用户名: 密码: 验证码:
甘蓝显性细胞核雄性不育相关基因及其启动子序列的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝类(Brassica oleracea)作物是世界范围内普遍栽培的重要蔬菜,在我国也有很大的栽培面积,利用雄性不育杂交制种在甘蓝生产上具有重要的意义。但育性作为一个发育性状涉及到雄蕊形态建成及花粉形成中的大量结构与调节基因,任何基因的结构或者表达的变异均会直接影响小孢子的发育而导致雄器败育,因而研究起来非常困难。虽然已经有很多的生理生化、细胞学、分子生物学的研究结果报道,但是要彻底阐明小孢子发育的分子机理尚需要对育性相关基因进行深入广泛的研究,以最终明确各基因间以及基因与雄蕊阶段性发育间的相互关系。
     本研究利用与甘蓝显性细胞核雄性不育相关的差异表达片段(TDFs Transcript Derived Fragments),通过电子克隆的策略获得了基因BoRALFL1、BoPMEI和BoDHAR的全长序列,并构建了BoRALFL1和BoPMEI基因的正、反义植物表达载体,经农杆菌介导对菜心(Brassica campestris L.var. Parachinesis)与拟南芥(Arabidopsis thaliana)进行了遗传转化,以探讨其在植株雄蕊发育中的作用;同时克隆了三个基因的5’端非编码区序列,构建了基因BoRALFL1和BoPMEI 5’端序列的植物表达载体,利用瞬时表达系统与稳定表达系统对其启动子活性进行了研究;利用原核表达系统探讨了BoPMEI蛋白的表达、纯化与蛋白活性分析。获得的主要结论如下:
     1.快速碱化因子BoRALFL1基因(GenBank序列登录号DQ059310)的cDNA序列全长490 bp,开放阅读框ORF 240bp,编码79个氨基酸。经序列分析,编码蛋白存在长度为28个氨基酸的前导信号肽与多个磷酸化位点,与同源基因RALFL8核酸序列在88 bp上有82%的相似性,推导的氨基酸序列在74个氨基酸上存在56%的相似性;不同植物来源的RALFL蛋白氨基酸序列N-端差异大,C-端序列具有较高的保守性,四个半胱氨酸残基在所有RALF蛋白中位置保守。
     果胶甲酯酶抑制蛋白基因BoPMEI(GenBank序列登录号DQ116449)的cDNA序列长750 bp,与同源基因AT1G10770在核酸序列与氨基酸序列上分别存在81%与73.8%的相似性。该基因编码一个含有169个氨基酸的蛋白多肽,分子量18.323 kD。预测分析表明N-端存在信号肽(32个氨基酸)与一个跨膜序列结构;可能参与成熟蛋白正确折叠的4个保守半胱氨酸残基在所有的PMEI氨基酸序列中位置高度保守。
     脱氢抗坏血酸还原酶基因BoDHAR的DNA序列长842 bp,含有两个内含子(+59 bp~
Crop of the Cabbage group are worldwide cultivated vegetables. Hybrid seeds are adopted widely in Brassica species for its great contribution on the production enhancement. Male sterility is a very useful alternative strategy in hybrid seeds production in avoiding the labor consuming manual cross-pollination, and it is also advantage on the seed quality assurement. In recent years, although an increasing number of studies have been focused on characterization of microspores and pollen formation from cytological and biochemical aspects, and the description of the abnormal phenomenon in meiosis and microspore development have been reported, knowledge about molecular aspects of pollen abortion is still rather limited. Cloning and characterization of the genes related to male sterility maybe a useful tool in investigating the molecular mechanisms of microsporogenesis.
     Three different TDFs (Transcript Derived Fragments) from male sterile and fertile lines of cabbage were used to clone their full length cDNA sequences as querying probes. The sense and anti-sense sequences of genes BoRALFL1 and BoPMEI were used to construct the plant expression vectors, and were transfered into Brassica campestris and Arabidopsis plants by Agrobacterium-mediated method. The functions of these genes in pollen formation were investigated. We also cloned the 5’untranscription regions of genes BoRALFL1 and BoPMEI, constructed two plant expression vectors with 5’sequences as promoters, and analyze the promoter activity of these sequences with transient and stability expression systems. Highly efficient expression, purification of recombinant protein BoPMEI and its activity against enzyme PME was performed. Main conclusions are listed as follows:
     1. The cDNA sequence of gene BoRALFL1 (GenBank accession number DQ059310 ) was 490 bp in length, and contain an 240 bp obvious open reading frame (ORF) , which encodes a 79 amino acids peptide. Homologous analysis shows that the amplified cDNA has 82% identity on the nucleotide acid sequence, and 56% identity on the amino acids sequence with Arabidopsis gene RALFL8. Further analysis shows that the pepetide is possibly a preprotein with a signal pepetide and multi-phosphorylation sites, and the C-terminal amino acids of the pepetide are highly conserved among different plant species.
