用户名: 密码: 验证码:
兰坪铅锌矿北厂矿段数字化及技术经济指标优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在资源短缺、环境恶化、人口膨胀以及经济可持续发展和经济全球化的背景下,矿产资源的合理利用与开发正成为一个突出的问题。社会对地质科学的要求越来越高,传统地质方法己不能满足社会发展的需要。进行三维地学模拟(3DGM),加强矿产资源的定量评估,提高地质数据的处理精度,以实现矿山生产的动态管理和矿产资源的充分合理利用,降低成本,提高矿山生产的社会经济效益,是关系到矿业可持续发展的重大问题。
     多年来,地质、矿业界人士一直希望能够更准确地解译和圈定地下地质体,以便更直观精确地了解地下地质体(矿体、地层、断层、褶皱构造等)的三维形态,快速准确地计算矿体储量,掌握矿体品位的空间分布规律,以便指导矿产资源的有效开发利用,从而引发了传统矿业向数字矿业的变革。
     作者分析了我国矿业信息化发展存在的问题,概述地总结了地质统计学的理论方法、理论变异函数的基本理论,并重点介绍了克立格估值方法。对目前国际上流行的矿业软件进行了比较和分析,结合矿床数学经济模型软件包及SURPAC软件的优势,首次为兰坪铅锌矿建立了三维数字化矿床模型,取得的成果主要有:
     (1) 在对原始数据进行正确检查并对特高品位进行科学处理的基础上,建立了原始地质资料数据库,矿山可根据需要随时进行数据的更新、存储、传输、表述和综合查询。
     (2) 对样品的分布规律进行了分析研究,包括样品总数、均值、方差、标准差、频率分布和样品的品位分布,绘制了品位分布直方图和概率频率图,结果显示原始样品和组合样品均服从对数正态分布。
     (3) 结合矿山地质剖面图及相关地质资料,对矿体进行地质解译并圈定矿体,形成了矿体的三维可视化模型。
     (4) 应用普通克立格法,采用球状模型,建立了矿体的理论变异函数,为分析成矿规律,指导找矿提供依据。
     (5) 采用普通克立格法对矿体进行品位估值,建立起矿体的空间品位模型,从而查明了矿体组分的三维空间分布特征,总结了矿体的矿化富集规律。
     (6) 利用矿床数学模型,根据企业的采、选、冶、运、管成本,产品的市场价格,并考虑矿产的综合利用,动态多方案圈定矿体,并进行多方案对比,为企业
Under the background of missing in the resources, environment worsen, population inflation and economic sustainable development and economic globalization, the reasonable utilization and development of the mineral resources is becoming a outstanding problem. Society makes higher claims for the geological science which however cannot meet the needs of social development. Carrying on 3DGM, strengthening the quantitative valuation of the mineral resources, raising the processing accuracy of the geology data to realize the aim of dynamic management of mineral enterprise, the full reasonable exploitation, declining the cost and raising the social economic effects , which is an important thing that relate to sustainable development of mineral enterprise.For many years, geologist and mining industry experts have been hoping to interpret and outline more accurately the geologic body underground to understand more accurately the 3D information of the geologic body underground (including stratum, mineral body, fault, fold structure and so on) , calculate mineral body reserve quickly and accurately and understand the spatial grade distribution of the mineral body, so that it can instruct us in exploring the mineral resources effectively, which bring the reform from the traditional mining industry to modern one.The author analyzed the existing problem in developing the mining informationiztion , summarized briefly the theory and technique of the geostatistics, the basic theory of variation function especially the Kriging reserves estimation , compared and analyzed the function of the popular international mining software, established 3D digital mineral deposit models for Lead Zinc Ore of Lanping with the software package of Mathematic-economical Model of The Deposits combining the software function of SURPAC. The achievements as follows:(1) Built up the original geology database after checking accurately the original data and processed reasonably the abnormal grade. The mineral enterprise can renew, save, deliver, express and search their need data at any time.
    (2) Analyzed the distribution regulation of sample including sample total, average, variance, Standard deviation, frequency distribution and the grade distribution of sample and plotted grade distribution histogram and probability relative frequency graph, the result display that the primary sample and composite sample presents logarithmic normal distribution.(3) Interpreted and determined mineral body underground according to the geological sections and data of mine to set up 3D visual model of mineral body.(4) Setted up theory variation function applying normal Kriging and globosity model to provide reference for analyzing regulation of deposit and instructing exploring deposit .(5) Estimated the value of grade of mineral body applying normal Kriging to set up spacial grade model of mineral body. As a result found out the 3D spacial distribution character of grade of mineral body and summarized the regulation of useful element enriching of mineral body.(6) Outlined dynamically mineral body with many schemes and compared them according to mineral deposit mathematical model and the cost of mining, smelting, transporting .managing and the price of mineral production in market in order to provide reference for enterprise selecting the best mining scheme.The foundation of mathematic-economical model of the deposit is to provide scientific reference for mineral enterprise realizing digital dynamical management, developing and making use of mineral comprehensively, raising the social economic effects of developing mineral resources and to provide a comprehensive information terrace for the aftertime development of mineral enterprise.
