and so on the underground project concrete material.
     The main research work and compliments of this paper are:
     Through the systematic research on the electrochemical equivalent and the corrosion characteristic of the steel bar, as well as the corresponding physical mechanics performance degeneration characteristic of reinforced concrete under stray currents and chloride ion coexistent environment, the deteriorated characteristics of reinforced concrete, such as steel bar corrosion speed quick, the corrosion degree serious as well as the quick deteriorated characteristic of the concrete compressive strength and the elasticity ratio have been obtained. Simultaneously used the electrochemistry test technology, verified the change rule that the limiting concentration value of the chloride ion to initiate the steel bar corrosion was reduced with stray currents intensity increased, the attribute method of chloride to initiated the steel bar corrosion was proposed: [Cl~-]/[OH~-] = 2.33e~(0.12A). The reinforced concrete corrosion destruction model had been established under this environmental condition, compared with the sole factor influence similar model, this new model to the reinforced concrete corrosion destruction process, specially rusts away the induction period, had carried on a more detailed description: the induction period should divide into two stages, the first stage is the induction period of expansion, mainly induces the steel bar corrosion by the stray current; The second stage is the induction acceleration period, this stage mainly induces the steel bar corrosion by the chloride ion.
     The influence rule of the stray current on the binding chloride ion stability has been researched in depth. The results show that stray currents are disadvantage for the cement motor binding chloride ion. The transition trend of chloride form binding to freedom is more obviously with the stray current intensity increased. Uses the single mineral preparation, the C-S-H gel preparation and the microscopic testing method such as X-ray Diffractometer (XRD), thermogravimetric analysis (TG), the superficial electric potential, to verifies the stray currents to the binding chloride ion stable adverse effect mainly related with the chloride ion stability which solidified by the physisorption form, the Stern gel electric double layer theory is used to carry on the detailed elaboration and the analysis to this kind of influence mechanism. In addition, according to the transition characteristic of chloride form binding to freedom with stray currents influence, a method for separated the binding and free chloride ion is found.
     The systematic research has carried about the effect of stray currents on the migration process of chloride ion into concrete. The migration characteristic that chloride ion is accelerated to the steel bar surface region gathering under the stray currents influence. By analyzed the distributed characteristic of the electric field of stray currents in the concrete interior, and according to the electricity transfusion theory and Energy Dispersive X-ray Analysis (EDXA) and so on the microscopic test analysis result, proposed "the diffuse and electromigration" hypothesis to the explanation to migration mechanism of chloride ion in concrete interior under the stray currents influence. Based on the influence of stray currents on binding stability and distribution of chloride ion, the chloride ion to the concrete internal transport equation has been established.
     According to the reinforced concrete deteriorated characteristic and mechanism under the stray current and chloride ion coexisted corrosion environment, the design method and requirements for concrete are proposed: 56 days electrical resistivity≥100 kΩ·cm, 28 days flux≤350C, and chloride ion diffused coefficient between 0.5×10~(-13)m~2/s and 0.8×10~(-13)m~2/s .Embarks from the material study angle, according to the material compound preparation principle, a new kind high performance concrete was prepared, which is able to fit for the requirement of high electrical resistivity and anti-chloride ion permeability for subway concrete by compound uses mineral admixtures, lightweight aggregate and insulation polymer. Its 56 days electrical resistivity is 110.5 kΩ·cm, 28 days flux is 350 C.
引文
[1] H.索默.高性能混凝土的耐久性[M].北京:科学出版社,1998
    
    [2] Isecke B. Failure analysis of the collapse of the Berlin Congress hall [J]. MaterialsPerformance, 1982, 121 (12): 36
    
    [3] Sally S.C. Motor speedway bridge collase caused by corrosion [J]. Materials Performance,2000, (6): 18-19
    
    [4] Mehta P.K. Concrete durability-lify years progress[C]. Proc of 2nd Inter. Conf. OnConcrete Durability, ACI SP 126-1,1991,1-31
    