     The full-length cDNA of gene BoPMEI (GenBank accession number DQ116449) was
引文
[1] Nishi S, Hiraoka T. Studies on F1 hybrid vegetable crops(1) Studies on the utilization of male sterility on F1 seed production I. Histological studies on the degenerative process of male sterility in some vegetable crops[J]. Bull.Natl.Inst. Agric. Sci Jpn.Ser. E., 1958, 6:1—41.
    [2] Chiang M S, Crete R. Cytoplasmic male sterility in Brassica oleracea induced by the B. napus cytoplasm—female fertility and restoration of male sterility[J]. Can. J. Plant Sci.,1987,67(3): 891—897.
    [3] Pearson O H. inherited male sterility characters and flavour components from the species cross Brassica nigra(L) Koth X B.oiecera (L) [J]. J Am Soc Hortic Sci. 1972, 97: 398—402.
    [4] Bannerot H L, Boulidard Y, Cauderon J. Transfer of cytoplasmatic male sterility from Raphanus sativus to Brassica oleracea[C]. Proc.Eucarpia Meet. Cruciferae Crop Section, 1974, 25: 52—54.
    [5] 方智远, 孙培田. 极早熟春甘蓝新品种中甘 12 号的选育[J]. 中国蔬菜, 1993, 1:1—2.
    [6] 方智远, 孙培田. 甘蓝显性雄性不育系的选育及其利用[J]. 园艺学报, 1997, 24(3): 249—254.
    [7] 卞春松. 几种不同类型甘蓝雄性不育材料细胞学观察[D]. 北京: 中国农科院硕士论文, 1994.
    [8] 庄木. 甘蓝显性核不育材料 92-438 环境敏感性的初步研究[D]. 北京: 中国农科院研究生院硕士论文, 1996.
    [9] 王晓武, 方智远, 孙培田, 等. 一个甘蓝显性雄性不育基因的 RAPD 标记[J]. 园艺学报,1998, 25 (2): 197—198.
    [10] 刘玉梅. 甘蓝显性细胞核雄性不育的细胞学特征生化基础及其分子标记的研究[D]. 北京: 中国农科院博士论文, 2003.
    [11] 娄平. 甘蓝型油菜显性核不育基因的 AFLP 标记及品种系的 SSR 指纹图谱研究[D]. 北京: 中国农科院博士论文, 2003.
    [12] 李仕贵,周开达,朱立煌. 水稻温敏显性核不育基因的遗传分析和分子标记定位[J]. 科学通报. 1999, 44(5): 955—958.
    [13] Sears E R. Genetics and farming[M]. USDA Year book 1947:245—255.
    [14] 孟金陵,刘定富,罗鹏,等.《植物生殖遗传学》[M]. 北京: 科学出版社, 1995, 147—502.
    [15] 李泽福,夏加发,唐光勇. 植物雄性不育的类型与遗传机制[J]. 安徽农业科学, 2000, 28 (6): 742—746.
    [16] Kaul, M L, H.and Murth, T C. Mutant genes affecting higher plant meiosis[J]. Theoc. Appl. Genet. 1985, 70: 449—466.
    [17] Laser K D and ersten N R. Anatomy and cytology of microsporoenesis in cytoplasmic male sterile angiosperms[J]. Bol Rc. 1972, 38: 427—454.
    [18] Ogura H. Studies on the new male sterility Japanese radish with special reference to the utilization of this sterlity towards the practical raising of hybrid seeds[J]. Mem. Fac. A. Kagoshima University, 1968, 6(2): 39—78.
    [19] Polowick P L Sawhney V K. Microsporogenesis in a normal line and in the Ogu cytoplasmic male-sterile line of Brassica napus[J]. Sex. Plant. Report. 1990, 3: 263—276.
    [20] 冯纯大,张金发,刘金兰,等. 棉花雄性不育性研究进展[J]. 棉花学报,1998, 10 (4): 168—177.
    [21] 余凤群,傅廷抹.甘蓝型油菜几个雄性不育系花药发育的细胞形态学研究[J]. 武汉植物学研究,l990, 8 (3): 209—216.
    [22] Chaudhury A M. Nuclear genes controlling male fertility[J]. The Plant Cell, 1993, 5: 1277—1283.
    [23] 孙日飞,吴飞燕,司家钢,等. 大白菜雄性不育两用系小抱子发生的细胞形态学研究[J]. 园艺学报,1995, 22 (2 ): 153—156.
    [24] Aarts M G Hodge R, Kalantidis K, et al. The Arabidopsis MALE STERILI7Y protein shares similarity with reductases in elongation/condensation complexes[J]. Plant J., 1997, 12(3): 615—623.
