用户名: 密码: 验证码:
起伏地表条件下的地震波走时与射线路径计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今世界各地,尤其是在中国的西部地区,大量与石油、天然气及矿产等资源相关的地震勘探工作在起伏地表地区进行。与平原地区的地震勘探相比,在山地开展地震勘探要面临一些特殊问题,例如:数据采集困难且采集到的数据质量差、散射干扰严重、静校正不准、成像效果不好甚至不成像等。造成这些问题的主要原因有:①起伏地表地区复杂的地质条件造成地震波场的结构也很复杂,而长期以来人们对这一特定区域地震波的传播规律认识不够深入,很多理论和实际问题还没有得到很好的解决;②由于地质条件的复杂和缺乏大量的正演模拟数据的支持,起伏地表地区地震数据采集的有效性和针对性相对较差;③传统的地震勘探理论和处理技术都是基于地表为水平的假设,对于起伏地表问题常采用静校正来处理,然而在地表剧烈起伏地区即使采用了细致的静校正技术也很难取得好的成像效果。
     解决上述问题的一个基本途径是增加对地震波场的认识,其主要方法有两种,即波动方程数值模拟和射线追踪。本文选择后者来研究该问题,主要研究对象是起伏地表条件下的地震波走时与射线路径的计算问题,主要研究内容包括:
     ①为了给起伏地表条件下的地震波走时与射线路径计算寻找合适的算法,首先对常规走时与射线路径的计算方法进行了分析及对比:分别阐述了两点射线追踪法、最短路径射线追踪法、有限差分法、线性插值法、波前构建法以及其它方法的基本原理、发展历程等问题,并基于相关文献对这些算法进行了综合对比,最后基于对比的结果选择快速推进法和线性插值法作为本文研究问题的算法基础。
     ②针对二维起伏地表条件下地震波走时的计算问题,对常规快速推进法进行改进,提出了阶梯网格迎风差分法和不等距差分法:阶梯网格迎风差分法运用阶梯网格建立起伏地表模型,采用改进后的迎风差分格式进行局部走时计算。不等距差分法运用不等距网格建立起伏地表模型,通过在迎风差分格式中引入不等距差分格式并综合应用Huygens原理和Fermat原理进行局部走时计算。两种方法在整体实现时均采用起伏地表条件下的窄带技术作为波前扩展方式。计算精度分析表明两种算法均能达到很好的计算精度。
     ③为了计算二维起伏地表条件下的地震波走时,对常规线性插值法进行改进,提出了一种混合网格线性插值法:对常规线性插值法的局部实现策略和波前扩展方式均进行一定程度的改进,然后采用混合网格建立起伏地表模型,采用三角网格和正方形网格中的插值公式进行局部走时计算,并利用起伏地表条件下的窄带技术作为波前扩展方式。计算精度分析表明混合网格线性插值法能够达到很好的计算精度。
     ④对二维起伏地表条件下的曲网格法进行了初步的研究:推导了坐标变换法和正交贴体网格法在计算空间中的程函方程,给出了求解这两个方程的数值实现策略,并对坐标变换法进行了初步的计算精度分析,最后讨论了曲网格法存在的一些技术难点。
     ⑤对②、③、④中提出的几种二维起伏地表条件下的地震波走时算法进行了对比分析,并给出了相应的计算实例:首先对常规快速推进法和线性插值法进行精度和效率的对比,然后对笛卡尔坐标系下的三种算法进行对比,最后对曲网格法和笛卡尔坐标系下的算法进行了对比。
     ⑥提出二维起伏地表条件下的地震波射线路径的计算方法,并对算法进行了相应的计算精度、稳定性及模型的适应性分析:起伏地表条件下的地震波射线路径计算是从已计算出的起伏地表条件下的地震波走时分布信息出发利用线性插值法来完成的。通过算法分析和具体的计算实例表明算法能达到很好的计算精度,同时算法也能稳定地适应任意起伏地形和复杂介质模型。
     ⑦提出三维起伏地表条件下的地震波走时计算方法,并给出了算法的稳定性及计算精度分析和计算实例:采用不等距网格建立三维起伏地表模型,推导了三维不等距网格中的不等距差分公式。算法的稳定性、计算精度及计算实例分析表明基于不等距差分法的三维起伏地表条件下的地震波走时计算方法简单易行且能达到很好的计算精度,同时也能稳定地适应任意的三维起伏地形和复杂介质模型。
     ⑧利用上述③、⑥中提出的起伏地表条件下的地震波走时与射线路径的计算方法,有针对性地计算了起伏地表条件下各种波型的走时与射线路径,并研究了起伏地表条件下的地震波的一些传播规律:利用③中提出的混合网格线性插值法和⑥中提出的射线路径计算方法分别计算了起伏地表条件下初至波、首波、透射波、绕射波、反射波以及多次反射波的走时与射线路径,通过对这些波的走时与射线路径分布情况的分析得出了一些起伏地表条件下地震波的传播规律。
     基于上述研究内容,本论文主要取得了如下研究成果:①提出了一套以阶梯网格迎风差分法、不等距差分法以及混合网格线性插值法为主体的二维起伏地表条件下的地震波走时计算方法,这些方法均能适应二维任意起伏地形和任意复杂介质且兼顾计算精度及效率;②引入曲网格法解决起伏地表问题,建立了曲网格中用于走时计算的基本方程,并提出了相应的数值实现策略,同时还分析了算法在实现时还有待解决的一些技术难点;③提出了一种基于线性插值的起伏地表条件下的射线路径计算方法,该方法能在保证一定计算精度的条件下适应二维任意起伏地形和任意复杂介质;④提出了一种基于不等距差分法的三维起伏地表条件下的地震波走时计算方法,该方法能在保证一定计算精度的条件下适应三维任意起伏地形和任意复杂介质;⑤提出了起伏地表条件下的各种波型的走时与射线路径的计算方案,并得出了一些起伏地表条件下地震波的传播规律。