    [5] Monica Prezzi , Philippe Geyskens. Reliability Approach to service life prediction ofconcrete exposed to marine environment [J]. ACI Material Journal, 1996, 93 (6): 522-544
    
    [6] Rodriguez P. Methods for studying corrosion in reinforced concrete [J]. Magazine ofConcrete Research, 1994, 47 (167): 81-90
    
    [7] Dhir R.K. Jones M.R. Rapid estimation of chloride diffusion concrete [J]. Magazine ofConcrete Research, 1990, 42 (152): 177-185
    
    [8] 龚洛书,柳春圃.混凝土的耐久性及其防护修补[M].北京:中国建筑工业出版社,1990
    
    [9] 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999
    
    [10] 邸小云,高小旺,徐有邻.我国混凝土结构的耐久性与安全问题[C].工程科技论坛— —土建结构工程的安全性与耐久性,北京,2001.11:260-265
    
    [11] 四航局科研所.华南沿海部分码头调查情况介绍[J].水运工程,1982,(2):1-7
    
    [12] 单国良,林宝玉,蔡跃波.北仑港码头混凝土密实性对钢筋混凝土锈蚀破坏的影响[C]. 第四届全国混凝土耐久性学术交流会,1996.11: 126-134
    
    [13] 潘德强.我国海港工程混凝土结构耐久性现状及对策[C].工程科技论坛——土建结 构工程的安全性与耐久性,北京,2001.11:176-134
    
    [14] 张誉,蒋利学,张伟平等.混凝土结构耐久性概论[M].上海:上海科学技术出版社
    
    [15] 吴瑾.钢筋混凝土结构锈蚀损伤检测评估[M].北京:北京科学出版社,2005
    
    [16] 丁庆军,钟洛,马保国等.抗钢筋锈蚀混凝土服务年限预测,重点工程混凝土耐久性 研究与工程应用[M].北京:中国建材工业出版社,2000:623-626
    
    [17] 吕林女,胡曙光,丁庆军等.混凝土安全性专家系统的设计[J].武汉理工大学学报, 2003,25(11):15-18
    
    [18] 2007-2008年中国地铁行业分析及投资咨询报告[R].中国投资咨询网,2007
    
    [19] 张庆贺,朱合华.地铁与轻轨[M].北京:人民交通出版社,2002
    
    [20] Darowicki K, Zakowski, K. A New Time-Frequency Detection Method of Stray Current Field Interference on Metal Structures [J]. Corrosion Science, 2004, 46 (5) : 1061-1070
    
    [21] 李威,王禹桥,王爱兵.地铁杂散电流检测系统的研制[J].电气化铁道,2004,(5): 40-42
    
    [22] 吴祥祖,张庆贺,高卫平.地铁杂散电流产生机理及其防护措施[J].建筑安全,2003, (5):28-30
    
    [23] 潘洪科,杨永净,葛世平等.地下工程结构耐久性研究[J].城市轨道交通研究,2004, (6):41-45
    
    [24] 杨向东,曲学兵,周晓军.外加直流电腐蚀钢筋引起混凝土破坏机理的研究[J].西部 探矿工程(岩土钻掘矿业工程),1999,11(4):92-96
    
    [25] 贺鸿珠,史美伦,陈志源.粉煤灰对地铁杂散电流的抑制作用[J].混凝土与水泥制品, 2001(1):21-23
    
    [26] 杜应吉,李元婷.活性掺合料对地铁混凝土杂散电流的抑制作用[J].混凝土, 2005 (6): 77-79
    
    [27] 陈迅捷,陈基成,欧阳幼玲.活性掺合料对钢筋混凝土抗迷流腐蚀性能的影响[J].混 凝土与水泥制品,2004(2):13-15
    
    [28] 蔺安林,周晓军.地铁迷流对混凝土中钢筋的腐蚀及混凝土强度影响的实验研究[J]. 世界隧道,1999(6):1-8
    
    [29] 周晓军,高波,郭建国等.混凝土中钢筋受外直流电腐蚀对其强度影响的试验研究[J]. 地铁与轻轨,2001,(4):17-23
    
    [30] 杜应吉.地铁工程混凝土耐久性研究与寿命预测[D].南京:河海大学土木学院,2005
    
    [31] Luca Bertolini, Maddalena Carsana, Pietro Pedefern. Corrosion behavior of steel in concrete in the presence of stray current [J]. Corrosion Science, 2007, 49 (3): 1056-1068
    
    [32] 林江,唐华.地铁工程用高阻抗混凝土的研制[J].建筑材料学报,2001,4(4):373-377.
    