    [25] Breda N, Heather A O, Kenneth A F, et al. Characterization of three male—sterile mutants of Arabidopsis thaliana exhibiting alterations in meiosis[J]. Sex Plant Report., 1996, 9: 1—16.
    [26] Yang, M, He Y, Lodhi M, et al. The Arabidopsis SKPI-LIKE1 gene is essential for male meiosis and may control homologue separation[J]. Proc. NatI Acad. Sci. 1999, 96, 11416—11421.
    [27] Albertsen M C, Phillips R L. Developmental cytology of 13 genetic male-sterile loci in maize[J]. Can J Genet. Cvtol., 1981, 23:195—208.
    [28] Regan S M, Moffatt B A. Cytochemical analyses of pollen development in wild-type Arabidopsis and a male-sterile mutant[J]. Plant Ce11, 1990, 2: 877—889.
    [29] 利容千. 几种农作物雄性不育的细胞学研究[J]. 武汉大学学报(自然科学版), 1978 (1): 83—96.
    [30] 季良越, 季洪强, 罗福和, 等. 玉米基因雄性不育系(ms2/ms2)小抱子败育的细胞学研究作 物学报[J]. 1997, 23 (5 ): 545—548.
    [31] 夏涛. 植物雄性不育资源的开拓[J]. 世界农业, 1993, 11: 20—21.
    [32] 黄少白,周燮. 水稻细胞质雄性不育与 GA4 和 IAA 的关系[J]. 华北农学报,1994, 9 (3 ): 16—20.
    [33] Roni A Davies P J. The induction of vascular tissue by auxin and cytokinin, In P J Devies, eds, Plant hormones and their role in plant Growth and Development[M]. Dordrecht: Martimus Nijhoff Publishers. 1987, 363—373.
    [34] 朱玉英,龚静,吴晓光等. 青花菜细胞质不育系叶绿素和内源激素含量变异初探[J]. 上海农业学报,2002, 18(4): 42—46.
    [35] Thoma S, Hecht U, Kippers, A, et al. Tissue—Specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis[J]. Plant Physiol., 1994, 105: 35—45.
    [36] Muthukrishnan S, Chandra G R, Maxwell E S. Hormonal control of a amylase gene expression in barley[J]. J. Biol. Chem., 1983, 258: 2370—2375.
    [37] 孙日飞,方智远,张江,等. 萝卜胞质大白菜不育系的生化分析[J]. 园艺学报, 2000, 27(3): 187—192.
    [38] Sawhney V K, Shukla A. Male Sterility in Flowering Plants: Are Plant Growth Substances Involved? [J]. Amer J Bot, 1994, 81(12): 1640—1647.
    [39] Amit hukis A, Sawhmey V, K. Abscisic acid: one of the factors affecting male sterility in Brassica Napus[J]. Physiol. Plant, 1994, 91: 522—528.
    [40] 张明方,陈竹君,汪炳良,等. 榨菜胞质雄性不育系和保持系花器发育过程中内源激素变化[J].浙江农业大学学报,1997, 23 (2 ): 154—157.
    [41] Clement C, Pacini E, Audran J C. anther and pollen from biology to biotechnology[M]. Berlin:Springer-Verlag Berlin Heidelberg, 1999, 16l—174.
    [42] Worrall, D, Hird, D L, Hodge R, et al. premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco[J]. Plant Cell, 1992, 7: 759—771.
    [43] Roberts M R, Robson F, Foster G D et al.. A Brassica napus mRNA expressed specifically in developing microspores[J]. Plant mot. Boil., 1991, 17: 295—299.
    [44] McCormick S. Male gametophyte development[J]. Plant Ce11, 1993, 5: 1265—1275.
    [45] 董庆华,利容千,王建波. 萝卜雄性不育系花药发育组织化学的初步研究[J]. 武汉植物学研究,1997, 15(1): 10—14.
    [46] 王淑华, 冯辉, 佟景春. 大白菜雄性不育可育株花蕾生理生化特性[J]. 沈阳农业大学学报,1998, 29(2): 132—137.
    [47] 吕洪飞,余象燃,李平等. 杉木雄性不育株与可育株小饱子囊发育的电镜研究[J]. 武汉植物学研究,1997, 15 (2 ): 97—102
    [48] 刘宗松. 不育花药的生理生化研究进展与展望[J]. 植物生理学通讯. 1987, 2: 16—21.
    [49] Kaul M L H Male sterility in higher plants[M]. Berlin:Springer-Verlag Berlin Heidelberg, 1988.
    [50] Laser K D and NR Lersten. Anatomy and cytology of microsporogenesis in cytoplasmic male ster— ile angiosperms[J]. Bol. Rc. 1972, 38: 427—454.
    [51] 阎隆飞,刘国琴,肖兴国. 从花粉肌动蛋白到作物胸性不育科学通报[J]. 1999, 44 (23): 2471—2475.