     综上所述,本论文所做的研究工作和所得出的一些结论及研究成果对于起伏地表地区地震勘探效果的提高有着一定的理论意义和实际价值,同时也有着很广阔的应用前景。
A large number of seismic explorations for petroleum, natural gas, mineral, etc resources are carried out in mountainous regions in current world, especially in western China. Comparing with the seismic explorations in plain, there are some special problems in mountainous regions should be solved, such as:①We have not done some deep enough research on the propagation law of seismic wave in mountainous regions, and many theoretical and practical problems have not been solved for a long time;③There are many difficulties for collecting seismic data, and the quality of the seismic data which is collected in mountainous regions is relatively poor;③The traditional theory of seismic wave and data processing techniques are both based on the assumption that the earth's surface is plane. The static correction is the main data processing technique for treating the undulating earth's surface problems, but it has been shown that most of the effects caused by surface topography cannot be removed by static correction. Specifically, the imaging quality is sometimes still poor, although a careful static correction has been performed.
     A basic way for solving the above problems is to increase the study on the seismic wave field's feature in mountainous regions by the following two main ways: numerical simulation of wave equation and ray tracing. In this paper, we study the methods for calculating the seismic traveltime and raypath under undulating earth's surface condition. The main contents of our thesis as following:
     ①To select the methods which are suitable for solving the irregular surface problem, we review the conventional methods including two-point ray tracing method, shortest path ray tracing method, finite difference method, linear interpolation method, wavefront construction method and the other methods that are used for calculating seismic traveltime and raypath. We also make a comprehensive comparison among these methods. At last, we choose the fast marching method and linear interpolation method as the basis algorithm for our following research works.