    [33] 李锦萍,李永刚,王竹.地铁杂散电流模拟检测系统的设计[J].首都师范大学学报(自 然科学版),2004,25(4):23-25
    
    [34] 洪定海.混凝土中结构的腐蚀与保护[M].北京:中国铁道出版社,1998
    
    [35] 樊云昌,曹兴国,陈怀荣等.混凝土中钢筋腐蚀的防护与修复[M].北京:中国铁道出 版社,2002
    
    [36] 惠云玲.锈蚀钢筋力学性能变化初探[J].工业建筑,1992,(10):
    
    [37] 惠云玲,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑,1997,27(6): 10-13.33
    
    [38] 马良喆,陈惠娟,白常林.钢筋锈蚀后力学性能的试验研究[J].施工技术,2000,29 (12):43-44
    
    [39] 袁迎曙,贾福萍,蔡跃.钢筋锈蚀的力学性能退化研究[J].工业建筑,2000,30(1): 43-46
    
    [40] 朱伯龙,刘祖华.建筑改造工程学[M].上海:同济大学出版社,1998
    
    [41] 郭新海,朱伯龙,吴虎南.盐酸对混凝土的腐蚀机理.[J].混凝土,1991,(4):89-95
    
    [42] 于忠,胡蔚儒.化工大气环境中混凝土的腐蚀机理及性能研究[J].工业建筑,2000, 30(5): 16-20
    
    [43] 范颖芳,黄振国.硫酸盐腐蚀后混凝土力学性能研究[J].郑州工业大学学报,1991, (1)
    
    [44] Al-Sulaimani GL, Kaleemullah M, Basunbul L.A. Influence of Corrosion Membens[J]. ACI Structural Journal, 1999, 87 (2): 220-231
    
    [45] Almusallan A.A, Al-Gahtani A.S. Effect of reinforcement corrosion on bond strength[J].Constructure and Building Materials. 1996, 10 (2): 123-129
    
    [46] Williamson S.L. Clark L.A. Pressure require to casue cover cracking of concrete due toreinforcement corrosion. Magazine of Concrete Research, 2000, 52 (6): 455-467
    
    [47] Zakowski K, Sokolski W. 24-hour characteristic of interaction on pipelines of straycurrents leaking from tram tractions [J]. Corrosion Science, 1999, 41 (4): 2099-2111
    
    [48] 王泽学.城市轨道交通的防杂散电流设施施工[J].铁道建筑技术,2005(5):60-62.
    
    [49] 徐光强.直流牵引供电系统中杂散电流防护方案研究与保护[D].成都:西南交通大学 电气工程,2003
    
    [50] 杜荣归,刘玉,林昌健.氯离子对钢筋腐蚀机理的影响及其研究进展[J].材料保护, 2006, 39(6):45-51
    
    [51] 马亚丽,张爱林.氯离子环境下钢筋最大腐蚀深度与平均腐蚀深度比值的概率分布研 究[J].工业建筑,2005,35(12):11-14
    
    [52] 徐港,卫军.氯盐种类及冻融对混凝土氯离子迁移的影响[J].建筑材料学报,2006,9 (6): 729-734
    
    [53] 屈文俊,张誉.侵蚀性环境下混凝土结构耐久寿命预测方法探讨[J].工业建筑,1999, 29(4):40-44
    
    [54] 谢永江,仲新华,朱长华等.青藏铁路桥隧结构用高性能混凝土的耐久性研究[J].中 国铁道科学,2003,24(1):108-112
    
    [55] Hooton R.D, Stanish K, Thomas M.D.A. A novel method for describing chloride iontransport due to an electrical gradient in concrete: Part 1. Theoretical description [J].Cement and Concrete Research , 2004, 34: 43-49.
    