    [52] 蒋梁材,刘启鑫. 甘蓝型油菜雄性不育系与可育系花蕾 RNA、氨基酸含量分析[J]. 四川农业大学学报,1994, 12(1): 49—55.
    [53] 张明永,梁承邺,黄毓文等. 水稻细胞质雄性不育系与保持系的呼吸途径比较[J]. 植物生理学报,1998,24 (1): 55—58.
    [54] Musgrave M G, Antamovics J, Siedow J N. Is male-sterility in plants related to lack of cyanide—resistant respiration in tissues[J]. Plant Sci. 1986, 44: 7—11.
    [55] 黄厚哲,娄卜林. 植物生长素亏损与雄性不育的发生[J]. 厦门大学学报(自然学版),1984,23 (2) 82—87.
    [56] 李又华,杨退,罗志刚,等. 青花菜雄性不育系与保持系花蕾同工酶分析[J]. 华南农业大学学报. 2003, 24 (1): 13—15.
    [57] 王永勤,曹家树,虞慧芳,等. 白菜核雄性不育两用系生理生化特性的分析[J]. 园艺学报,2003, 30 (2): 212—214.
    [58] Bell J M, Tchiagam J B N, Ngalle H B. Genetic mapping of Ms8 male sterility in phaseolus vulgacis L [J]. cashiers agric. 1997, 6(1): 11—14.
    [59] Maan S S. Genetic analysis of male fertility restoration in wheat: V Anomalous results of a monosomic analysis[J]. Crop Sci., 1992, 32: 28—35.
    [60] Zhang Q F, Shen B E, Dai X K. Using bulked extremes and recessive class to map genes for photoperiod—sensitive genetic male sterility in rice [J]. Proc Nad Acad Sci USA.1994, 91: 8675—8679.
    [61] Jean M., Brown G G, Landry B S. Targeted mapping approaches to identify DNA markers linked to the R1 restorer gene for the "Polima" CMS of canola (Brassica napes L.) [J]. Theor Appl Genet, 1998, 97(3): 431—438.
    [62] 涂金星,傅廷栋,郑用琏. 甘蓝型油菜核不育材料 90-2441A 的遗传及其等位性分析[J]. 华中农业大学学报,1997, 16 (3 ): 255—258.
    [63] 王晓武,方智远,孙培田. 利用分子标记 EPT11 辅助廿蓝显性雄性不育基因转育[J]. 中国蔬菜,1998, (12): 1—4.
    [64] 黄和艳. 甘蓝 Brassica Oleracea var. Capitata 显性雄性不育基因分子标[D]. 北京: 中国农科院硕士论文, 2005.
    [65] Bedinger, P. The remarkable biology of pollen[J]. Plant cell, l 992, 4(8): 879—887.
    [66] Aarts, M G., Dirkse, W G, Stickema, W J. Transposon tagging of a male sterility gene in Arabidopsis[J]. Nature, 1993, 363: 715—717.
    [67] Aarts M, keijzer C J, et al. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility[J]. Plant Cell, 1995, 7: 2115—2127.
    [68] Paul B, Alison R W, Barbara A,et al.. Naturally occurring point mutationconfers broad range tolerance to herbicidesthat target acetolactate synthase[J]. J. Biol. Chem., 1992, 270: 17381—1738.
    [69] Klimyuk, V L, Jones, J D. AtDMCI,the Arabidopsis homologue of the yease DMC1 gene: characterization, transposon-induced alleic variation and meiosis-associated expression[J]. Plant J., 1997, 11(1): 1—14.
    [70] Bai X, Peirson B N, Dong F, Xue C, et al. Isolation and characterization of SYNI,a RAD21—like gene essential for meiosis in Arabidopsis[J]. Plant Cell, 1999, 11 (3): 417—430.
    [71] Bhatt A M, Lister C, Page T, et al. The DIFI gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the RECB/RAD21 cohesin gene family[J]. The Plant J, 1999, 19: 463—472.
    [72] Alice Y, Cheung—Wu H M. Over expression of an Arabidopsis fotmin stimulates supernumerary actin cable formation from pollen tube cell membrane[J]. The Plant Cell, 2004, 16: 257—269.
    [73] Schneidereit R J, Scholz—Starke J, Buttner M. Functional characterization and expression analysis of the glucose—specific AtSTP9 monosaccharide transporter in pollen of Arabidopsis[J]. Plant Physiol., 2003, 133 (1): 182—190.
    [74] Sorensen, A M., Krober S, Unte U S,et al. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor[J]. Plant J., 2003, 33(2): 413—423.
    [75] Scholz—Starke J, Buttner M, Sauer N. AtSTP6, a new pollen—specific H+—monosaccharide symporter from Arabidopsis[J]. Plant Physiol, 2003, 131 (1): 70—77.