     ②For solving the eikonal equation in 2D undulating earth's surface condition, we present two schemes:one is an upwind finite difference scheme with ladder-like grids, and another is an finite difference scheme with non-uniform grid spacing. Specifically, the first scheme use the upwind finite difference scheme with ladder-like grids as the local traveltime formulas, and the second scheme deduce the local traveltime formulas by introducing the finite difference scheme with non-uniform grid spacing into upwind finite difference scheme and by integrated applying the Huygens principle and the Fermat principle. Specifically, the two schemes both use the narrow band technique under undulating earth's surface condition as the wavefront expansion scheme. We analyze the stability and accuracy of the two new methods, and make a conclusion that the two methods both have an unconditional stability, good accuracy, and good adaptability to any 2D rugged terrain and any 2D complex media.
     ③To calculate the seismic traveltime in 2D undulating earth's surface condition, we present a new linear interpolation scheme by improving the conventional linear interpolation method with the hybrid grids that are combined by the triangular and the rectangular grids. This new scheme also uses the narrow band technique under undulating earth's surface condition as the wavefront expansion scheme. We also analyze the stability and accuracy of the new scheme, and make a conclusion that the the new scheme has an unconditional stability, good accuracy, and good adaptability to any 2D rugged terrain and any 2D complex media.
     ④We do a tentative research on the curvilinear grid methods for calculating the seismic traveltime under 2D undulating earth's surface condition. We first deduce some theoretical formulas by coordinate transformation method and orthogonal curvilinear grid method and secondly propose the corresponding numerical implementation schemes for these two curvilinear grid methods. Finally, we discuss the technical difficulties of the curvilinear grid methods in their numerical implementation process.
     ⑤We make a comprehensive comparison among the methods (These methods include an upwind finite difference scheme with ladder-like grids, an finite difference scheme with non-uniform grid spacing, a linear interpolation scheme with hybrid grids, and two curvilinear grid methods) are proposed in our thesis for calculating the seismic traveltime under 2D undulating earth's surface condition, and give some numerical examples:Firstly, we make the accuracy and efficiency comparison between the conventional fast marching method and linear interpolation method. Secondly, we make a comparison among the three methods which are all in the Cartesian coordinates. At last, we make a comparison among the methods which are all in the Cartesian coordinates and the curvilinear grid methods.
     ⑥To calculate seismic raypath in 2D undulating earth's surface condition, we study the methods in various grids base on the linear interpolation scheme. The raypath is calculated by linear interpolation scheme basing on the distribution information of the traveltime. Algorithm analysis and some numerical examples show that the method is proposed here have an unconditional stability, good accuracy, and good adaptability to any 2D rugged terrain and any 2D complex media.
     ⑦For calculating the seismic traveltime in 3D undulating earth's surface condition, we present a 3D finite difference scheme with non-uniform grid spacing. This scheme uses non-uniform grids for building up the 3D topography model, and deducing the local traveltime formulas by introducing the finite difference scheme with non-uniform grid spacing into upwind finite difference scheme. We also analyze the stability and accuracy of the new scheme, and make a conclusion that the new scheme has an unconditional stability and good accuracy, and good adaptability to any 3D rugged terrain and any 3D complex media.
     ⑧To obtain some propagation laws of seismic wave under the undulating earth's surface condition, we study the methods for calculating traveltime and raypath of some types of seismic wave in complex media under undulating earth's surface condition. Here, the seismic wave types include first-arrival, refraction, transmission, diffraction, reflection, multiple reflection, etc.