    [56] Khandaker, Anwar Hossain M. Chloride induced corrosion of reinforcement in volcanicash and pumice based blended concrete [J]. Cement & Concrete Composites, 2005, 27 :381-390.
    
    [57] Morris W, Vico A, Vazquez M. Chloride induced corrosion of reinforcing steel evaluatedby concrete resistivity measurements [J]. Electrochimical Acta, 2004, 49: 4447-4453
    
    [58] Kayali O, Zhu B. Chloride induced reinforcement corrosion in lightweight aggregatehigh-strength fly ash concrete [J]. Construction and Building Materials, 2005, 19: 327-336
    
    [59] Titherington M.P, Hooton R.D. Chloride resistance of high-performance concretessubjected to accelerated curing [J]. Cement and Concrete Research, 2004, 34: 1561-1567
    
    [60] Wilsch G, Weritz F, Schaurich G, etl. Determination of chloride content in concretestructures with laser-induced breakdown spectroscopy [J]. Construction and BuildingMaterials, 2005, (19): 724-730
    
    [61] Goni S, Andrade C, Page CL. Corrosion Behaviour of Steel in High Alumina CementMortar Sample: Effect of Chloride[J]. Cement and Concrete Research, 1991, 21(4) :635
    
    [62] Sanjuan M A. Effect of curing temperature on corrosion of steel bars embedded in CalciumAluminate Mortars Exposed to Chloride Solutions[J]. Corrosion Science, 1998, 41(2) :335
    
    [63] 王绍东,黄煜镔,王智.水泥组分对混凝土固化氯离子能力的影响[J].硅酸盐学报, 2000,28(6): 570-574
    
    [64] Larsen G.K.. Chloride binding in concrete-effect of surrounding environment and concretecomposition [D]. Norway: The Norwegian University of Science and Technology, 1998
    
    [65] Diamond S. Chloride Concentration in Concrete Pore Solution Resulting from Calcium andSodium Chloride Admixtures [J]. Cement Concrete and Aggerates, 1996, 8 (2): 97-102
    
    [66] Suzuki K, Nishikawa T. Effect of NaCl or NaOH on formation of C-S-H [J]. Cement andConcrete Research, 1986, 16 (3): 333-340
    
    [67] Beaudoin J.J, Ramachandran V.S. Interaction of chloride and C-S-H [J]. Cement andConcrete Research, 1990, 20 (6): 875-883
    
    [68] 胡红梅,马保国.矿物功能材料的Cl-结合能力[J].建筑材料学报,2004,7(4):406
    
    [69] 罗睿,蔡跃波,王昌义.磨细矿渣净浆和砂浆结合外渗氯离子的性能[J].建筑材料学报, 2001,4(2): 148
    
    [70] Michael D.A. Modeling chloride diffusion in concrete effect of fly ash and slag [J].Cement and Concrete Research, 1999, 29 (4): 487-495
    
    [71] Pruckner F, Gjorv O.E. Effect of CaC12 and NaCl additions on concrete corrosivity [J].Cement and Concrete Research, 2004, 34 (7): 1209-1217
    
    [72] Paul Brown, James Bothe. The system CaO-Al_2O_3-CaCl_2-H_2O at 23 ±2℃ and themechanisms of chloride binding in concrete [J]. Cement and Concrete Research, 2004, 34(9): 1549-1553
    
    [73] Brown P.W, Steven Badger. The distributions of bound sulfates and chlorides in concretesubjected to mixed NaCl, MgSO_4, Na_2SO_4 attack [J]. Cement and Concrete Research,2000, 30 (10): 1535-1542
    
    [74] Anik Delagrave, Michel Pigeon. Influence of chloride ions and pH level on the durabilityin high performance cement pastes [J]. Cement and Concrete Research, 1994, 24 (9):1433.1443
    