    [76] Gupta P K, Balyan H S, Leroy P. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat[J]. Theor Appl Genet, 2002, 105: 413—422.
    [77] Gaillard C, Moffatt BA, et al. male sterility associated with APRT deficiency in Arabidopsis thaliana results from a mutation in the gene APRTl [J]. Mol Gen Genet, 1998, 257: 348—353.
    [78] Thorlby G J, Shlumukov L, Vizir I Y, et al. Fine—scale molecular genetic (RFLP) and physical mapping of a 8.9cM region on the top arm of Arabidopsis chromosome 5 encompassing the male sterility gene, msl[J]. Plant J, 1997, 12: 471—479.
    [79] Xie D X, Feys B, James S,et al.. COI1: An Arabidopsis gene required for jasmonate—regulated defense and fertility[J]. Science, 1998, 280:1091—1094.
    [80] Jack T, Brockman L L, Meyerowitz, E M. The homeotic gene APETALA 3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens[J]. Cell, 1992, 68:683—697
    [81] Yang W C, Venkatesan Genetics of gametophyte biogenesis in Arabdopsis[J]. Curent Opinion Plant Biology, 2000, 3: 53—57.
    [82] Bucciaglia P A, Zimmermann E, Smith A C. Functional analysis of a beta-l,3-glucanase gene (Tagl) with anther—specific RNA and protein accumulation using antisense RNA inhibition[J]. J PlantPhysiol., 2003, 160 (11): 1367—1373.
    [83] Steiner C, Bauer T, Amrhein N, et al. Two novel genes are differentially expressed during early germination of the male gametophyte of Nicotiana tabacum[J]. Biochem Biophys Acta, 2003, 1625 (2): 123—133.
    [84] Voronin V, Aionesei T, Limmongkon A, et al. The MAP kinase NtMEK2 is involved in tobacco pollen germination[J]. FEBS Lett, 2004, 27: 86—90.
    [85] Chen, C, Marcus A, Li W, et al. The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis[J]. Development, 2002, 129(10): 2401—2409.
    [86] Koltunow A M, Truettner J, Cox K H, et al. Different temporal and spatial gene expression patterns occur during anther development[J]. Plant Ce11, 1990, 2:1201—1224.
    [87] Hihara Y, Hara C, Uchimira H. Isolation and characterization of two cDNA clone for mRNAs that are abundantly expressed in immature anthers of rice (Oryza saliva L.) [J]. Plant Mol. Biol., 1996, 30: 1180—1193.
    [88] Yokoi S, Tsuchiya T, Toriyama K, et al. Tapetum—specific expression of the Osg6B promoter-3-glucuronidase gene in transgenic rice[J]. Plant Cell Rep, 1997, 16: 363—367.
    [89] Jeon J S, Chung Y Y, Lee S, et al. An G Isolation and characterization of an anther—specific gene, RA8, from rice (Oryza saliva L.) [J]. Plant Mol Biol, 1999, 39: 35—44.
    [90] Yoshikawa M, Yang G, Kawaguchi K, et al. Expression analysis of beta—tubulin isotype genes in rice[J]. Plant Cell Physiol, 2003, 44 (I1): 1202—1207.
    [91] 米志勇,王树生,吴乃虎.水稻低分子量 GTP 结合蛋白基因 osTACD 的分离[J]. 科学通报, 2000, 45(19 ): 2047—2055
    [92] Tsechiya T, Toriyama K, Ejiri S. et al. Molecular characterization of rice genes specifically expressed in the anther tapetum[J]. Plant Mol Biol., 1994, 26: 1734—1746.
    [93] Twell D, Rod Wing, Judy Yamaguchi et al. Genes expressed of an anther—specific gene from tomato[J]. Mol Gen Genet.,1989, 217: 240—245.
    [94] Stratford S, Barne W, Hohorst D L, et al. A leucine—rich repeat region is conserved in pollen extension—like (Pex) proteins in monocots and dicots[J]. Plant Mol Biol, 2001, 46 (1): 43—56.
    [95] Muschietti J, Eyal Y, and McCormick S. Pollen tube localization implies a role in pollen—pistil interactions for the tomato receptor—like protein kinases LePRK2[J]. The Plant Cell, 1998, 10 (3): 319—330.
    [96] Kim H U, Cotter R, Johnson S, et al. New pollen—specific receptor kinases identified in tomato, maize and Arabidopsis: the tomato kinase shows overlapping but distinct localization patterns on pollen tube[J]. Plant Mol Biol, 2002, 50 (1): 1—I6.
    [97] Riggs C D, Zeman K, Deguzman R. Antisense inhibition of a tomato meiotic proteinase suggests functional redundancy of proteinases during microsporogenesis[J]. Genome, 2001, 44 (4): 644—650.