     Based on the above research, we obtain the following results:①We propose three methods including an upwind finite difference scheme with ladder-like grid, an finite difference scheme with non-uniform grid spacing, and a linear interpolation scheme with hybrid grid for calculating the seismic traveltime under 2D undulating earth's surface condition in the Cartesian coordinates. These methods all have an unconditional stability, good accuracy, and good adaptability to any 2D rugged terrain and any 2D complex media;②We propose two curvilinear grid methods including coordinate transformation and orthogonal curvilinear grids for calculating the seismic traveltime under 2D undulating earth's surface condition and discuss the technical difficulties of the curvilinear grid method in their numerical implementation process;③We present a method for calculating the raypath in various grid types in undulating earth's surface condition basing on the linear interpolation method which has an unconditional stability, good accuracy, and good adaptability to any 2D rugged terrain and any 2D complex media;④We propose a 3D finite difference scheme with non-uniform grid spacing for calculating the seismic traveltime under 3D undulating earth's surface condition, and this method has an unconditional stability, good accuracy, and good adaptability to any 3D rugged terrain and any 3D complex media;⑤ccording to the calculation result from the methods that are used for calculating the traveltime and raypath of some types of seismic wave in complex media under undulating earth's surface condition, we obtain some laws of seismic wave propagation laws under undulating earth's surface condition. The studying works and some conclusions in this thesis are of benefit to deeply research some propagation laws of seismic wave under undulating earth's surface condition, and to prove some reference information for the design of seismic data acquisition system under undulating earth's surface condition. The methods are proposed in our thesis can provide a set of tools for improving the effect of seismic data processing and for presenting some new seismic data processing techniques under undulating earth's surface condition.
引文
[1]孙建国.复杂地表条件下地球物理场数值模拟方法评述.世界地质,2007,26(3):345-362.
    [2]杨旭明.近地表地震波散射的研究及应用[D].成都:成都理工大学信息工程与地球物理系,2002.
    [3]夏竹,张少华,王学军.中国西部复杂地区近地表特征与表层结构探讨[J]石油地球物理勘探,2003,38(4):414-424.
    [4]阎世信,刘怀山,姚雪根.山地地球物理勘探技术[M].北京:石油工业出版社,2000.
    [5]邓志文.复杂山地地震勘探[M].北京:石油工业出版社,2006.
    [6]裴正林.任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟[J].石油地球物理勘探,2004,39(6):629-634.
    [7]熊翥.中国西部地区物探工作的思考[J].石油地球物理勘探,2000,35(2):257-270.
    [8]王雪秋.复杂近地表地震波响应特征研究一以中国西部地区为例[D].长春:吉林大学地球探测科学与技术学院,2009年.
    [9]王雪秋,孙建国.地震波有限差分数值模拟框架下的起伏地表处理方法综述.地球物理学进展,2008,23(1):40-48.
    [10]王雪秋,孙建国,张文志.复杂地表地质条件下地震波数值模拟综述.吉林大学学报(地球科学版).2005,35(S1):12-18.
    [11]Hayashi K, Burns D R, and Toksoz M N. Discontinuous-Grid finite-difference seismic modeling including surface topography [J]. Bull. Seism. Soc. Am., 2001,91(6):1750-1764.
    [12]Robertsson J O A. A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography [J]. Geophysics,1996, 61(6):1921-1934.
    [13]Graves R. W. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite difference [J]. Bull. Seism. Soc. Am.,1996,86(4): 1091-1106.
    [14]Jih R S, McLaughlin K L, Der Z A. Free-boundary conditions of arbitrary polygonal topography in a two-dimensional explicit elastic finite-difference scheme [J]. Geophysics,1988,53(8):1045-1055.
    [15]Pitarka A.3D elastic finite-difference modeling of seismic motion using staggered grids with nonuniform spacing [J]. Bull. Seism. Soc. Am.,1999, 89(1):54-68.
    [16]Liu H L, Prange M, Daube F. Finite-difference modeling of sonic wavefields with a dipping interface [J]. Geophysics,1997,62(4):1270-1277.
    [17]Kaser M, Igel H. Numerical simulation of 2D wave propagation on unstructured grids using explicit differential operators [J]. Geophysical prospecting,2001,49(5):607-619.
    [18]Moczo P, Lucka M, Kristek J, Kristekova M.3D displacement finite differences and a combined memory optimization [J]. Bull. Seism. Soc. Am., 1999,89(1):69-79.
    [19]Aoi S, Fujiwara H.3D finite-difference method using Discontinuous Grids [J]. Bull. Seism. Soc. Am.,1999,89(4):918-930.