    [75] Arya C, Xu Y. Effect fo cement type on chloride binding and corrosion of steel on concrete [J]. 1995, 33 (8): 21-26
    
    [76] 黄君哲,王胜年,潘德强.海工高性能混凝土结构受用寿命预测浅析[J].水运工程, 2004,(2):37-43
    
    [77] 张宝兰,卫淑珊.华南海港钢筋混凝土暴露十年试验[J].水运工程,1999,(3):6-13
    
    [78] Chunqing Li, Initiation of chloride-induced reinforcement corrosion in concrete structuralmembersprediciton[J]. ACI Structural Journal, 2002, (2): 133-141
    
    [79] Hope, Alan. Chloride corrosion threshold in concrete[J]. ACI Materials Journal, 1987, (7): 306-314
    
    [80] 施惠生,王琼.海工混凝土使用寿命预测[J].建筑材料学报,2004,7(2):162-167
    
    [81] Hausman D A. Steel Corrosion in Concrete [J]. Materials Protect, 1967, 6 (11): 19-23
    
    [82] Lamber P. Investigation of reinforcement corrosion 2. Electrochemical monitoring of steel in chloride contanminated concrete [J]. Materials and Structure. 1991 , 24(143): 351-358
    
    [83] 宋志刚,潘仁泉,金伟良等.用Fick第二定律描述混凝土中氯离子浓度分布的适用性 [J].混凝土与水泥制品,2005,(4):7-10
    
    [84] 金伟良,张苑竹.预估混凝土氯离子分布的新方法[J].浙江大学学报(工学版),2004, 38(2):195-199.
    
    [85] Stanish K. Hooton R.D. Thomas. A novel method for describing chloride ion transport due to an electrical gradient in concrete: Part 2. Experimental study [J]. Cement and Concrete Research, 2004, 34 (1): 51-57
    
    [86] P. S. Mangat P.S, Limbachiya M.C. Effect of initial curing on chloride diffusion in concrete repair materials [J]. Cement and Concrete Research, 1999, 29 (9): 1475-1485
    
    [87] MAAGE M,HELLAND S,CARLESEN J.S.暴露于海洋环境的高性能混凝土中的氯 化物渗透[A].高性能混凝土的耐久性[M].北京:北京科学出版社,1998
    
    [88] 余红发,孙伟,麻海燕等.混凝土使用寿命预测方法的研究Ⅰ---理论模型[J].硅酸盐学 报,2002,30(6):686-690
    
    [89] 余红发,孙伟,,麻海燕等.混凝土使用寿命预测方法的研究Ⅱ[J].硅酸盐学报,2002, 30(6):691-695
    
    [90] 余红发,孙伟,麻海燕等.混凝土使用寿命预测方法的研究Ⅲ---混凝土使用寿命的影 响因素及混凝土寿命评价[J].硅酸盐学报,2002,30(6):696-701
    
    [91] 赵麦群,雷阿丽.金属的腐蚀与防护[M].北京:国防工业出版社,2002
    
    [92] 孙跃,胡津.金属腐蚀与控制[M].哈尔滨:哈尔滨工业大学出版社,2003
    
    [93] 周晓军,高波.地铁杂散电流分布及其对砼衬砌耐久性的影响[J].西部探矿程,1999, 11(6): 31-35(39)
    
    [94] 鲁道荣,邓君如,尤聿媛.氯离子对碳钢在混凝土孔隙液中腐蚀行为的影响[J].合肥 学院学报(自然科学版),2006,10(1):3-7
    
    [95] 刘玉,杜荣归,李彦等.模拟混凝土孔隙液中钢筋腐蚀的氯离子临界浓度测试[J].分 析化学,2006,34(6):825-827
    
    [96] Moreno M, Morris W, Alvarez M.G Corrosion of reinforcing steel in simulated concrete pore solutions effect of carbonation and chloride content [J]. Corrosion Science, 2004, 46 (9): 2681-2699
    