引文
[1] 李琦,吴少岩,舒建华.数字地球—人类认识地球的第三次飞跃[M].北京:北京大学出版社,1999.
    [2] 陈述彭.数字地球百问[M].北京:科学出版社,1999.
    [3] XuGuanhua. Building the digital earth, promoting China and global sustainable development[A]. Towards Digital Earth: Proc 1st Int Sym Digital Earth[C].Beijing: Science Press, 1999.6-10.
    [4] 吴立新.数字地球、数字中国与数字矿区[J].矿山测量,2000(1):6-9.
    [5] 于润沧.我国采矿业发展知识经济的战略思考[A].第六届全国采矿会议论文集[C].中国矿业(专集),1999:80-82
    [6] 吴立新,刘纯波,牛木宣等.试论发展我国矿业地理信息系统的若干问题[J].矿山测量.1998(4):48-51.
    [7] WuLX, LiuCB, ChenGR, etal. The research and development of networked Mining Core-GIS[A].Proc 2nd Int. WorkshoponDynamic And Multi-Dimensional GIS[C]. Beijing: Science Press, 1999.359-364.
    [8] WuLX, YangKM, QiAW, etal. Information classification & management for MGI Sand digital mine[A]. Towards Digital Earth: Procof 1st Int SymonDE[C].Beijing: Science Press, 1999.999~1004.
    [9] HuJX, WuLX, YingZR, etal. Study on digital mine and related key technologies[A]. Towards Digital Earth: Procof Int SymonDE[C].Beijing: Science Press, 1999.421~426.
    [10] 胡金星,吴立新,杨可明,等.三维地学模拟可视化技术应用研究[J].煤炭学报,1999,24(4):345~348.
    [11] 云南地质矿产局第三地质大队.云南省兰坪县金顶铅锌矿详细勘探地质报告[R].云南省地质局,1984. Third Geological Surveying Party of Yunnan Geologicaland Mineral Resources Bureau. The geological explorationreport of lead-zinc Ore depo sit inLanping Country, Yunnan JR]. Yunnan Geological Bureau, 1984.
    [12] 白嘉芬,王长怀,纳荣仙.云南金顶铅锌矿床地质特征及成因初探[J].矿床地质,1985,4(1):1-9.
    [13] 施加辛,易风煌,文其.兰坪金项铅锌矿的岩矿特征及成因[J].云南地质,1983,2(3):179-195.
    [14] 燕守勋,李朝刚,周朝宪等.金顶铅锌矿床穹窿构造成因及其相关问题探讨[J].矿床地质,1994,13(2):148-154,185
    [15] 吴淦国,吴习东.云南金顶铅锌矿床构造演化及矿化富集规律初探[J].地球科学—中 国地质大学学报,1989,14(5):477-486.
    [16] 薛春纪,陈毓川,杨建民等.金顶铅锌矿床地质-地球化学[J].矿床地质,2002,21(3):270-277.
    [17] 温春齐,蔡建明,刘文周等.金顶铅锌矿床流体包裹体地球化学特征[J].矿物岩石,1995,15(4):78-84.
    [18] 张芳、耿文辉(桂林矿产地质研究院)等.兰坪思茅盆地石盐矿床盐矿包裹体特征.矿产与地质2001年4月第二期第15卷.113—115
    [19] 赵兴元.云南金顶铅锌矿床稳定同位素地球化学研究[J].地球科学,1989,14(5),495—501.
    [20] 付修根,庞艳春.金顶铅锌矿床地质特征及成因探讨[J].世界地质,2004,23(3):238-244.
    [21] 牟传龙,余谦.金顶铅锌矿床相关地质问题及成因探讨[J].矿物岩石,2004,24(1):48-51.
    [22] 赵兴元.云南金顶铅锌矿床成因研究[J].地球科学,1989,14(5):524-530.
    [23] 胡明安.试论岩溶型铅锌矿床的成矿作用及其特点一以云南金顶铅锌矿床为例[J].地球科学,1989,14(5),531—537.
    [24] 王京彬,李朝阳,陈晓钟.金顶铅锌矿成因新说[J].有色金属矿产与勘探,1992,1(4):200-206,256.
    [25] 张乾,云南金顶铅锌矿床成因研究[J].地质找矿论丛.1991,6(2):47-58.
    [26] 侯景儒.中国地质统计学(空间信息统计学)发展的回顾及前景(J).地质与勘探,1996,32(1):20~25.
    [27] 王仁铎,胡光道,1988年11月,线性地质统计学,地质出版社。
    [28] 肖斌,赵鹏大,侯景儒.地质统计学新进展[J].地球科学进展,2000,15(3):293~296.
    [29] 王仁铎.地质统计学的发展趋势(J).地质科技情报,1996,15(2):99~102.
    [30] 侯景儒.中国地质统计学(空间信息统计学)发展的回顾及前景(J).地质与勘探,1996,32(1):20~25.