    [20]Ohminato T, Chouet B A. A free-surface boundary condition for including 3D topography in the finite-difference method [J]. Bull. Seism. Soc. Am.,1997, 87(2):494-515.
    [21]Wang X M, Zhang H L. Modeling of elastic wave propagation on a curved free surface using an improved finite-difference algorithm [J]. Science in China Ser. Geophysics, Mechanics & Astronomy,2004,47(5):633-648.
    [22]Hestholm S, Moran M, Ketcham S, et al. Effects of free-surface topography on moving-seismic-soure modeling [J]. Geophysics,2006,71(6):T159-T166.
    [23]Hestholm S, Ruud B.2D finite-difference elastic wave modeling including surface topography [J]. Geophysical prospecting.1994,42(5):371-390.
    [24]Hestholm S and Ruud B.3-D finite-difference elastic wave modeling including surface topography [J]. Geophysics,1998,63(2):613-622.
    [25]Hestholm S. Finite-Difference Seismic Wave Modeling including Surface Topography [D]. Houston:Rice University, Department of Geology and Geophysics,1999.
    [26]Tessmer E, Kosloff D, Behle A. Elastic wave propagation simulation in the presence of surface topography [J]. Geophysical Journal International,1992, 108(2):621-632.
    [27]Tessmer E, Kosloff D.3-D elastic modeling with surface topography by a Chebychev spectral method [J]. Geophysics,1994,59 (3):464-473.
    [28]Ruud B, Hestholm S.2D surface topography boundary conditions in seismic wave modeling [J]. Geophysical Prospecting,2001,49:445-460.
    [29]董良国.复杂地表条件下地震波传播数值模拟[J].勘探地球物理展,2005,28(3):187-194.
    [30]王祥春,刘学伟.变换坐标系下相移法起伏地表地震波场延拓[J].地球物理学进展,2005,20(3):677-680.
    [31]Nielsen. P, If F, BergP, et al. Using the pseudospectral technique on curved grids for 2D acoustic forward modeling [J]. Geophysical Prospecting,1994, 42(4):321-341.
    [32]Zhang J. Quadrangle-grid velocity-stress finite-difference method for elastic-wave-propagation simulation [J]. Geophysical journal International, 1997,131(1):127-134.
    [33]Zhang J, Liu T. P-SV-wave propagation in heterogeneous media:grid method [J]. Geophysical journal International,1999,136(2):431-438.
    [34]Kaeser M. Igel H. Numerical simulation of 2D wave propagation on unstructured grids using explicit difference operators [J]. Geophysical Prospecting,2001,49(5):607-619.
    [35]李健,孙建国.起伏地表条件下地震波场数值模拟有限积分变换有限差分法[J].吉林大学学报(地球科学版).2007,37(S1):86-90.
    [36]李健.起伏地表条件下的地震波场数值模拟—有限余弦变换法[D].长春:吉林大学地球探测科学与技术学院,2008年.
    [37]刘宁,孙建国.起伏地表条件下的声波散射数值模拟的积分方程法[J].吉林大学学报(地球科学版),2007,37(S1):61-65.
    [38]Fu L Y, Wu R S. Infinite boundary element absorbing boundary for wave propagation simulations [J]. Geophysics,2000,65(2):596-602.
    [39]Fu L Y, Wu R S. A hybrid BE-GS method for modeling regional wave propagation [J]. Pure appl. geophys,2001,158:1251-1277.
    [40]Fu L Y, Mu Y G, Yang H J. Forward problem of nonlinear Fredholm integral equation in reference medium via velocity-weighted wavefield function [J]. Geophysics,1997,62(2):650-656.
    [41]Fu L Y. Seimogram synthesis for piecewise heterogeneous media [J]. Geophysical journal International,2002,150(3):800-808.
    [42]Fu L Y, Wu R S, Campillo M. Energy partition and attenuation of regional phases by random free surface [J]. Bulletin of the Seismological Society of American,2002,92(5):1992-2007.