    [98] Filichkin S A, Leonard J M, Monteros A, et al. A novel endo-(beta)-mannanase gene in tomato LeMAN5 is associated with anther and pollen development[J]. Plant Physiol, 2004, 134(3):1080—1087.
    [99] Albani D, Altosaar I, Arnison P G et al, Characterization of a pollen—specific gene family from B. napus which is activated during early microspore development[J]. Plant Mol Biol, 1990, 15: 605—622.
    [100] Brown S M, Crowch M L. Characterization of a gene family abundantly expressed in Oenothera Organensis pollen that shows sequence similarity to polygalacturonase[J]. Plant Ce11, 1990, 2: 263—274.
    [101] Mascarenhas J P. Gene activity during pollen development. Ann. Rev. Plant Physiol[J]. Plant Mol. Biol., 1990, 41: 317—338.
    [102] Rogers H J, Harvey A, Lonsdale D M. Isolation and characterization of a tobacco gene with homology to pectatelyase, which is specially expressed during microsporogenesis[J]. Plant Mol Biol, 1992, 20: 493—502.
    [103] Roberts M R, Foster G D, Blundell R P, et al. Gametophytic and sporophytic expression of an anther—specific Arabidopsis thaliana gene[J]. Plant J., 1993, 3(1): 111—120.
    [104] Thangavelu M, Belostotsky D, Bevan M W, et al. Partial characterization of the Nicotiana tabacum actin gene family: evidence for pollen specific expression of one of the gene family member[J]. Mol Gen Genet, 1993, 240: 290—295
    [105] Kim H U, Cotter R, Johnson S, et al. New pollen—specific receptor kinases identified in tomato, maize and Arabidopsis: the tomato kinase shows overlapping but distinct localization patterns on pollen tube[J]. Plant Mol Biol, 2002, 50 (1): 1—16.
    [106] 王新力,彭学贤. 香焦果实成熟基因 ACOl 启动子区的克隆及其功能初探[J]. 2001, 17 (4) : 428—431.
    [107] Goldman M H S, Goldberg R B, Mariani C. Female sterile tobacco plants are produced by stigma-specific cell ablation[J]. EMBO Journa1, 1994, 13(13): 2976—2984.
    [108] Paul B, Alison R W, Barbara A, et al.. Naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase[J]. J. Biol. Chem., 1992, 270: 17381—1738.
    [109] 张爱民,肖兴国,聂秀玲. 中国的植物转基因雄性不育研究[J]. 中国科学基金,2000, 3: 132—135.
    [110] 彭仁旺,王峻岭. 表达 barstar 基因及 bar 基因的转基因油菜的研究遗传学报[J]. 1998, 25(1): 74—79.
    [111] 刘大文,戴景瑞. 转 Zm13-Barnase 基因玉米的获得及其花粉育性研究[J]. 植物学报, 2000, 42(6): 611—615.
    [112] Hemould M, Suharsono S, Litvak S. Male sterility induction in transgenic tobacco plants with an unedited apt9 mitochondria gene from wheat[J]. Proc. Natl Acad. Sci. USA,1993,90: 23—70.
    [113] Van der Meer, Stam M E, van Tunen A J, et al. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility[J]. Plant Cell, 1992, 4: 253—262.
    [114] 黄科, 曹家树, 余小林, 等. CYPB6MF 反义基因转化获得青花菜雄性不育植株[J]. 中国农业科学, 2005, 38(1): 122—127.
    [115] 张明方, 向庆宁, 应铁进, 等. 反义乙烯受体 LeFTR2 基因对番茄的转化和功能分析[J]. 农业生物技术学报, 2003, 11(2):144—147.
    [116] 钟军,李拘,官春云. 芸墓属作物的遗传转化[J]. 生命的化学. 2002, 22 (6): 555—559.
    [117] 王凌健,倪迪安,王光运, 等. 青菜(Brassica campestris ssp. Chinensis L.))组织培养和转化体系的初步建立[J]. 实验生物学报,1999,32 (1): 990
    [118] 卫志明,黄健秋. 甘蓝下胚轴的高效再生体系和农杆菌介导 Bt 基因转化甘蓝[J]. 上海农业学报,1998, 14 (2): 11—18.
    [119] Yang, M, He Y, Lodhi M, et al. The Arabidopsis SKPI-LIKE1 gene is essential for male meiosis and may control homologue separation[J]. Proc. Nat Acad. Sci. USA, 1999, 96, 11416—11421.
    [120] 张鹏,凌定厚. 提高菜心离体植抹再生频率的研究[J]. 植物学报. 1995, 37(11): 902.
    [121] 张鹏,凌定厚.硝酸银与脱落酸相配合影响菜心离体培养之植株再生方式的组织学研究[J]. 热带亚热带植物学报. 1996, 4(1): 71—76.