    [97] Bruno Huet, Valerie L'Hostis. Electrochemical behavior of mild steel in concrete:Influence of pH and carbonate content of concrete pore solution [J]. Electrochimica Acta, 2005, 51 (1): 172-180
    
    [98] 韩宝国,关新春,欧进萍.碳纤维水泥石电阻测试方法研究[J].玻璃钢/复合材料, 2003,11:6-8
    
    [99] 何更新.粉煤灰混凝土导电性能研究[D].重庆:重庆大学材料学院,2006
    
    [100]史美伦.混凝土阻抗谱[M].北京:中国铁道出版社,2003
    
    [101]胡曙光,钟珞,吕林女.混凝土安全性专家系统[M].北京:科学技术出版社,2007
    
    [102]李辉,商博明, 冯绍航等.粉煤灰理化性质及微观颗粒形貌研究[J].粉煤灰,2006, (5): 18-20.
    
    [103]钱觉时.粉煤灰特性与粉煤灰混凝土.北京:科学出版社,2002
    
    [104] Dhir R.K, M.A.K.El-Mohr, Dyer T.D. Chloride binding in GGBS concrete[J].. Cement andConcrete Research, 1996, 26 (12): 1767-1773
    
    [105] Josef Tritthart. Chloride binding in cement. Ⅰ .Investigations to determine the compositonof porewater in hardened cement [J]. Cement and Concrete Research, 1989, 19 (12):586-594
    
    [106] Josef Tritthart. Chloride binding in cement. Ⅱ.The influence of the hydroxideconcentration in the pore solution of hardened cement on chloride binding [J]. Cement andConcrete Research, 1989, 19 (12): 683-691
    
    [107] Kobayashi K, Funato M. Carbonation and concentration of chloride in concrete containingchloride.Ⅲ[J].Kenkyin, 1989, 41 (12): 930-932
    
    [108] Suryavanshi A.K. Stability of Friedel's salt in carbionated capacity of silica-fume cementpastes [J]. Cement and Concrete Research, 1996, 26 (5): 729-741
    
    [109] Page C.L, Venneland O. Pore solution composition and chloride binding capacity ofsilica-fume cement pastes [J]. Material and Building Construction, 1983, 16(91): 19-25
    
    [110] Goni S, Guerrero A. Accerlated carbonation of Friedel's salt in calcium aluminate cementpaste [J]. Cement and Concrete Research, 2003, 33 (12): 21-26
    
    [111]呼世斌,黄蔷蕾.无机及分析化学[M].北京:高等教育出版社,2006,第二版
    
    [112]廉惠珍,童良.,陈思义.建筑材料物相研究基础[M].北京:清华大学出版社,1996
    
    [113]袁润章.胶凝材料学[M].武汉:武汉工业大学出版社,1996
    
    [114]封孝信,冯乃谦.碱在C-S-H凝胶中的存在形式[J].建筑材料学报,2004,7(1): 1-6
    
    [115] Castellote M, Andrade C, Alonso C. Chloride-binding isotherms in concrete submitted to non-steady-state migration experiments [J]. Cement and Concrete Research, 1999, 29 (12): 1799-1806
    
    [116] Thomas M.D.A, Pantazopoulou S.J. Concrete structures exposed to chloride: a literature review [D]. Toronto : University of Toronto, 1995
    
    [117]章莉娟,郑忠.胶体与界面化学[M].广州:华南理工大学出版社,2006,第二版
    
    [118]顾惕人.表面化学[M].北京:科学出版社,2003
    
    [119]王春梅,吕秀玲,张彩文.C-S-H表面上吸附态Cl~-离子的分布特点[J].河北理工学院 学报,2006.28(1):85-89
    
    [120]张文彩,葛志,杨克锐等.C-S-H表面对SO42-的吸附特性[J].硅酸盐学报,2005,33 (8):926-929
    
    [121]左恒,王贻明,江怀春等.电场作用下离子型稀土矿浸矿溶浸液渗流特性研究[J].中 国稀土学报,2007,25(1):80-84
    
    [122]王仁超,朱琳,杨弢等.综合机制下氯离子扩散迁移模型及敏感性研究[J].海洋科学, 2006,30(7):21-26.
    