    [43]Fu L Y. Numerical study of generalized Lipmann-Schwinger integral equation including surface topography [J].Geophysics,2003,68(2):665-671.
    [44]Zhou H, Chen X F. A new approach to simulate scattering of SH waves by an irregular topography [J]. Geophysical journal International,2006,164: 449-459.
    [45]周红,陈晓菲.不同尺度地形的SH波频率域响应特征研究[J].地球物理学报,2006,49(01):205-211.
    [46]Sun J. True-amplitude weight functions in 3D limited-aperture migration revisited [J]. Geophysics,2004,69 (4):1025-1036.
    [47]Sun J. Limited-aperture migration [J]. Geophysics,2000,65(2):584-595.
    [48]Sun J. On the aperture effect in 3D Kirchhoff-type migration [J]. Geophysical Prospecting,1999,47(6):1045-1076.
    [49]Sun J. On the limited aperture migration in two dimensions [J]. Geophysics, 1998,63(3):984-994.
    [50]Gray S H, May W P. Kirchhoff migration using eikonal equation traveltimes [J]. Geophysics,1994,59(5):810-817.
    [51]杨文采.地球物理反演的理论与方法[M].北京:地质出版社,1997.
    [52]Aki K, Christoffersson A, Husebye E S. Determination of the three-dimensional seismic structure of the lithosphere [J]. Journal of Geophysical Research,1977,82(2):277-296.
    [53]Dziewonski A M, Woodhouse J H. Global images of the Earth's interior [J]. Science,1987,236(4797):37-48.
    [54]Van der Hilst R, Widiyantoro S, Engdahl E R. Evidence for deep mantle circulation from global tomography [J]. Nature,1997,386:578-584.
    [55]Hole J A, Clowes R M, Ellis R M. Interface inversion using broadside seismic refraction data and three-dimensional travel time calculations [J]. Journal of Geophysical Research,1992,97(B3):3417-3429.
    [56]Widiyantoro S, Van der Hilst R. Mantle structure beneath Indonesia inferred from high-resolution tomo graphic imaging [J]. Geophysical journal International,1997,130:167-182.
    [57]Julian B R, Gubbins D. Three-dimensional seismic ray tracing [J]. J. Geophys., 1977,43:95-113.
    [58]Um J, Thurber C. A fast algorithm for two-point seismic ray tracing [J]. Bull. Seism. Soc. Am.,1987,77(3):972-986.
    [59]Prothero W A, Taylor W J, Eickemeyer J A. A fast, two-point, three-dimensional ray tracing algorithm using a simple step search method [J]. Bull. Seism. Soc. Am.,1988,78(3):1190-1198.
    [60]Pereyra V. Two-point ray tracing in general 3-D media [J]. Geophysical Prospecting,1992,40:267-287.
    [61]Grechka V Y, McMechan G A.3-D two-point ray tracing for heterogeneous, weakly transversely isotropic media [J]. Geophysics,1996,61(6):1883-1894.
    [62]Xu T, Xu G M, Gao E G, et al. Block modeling and segmentally iterative ray tracing in complex 3D media [J]. Geophysics,2006,71(3):T41-T51.
    [63]Pereyra V, Lee W H K, Keller H B. Solving two-point seismic-ray tracing problems in a heterogeneous medium [J]. Bull. Seism. Soc. Am.,1980,70(1): 79-99.
    [64]Thurber C H, Ellsworth W L. Rapid solution of ray tracing problems in heterogeneous media [J]. Bull. Seism. Soc. Am.,1980,70(4):1137-1148.
    [65]Langan R T, Lerche I, Cutler R T. Tracing of rays through heterogeneous media:An accurate and efficient procedure [J]. Geophysics,1985,50(9): 1456-1465.
    [66]Virieux J, Farra V. Ray tracing in 3-D complex isotropic media:An analysis of the problem [J]. Geophysics,1991,56(12):2057-2069.