    [31] 王勇毅,肖克炎,朱裕生,等.初论中国铜矿数字矿床模型[J].地质与勘探,2003,(3):20~24.
    [32] 黄诗峰,金菊良,段进军,等.地质统计学中变差函数参数估计的新方法[J].地质与勘探,1999,(1):41~43.
    [33] 侯景儒,黄竞先.地质统计学在固体矿产资源/储量分类中的应用[J]。地质与勘探,2001,(6):61~66.
    [34] 秦德先,燕永峰等.矿床数学经济模型[M].昆明:云南科技出版社,2001.
    [35] 肖斌,赵鹏大,侯景儒.地质统计学新进展[J].地球科学进展,2000,15(3):293~296.
    [36] 燕永峰,秦德先.矿床数学-经济模型及其在元江金矿的应用[J].矿物学报,2001,21(4):619~624.
    [37] [法].A.G.儒尔奈耳、CH.J.尤日布雷格著,候景儒、黄先等译,1982年,矿业地质统计学,冶金工业出版社。
    [38] Pan Guocheng,李钟山译,夏立显校,地质统计学中的区域化变量理论,1997年第2期,《世界地质》。
    [39] 孙洪泉,1990年10月,地质统计学及其应用,中国矿业大学出版社。
    [40] 候景儒,郭光裕,1993年6月,矿床统计预测及地质统计学的理论与应用,冶金工业出版社。
    [41] Pincock,Allen&Holt,Ine. 1996年8月, Statistical and Geostatical Methods and Ore Reserve Estimation. 30th IGC Abstracts Volume 3 of 3, Beijing, China.
    [42] 陈国光、吴福印、苏中奇,1981年10月,地质经济问题,湖南省地质学会。
    [43] D.E. Ranta, 1986, Applied mining Geology: Ore Reserve Estimation, Published by the Society of Mining Engineers, Inc, Littleton, Colrado.
    [44] 於崇文等,1980年,数学地质的方法与应用,冶金出版社。
    [45] Pan Guocheng,李钟山陈永良译,夏立显校,地质统计学中结构分析的理论与方法,1997年第3期,《世界地质》。
    [46] 矫希国,变差函数参数的计算,地质论评,1997,43(6):658-663
    [47] 矫希国,刘超,变差函数的参数模拟,物探化探计算技术,1996,18(2):157-161
    [48] 陈慧新,变异函数的稳健性及特异值处理方法的研究,内蒙古农业大学学报,2000,21(2):84-90
    [49] 刘春学,秦德先,洪托,变异函数在大厂锡矿的应用,昆明理工大学学报,1999,24(1):171-176
    [50] 黄竞先、李春霞,矿业地质统计学在我国的应用现状及对影响克立格估计的若干因素的研究,1997年4月增刊,《有色金属矿产与勘查》,第六卷。
    [51] 刘承祚,1994年,中国数学地质进展,地质出版社。
    [52] 中国地质学会数学地质专业委员会,1994年,中国数学地质,第五期,地质出版社。
    [53] 中国地质学会数学地质专业委员会,1991年,中国数学地质,第三期,地质出版社。
    [54] 中国地质学会数学地质专业委员会,1993年6月,中国数学地质,第四期,地质出版社。
    [55] 向永生、孔爱民,克立格估计邻域大小的确定方法,1998年第3期,《黄金地质》。
    [56] 中国地质学会数学地质专业委员会,1990年12月,中国数学地质,第二期,地质出版社。
    [57] 赵鹏大等,地质勘探中的统计分析.中国地质大学出版社,1990。
    [58] A.G.Journel. Ch.J. Huijbregts, Mining Geostatistics, Academic press, London, 1978.
    [59] C.V. Deutsch. A.G. Journel, GSLIB, Geostatical Software Library and User's Guide, Oxford, 1994.
    [60] E.H. Isaaks, R.M. Srivastava, Applied Geostatistics, Oxford University press, 1989.
    [61] J. Rivoirard, Introduction to Disjunctive Kriging and Non-linear Geostatistics, Clarendon press, Oxford, 1994.
    [62] D.G. Krige, Lognormal-de Wijsian Geostatistics for Ore Evaluation, South Africa Institute of Mining and Metallurgy, Johannesburg, 1978.
    [63] J-M Rendu, An Introduction to Geostatistical Methods of Mineral Evaluation, South Africa Institute of Mining and Metallurgy, Johannesburg, 1978.
    [64] G. Matheron, The Theory of Regionalized Variables and its Application. Les Cahiers du Centre de Morphologic Mathematic de Fountainbleau, no. 5. Ecole Nationale Superieure des Mines de Paris, 1971.
    [65] 侯景儒,尹镇南,李维明等,实用地质统计学.北京:地质出版社,1998
    [66] 秦德先,洪托,田毓龙等,广两大厂锡矿92号矿体矿床地质与技术经济.北京:地质出版社,2002
    [67] B.W.麦肯齐,矿产经济学.冶金工业部冀东黑色冶金矿山设计研究院情报室

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700