    [122] Chi G L, Lin W S, Lee J E. Role of polyamines on de novo shoot morphogenesis from cotyledon of Brossica campestris ssp. Pekinensis (Lour) Olsson in vitro[J]. Plant Cell Reports. 1994, 13: 323.
    [123] 徐淑平, 卫志明, 黄健秋. 青菜的高效再生和农杆菌介导 B.t.及 CpT1 基因的转化[J]. 植物生理与分子生物学学报, 2002, 28(4): 253—260.
    [124] Wahlroosa T, Susia P, Tylkinab L, et al. Agrobacterium–mediated transformation and stable expression of the green fluorescent protein in Brassica rapa[J]. Plant Physiology and Biochemistry, 2003, 41: 773–778.
    [125] Prem L, Bhalla, Smith N. Agrobacterium tumefaciens—mediated transformation of cauliflower, Brassica oleracea var. botrytsi[J]. Molecular Breeding, 1998, 4: 531—541.
    [126] 程振东,卫志明.根癌农杆菌对蓝型油菜的转化及转基因植的再生[J]. 植物学报.1994, 36 (9): 657—663.
    [127] 薛红卫,卫志明. 通过 PEG 法转化甘蓝获得转基因植株[J]. 植物学报,1997, 39(1): 28—33.
    [128] 薛红卫,卫志明. 转化脂介导甘蓝转化获得转基因植株[J]. 科学通报, 1996, 41(4): 358—360.
    [129] Feldmann K A, Marks M D. Agrobacterium—mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach[J]. Mol Gen Genet, 1987, 208: 1—9.
    [130] Bechrold N, Ellis J, Pelletier Q. In plant agrobacterium—mediated transformation gene transfer by infiltration of adult Arabidopsis thaliana plants[J]. C R Acad Sci Paris, Life sciences. 1993, 316: l 194—1199.
    [131] 徐光硕, 饶勇强, 陈雁, 等. 用 in planta 方法转化甘蓝型油菜[J]. 作物学报, 2004, 30(1): 1—5.
    [132] Liu F, Cao M Q, Yao L, et al.. In planta transformation of pakchoi ( Brassica campestris L. ssp. Chinensis) by infiltration of adult plants with Agrobacterium[J]. Acta Hort, 1998 , 467 :187 —192.
    [133] 姜翌,何玉科. 甘蓝转生长素基因系自交后代叶球和根系的发育特征[J]. 西北植物学报, 1998, 18 (2 ): 223—228.
    [134] Babic V , Datla R S , Scoles G J , et al. Development of an efficient Agrobacterium - mediated transformation of Brassica napus winter cultivars [J ] . Plant Cell Reports , 1998 , 17: 183—188.
    [135] Umaballava Mohapatra, Matthew S, Mccabe J, et al. Expression of the bar gene confers herbicide resis2tance in transgenic lettuce [J ] . Transgenic Research , 1999, 8 : 33—44.
    [136] 黄 骥, 王建飞, 张红生, 等. 水稻葡萄糖磷酸脱氢酶 cDNA 的电子克隆[J]. 遗传学报, 2002, 29 (11) : 1012~1016
    [137] Pearce G, Moura D S, Stratmann J, et al.. RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development[J]. Proc. Natl. Acad. Sci. , 2001, 98: 12843~12847.
    [138] Haruta M, Constabel P C. Rapid alkalinization factors in poplar cell cultures.peptide isolation, cDNA cloning, and differential expression in leaves and methyl jasmonate-treated cells[J]. Plant Physiology, 2003, 131: 814~823.
    [139] Ryan, C A, Pearce, G. Polypeptide hormones[J]. Plant Physiol, 2001, 125: 65—68.
    [140] Clarence A, Ryan G P, Justin S, et al.. Moura polypeptide hormones[J]. The Plant Cell, Supplement2002, 251~264.
    [141] Amagai M, Ariizumi T, Endo M, et al.. Identification of anther—specific genes in a cruciferous model plant, Arabidopsis thaliana by using a combination of Arabidopsis macroarray and mRNA derived from Brassica oleracea[J]. Sex Plant Reprod, 2003, 15: 213– 220.
    [142] Preuss D, Rhee S, Davis R. Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes[J]. Science, 1994, 264: 1458–1460.
    [143] Jiang L X, Yang S L, Xie L F, et al.. VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the arabidopsis style and transmitting tract[J]. The plant cell, 2005, 17: 584– 596.
    [144] 王永勤, 余小林, 曹家树. 白菜小孢子发育相关基因 BcMF3 的分离及序列分析[J]. 遗传学报, 2004, 31(11): 1302—1308.