    [67]Nakanishi I, Yamaguchi K. A numerical experiment on nonlinear image reconstruction from first-arrival times for two-dimensional island arc structure [J]. J. Phys. Earth,1986,34:195-201.
    [68]Moser T J. Efficient seismic ray tracing using graph theory [C].59th Annual International Meeting, SEG, Expanded Abstracts,1989:1106-1108.
    [69]Saito H.3D ray tracing method based on Huygens'principle [C].60th Annual International Meeting, SEG, Expanded Abstracts,1990:1024-1027.
    [70]Moser T J. Shortest path calculation of seismic rays [J]. Geophysics,1991, 56(1):59-67.
    [71]Fischer R, Lees J M. Shortest path ray tracing with sparse graphs [J]. Geophysics,1993,58(7):987-996.
    [72]Cao S, Greenhalgh S. Calculation of the seismic first-break time field and its ray path distribution using a minimum traveltime tree algorithm [J]. Geophysical Journal International,1993,114:593-600.
    [73]许琨,吴律,王妙月.改进Moser法射线追踪[J].地球物理学进展,1998,13(4):60-66.
    [74]王辉,常旭.基于图形结构的三维射线追踪方法[J].地球物理学报,2000,43(4):534-541.
    [75]Van Avendonk H J A, Harding A J, Orcutt J A, et al. Hybrid shortest path and ray bending method for traveltime and raypath Calculations [J]. Geophysics, 2001,60(2):648-653.
    [76]Urdaneta H, Biondi B. Shortest-path calculation of first arrival traveltimes by expanding wavefronts [R]. Stanford Exploration Project,2001, Report 82: 1-144.
    [77]张建中,陈世军,徐初伟.动态网格最短路径射线追踪[J].油气地球物理,2003,1(4):13-18.
    [78]赵连锋,朱介寿,曹俊兴等.有序波前重建法的射线追踪[J].地球物理学报,2003,46(3):415-420.
    [79]黄中玉,赵金州.矩形网格三点Fermat射线追踪技术[J].地球物理学进展,2004,19(1):201-204.
    [80]Zhang M G, Li X F. Ray tracing with the improved shortest path method [C]. 75th Annual International Meeting, SEG, Expanded Abstracts,2005: 1795-1798.
    [81]张美根,程冰洁,李小凡等.一种最短路径射线追踪的快速算法[J].地球物理学报,2006,49(5):1467-1474.
    [82]卞爱飞,於文辉.三维最短路径法射线追踪及改进.天然气工业,2006,26(5):43-45.
    [83]段心标,金维浚.井间层析成像混合最短射线追踪旅行时反演.工程地球物理学报,2007,4(3):201-206.
    [84]魏亦文,周竹生.一种基于质因数分解法的最短路径射线追踪节点自动搜索函数.物探化探计算技术,2008,30(3):191-196.
    [85]赵瑞,白超英.复杂层状模型中多次波快速追踪—一种基于非规则网格的最短路径算法.地震学报,2010,32(4):433-444.
    [86]Vidale J. Finite-difference calculation of travel times [J]. Bull. Seism. Soc. Am.,1988,78(6):2062-2076.
    [87]Vidale J E. Finite-difference calculation of traveltimes in three dimensions [J]. Geophysics,1990,55(5):521-526.
    [88]Trier J V, Symes W W. Upwind finite-difference calculation of traveltimes [J]. Geophysics,1991,56(6):812-821.
    [89]朱金明,王丽燕.地震波走时的有限差分法计算[J].地球物理学报,1992,35(1),86-92.
    [90]周洪波,张关泉.复杂构造区域的初至波走时计算[J].地球物理学报,1994, 37(4):515-520.
    [91]Schneider W A, Jr. Robust and efficient upwind finite-difference traveltime calculations in three dimensions [J]. Geophysics,1995,60(4):1108-1117.