    [123]赵卓,李锋,马亚丽.氯离子环境下钢筋腐蚀速度分阶段模型[J].工业建筑,2005, 35(12):1-4.
    
    [124]王仁超,朱琳,,李振富.混凝土氯离子综合机制扩散模型及敏感性研究[J].哈尔滨工 业大学学报,2004,36(6):824-828.
    
    [125]冯慈璋,马西奎.工程电磁场导论[M].北京:高等教育出版社,2003
    
    [126]原海涵.毛管理论在测井解释中的应用[M].北京:石油工业出版社,1995
    
    [127]张继红,王江,赵丽娟.单相液体在多孔介质中的电动渗流特性[J].大庆石油学院学 报,2002,26(1):24-26
    
    [128]赵铁军.混凝土渗透性[M].北京:科学技术出版社,2006
    
    [129]王新友,李宗津.混凝土使用寿命的研究进展[J].建筑材料学报,1999,2(3):249-256
    
    [130] Tang Luping. Chloride transport in concrete-Measurement and Prediction[D]. Sweden: Chalmers University of Technology Department of Building Materials, 1996
    
    [131]王信刚.跨江海隧道功能梯度混凝土管片的研究与应用[D].武汉:武汉理工大学材料 学院,2007
    
    [132]杨义,时圣金,童张法.大掺量混合材高性能混凝土的制备及强度特性[J].武汉理工 大学学报(自然科学版),2007,29(11):21-24
    
    [133]陈冬梅,张日华,张战营.大掺量粉煤灰特性水泥研究.硅酸盐通报,2006,25(5): 190-194
    
    [134]谢祥明,莫海鸿.大掺量矿渣微粉提高混凝土抗氯离子渗透性的研究.水利学报, 2005.36(6):737-740
    
    [135]杨久俊,董延玲等.骨料表面化学预处理对界面区的组分梯度分布和混凝土力学性能 的影响(I:骨料化学预处理对起表面特性与界面过渡区结构的影响)[J].混凝土与 水泥制品,2003,12(6):1-5
    
    [136]陈惠苏,孙伟,Stroeven Piet.水泥基复合材料集料与浆体界面研究综述(二):界面微 观结构的形成、劣化机理及其影响因素,硅酸盐学报,2004.1(1):70-79
    
    [137]冯奇,巴恒静,刘光明.二级界面对水泥基材料孔结构和性能的影响[]J.材料研究学 报,2003,17(5):399-494
    
    [138]巴恒静,冯奇,杨英姿.复合微粒高性能混凝土的二级界面显微结构及耐久性研究[J]. 硅酸盐学报,2003,31(11):1043-1047
    
    [139] Ba Hengjian. Feng Qi, Yang Yingzi. Hydration Reaction between C3S Fly Ash, Silic Fume, Nano-SiO2 and Microstructure of Hydrated Paste [J]. Chian Ceramic Science, 2002. 6: 780
    
    [140]胡曙光,王发洲, 丁庆军.轻集料与水泥石的界面结构[J],硅酸盐学报, 2005, 6 (33):713-717
    
    [141]王发洲.高性能轻集料混凝土研究与应用[D].武汉:武汉理工大学材料学院,2003
    
    [142]钟世云,袁华.聚合物在混凝土中的应用[M].北京:化学工业出版社,2003
    
    [143]万众祥,谈慕华,马一平.尼龙纤维水泥基复合材料抗冻融性能研究[J].建筑材料学 报,1998,1(4):311-314
    
    [144]蔡正泳,王足献.正交设计在混凝土中的应用[M].北京:中国建筑工业出版社,1985
    
    [145]陈惠苏,孙伟,Stroeven Piet.水泥基复合材料集料与浆体界面研究综述(一):实验技 术,硅酸盐学报,2004.1(32):63-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700