    [145] Daveym W , Monta Gum V , In ZéD, et al. Plant L—ascorbic acid: chem istry, function, metabo lism, bioavailability and effects of processing. J. Sci. Food Agric. , 2000, 80: 825— 860
    [146] Wittink F R A, Knuiman B, Derksen J, et al. The pollen—specific gene Ntp303 encodes a 69—kDa glycoprotein associated with the vegetative membranes and the cell wall. Sexual plant reproduction, 2000, 12(5): 276—284.
    [147] Steven J, Clough, Andrew F Bent. Floral dip: a simplified method for Agrobacterium—mediated transformation of Arabidopsis thaliana. The plant journal, 1998, 16(6): 735—743.
    [148] Addie N O, John M, Karen S. Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs. In Silico Biology, 2002, 2: 39—44.
    [149] Wolf S, Rausch G S, Rausch T, Greiner S. Identification of pollen—expressed pectin methylesterase inhibitors in Arabidopsis. FEBS letters, 2003, 555: 551– 555.
    [150] 周小云, 陈信波, 向建华. RNAi 技术及在植物功能基因组研究中的应用. 生物学杂志, 2005, 22(2): 38—40.
    [151] Claudia V, Tamara K, Klaus G, et al. Anti—sense expression of putrescine N—methyltransferase confirms defensive role of nicotine in Nicotiana syl_estris against Manduca sexta. Chemoecology, 2001, 11: 121—126.
    [152] 张桂华, 巩振辉, 张广辉. 农杆菌介导的芸薹属作物遗传转化研究进展[J]. 西北农业大学学报, 2000, 28(2): 80—84.
    [153] 梁慧敏, 夏阳, 孙仲序, 等. 根癌农杆菌介导苜蓿遗传转化体系得建立[J]. 农业生物技术学报, 2005, 13(2): 152—156.
    [154] Chalabarty R, Viswakarma N, Bhar S R, et al. Agrobacterium—mediated transformation of cauliflower: optimization of protocol and development of Bt—transgenic cauliflower. Journal of Biosciences, 2002, 27(5): 495—502.
    [155] Zhang F L, Takahata Y, Watanabe M, et al. Agrobacterium—mediated transformation of cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis)[J]. Plant Cell Reports, 2000, 19: 569–575.
    [156] Wahlroosa T, Susia P, Tylkinab L, et al. Agrobacterium–mediated transformation and stable expression of the green fluorescent protein in Brassica rapa[J]. Plant Physiology and Biochemistry, 2003, 41: 773–778.
    [157] Matilde J E, Pascual Pe′rezb, Pere P. Expression of the promoter of HyPRP, an embryo—specificgene fromZea mays in maize and tobacco transgenic plants[J]. Gene, 2005, 356: 146—152.
    [158] Ho W J, Chae W L, Byung K H. Isolation and functional analysis of a pepper lipid transfer protein III (CALTPIII) gene promoter during signaling to pathogen, abiotic and environmental stresses[J]. Plant science, 2006, 170: 258—266.
    [159] 于秋菊, 杜丽, 胡鸢雷, 等. 油菜质膜水孔蛋白BnPIP1 基因启动子区的克隆及初步的功能分析[J]. 中国科学(C 辑), 2002, 32(6): 519—526.
    [160] 任茂智, 陈全家, 李丽. 一个棉花生殖器官优势表达基因的启动子功能分析[J]. 中国科学(C 辑), 2005, 35(1): 22—28.
    [161] Mao zhiren, Quan Jiachen, Li li, Rui zhang, San duiguo. Functional analysis of nodulin—like promoter in transgenic cotton plants[J]. Journal of Integrative Plant Biology. 2005, 47(10): 1254—1259.
    [162] Nitz l, Berkefeld H, Puzio P S, Grundler F M. Pyk10, a seedling and root specific gene and promoter from Aribidopsis thaliana[J]. Plant Sci. 2001, 161(2):337—346.
    [163] 王关林,方宏筠. 植物基因工程(第二版)[M]. 北京: 科学出版社, 2004.
    [164] Raiola A, Camardella L, Giovane A, et al. Two Arabidopsis thaliana genes encode functional pectin methylesterase inhibitors[J]. FEBS letters, 2004, 557: 199—203.
    [165] Odd A K, Linda R, Live J, et al.. Characterization of a prokaryotic haemerythrin from the methanotrophic bacterium Methylococcus capsulatus(Bath) [J]. FEBS Journal, 2005, 272: 2428—2440.
    [166] 谷红. PRRS 病毒 ORF2~5 基因的原核表达及重组蛋白的纯化[D]. 北京: 中国农业大学, 2002.
    [167] Weng Y P, Hsu F C, Yang W S, et al.. Optimization of the overexpression of glutamate mutase S component under the control of T7 system by using lactose and IPTG as the inducers[J]. Enzyme and Microbial Technology, 2006, 38: 465—469.
    [168] 汤鸣强, 谢必峰. 果胶酶不同组分的酶学性质研究[J]. 福建化工, 2004, 1: 13—15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700