    [92]张文生,何樵登.有限差分法精确计算地震走时.物探化探计算技术,1996,18(4):331-335.
    [93]Dellinger J, Symes W. Anisotropic finite-difference traveltimes using a Hamilton-Jacobi solver [C].67th Annual International Meeting, SEG, Expanded Abstracts,1997:1786-1789.
    [94]Popovici A M, Sethian J. Three dimensional traveltime computation using the fast marching method [C].67th Annual International Meeting, SEG, Expanded Abstracts,1997:1778-1781.
    [95]Alkhalifah T, Fomel S. Implementing the fast marching eikonal solver: Spherical versus Cartesian coordinates [J]. Geophysical prospecting,2001,49: 165-178.
    [96]Sethian J A, Popovici A M.3-D traveltime computation using the fast marching method [J]. Geophysics,1999,64(2):516-523.
    [97]熊金良,李国发,王濮,何兵寿.地震波走时计算的逆风差分算法.物探化探计算技术,2004,26(4):295-298.
    [98]Podvin P, Lecomte I. Finite difference computation of traveltimes in very contrasted velocity models:A massively parallel approach and its associated tools [J]. Geophysical journal International,1991,105(1):271-284.
    [99]Osher S, and Shu C W. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations [J]. SIAM. J. Numer. Anal.,1991,28:907-922.
    [100]Schneider W A, Jr, Ranzinger K A, Balch A H, et al. A dynamic programming approach to first arrival traveltime computation in media with arbitrarily distributed velocities [J]. Geophysics,1992,57(1):39-50.
    [101]张霖斌,许云.三角网格中地震波初至旅行时的计算.石油地球物理勘探,1994,29(4):456-461.
    [102]Kim S, Cook R.3-D traveltime computation using second-order ENO scheme [J]. Geophysics,1999,64(6):1867-1876.
    [103]李振春,刘玉莲,张建磊等.基于矩形网格的有限差分走时计算方法.地震学报,2004,26(6):644-650.
    [104]Sun J, Yang H, Han F X. A finite-difference scheme for solving the eikonal equation with varying grid spacing [C].77th Annual International Meeting, SEG, Expanded Abstracts,2007:2120-2124.
    [105]Qin F H, Luo Y, Olsen K B, et al. Finite-difference solution of the eikonal equation along expanding wavefronts [J]. Geophysics,1992,57(3):478-487.
    [106]Kim S, Folie D. The group marching method:an O(N) level set eikonal solver [J].70th Annual International Meeting, SEG, Expanded Abstracts,2000: 2297-2300.
    [107]Zhang Y T, Zhao H K, Qian J L. High order fast sweeping methods for Eikonal equations [C].74th Annual International Meeting, SEQ Expanded Abstracts,, 2004:1901-1904.
    [108]Jeong W K, Whitaker R. A fast iterative method for eikonal equations [J]. SIAM Journal on Scientific Computing,2008,30(5):2512-2534.
    [109]杨昊,孙建国,韩复兴等.基于完全三叉树堆排序的波前扩展有限差分地震波走时快速算法.吉林大学学报(地球科学版),2010,40(1):188-194.
    [110]Eiichi Asakawa E, Kawanaka T. Seismic ray tracing using linear traveltime interpolation [J]. Geophysical Prospecting,1993,41:99-111.
    [111]Faria E L, Stoffa P L. Traveltime computation in transversely isotropic media [J]. Geophysics,1994,59(2):272-281.
    [112]赵改善,郝守玲,杨尔皓等.基于旅行时线性插值的地震射线追踪算法[J].石油物探,1998,37(2):14-24.
    [113]王华忠,方正茂,徐兆涛等.地震波旅行时计算[J].石油地球物理勘探,1999,34(2):155-163.
    [114]王华忠,方正茂,匡斌等.任意介质中的动态规划法地震波三维走时计算[J].地球物理学报,2001,44(S1):179-189.
    [115]Cardarelli E, Cerreto A. Ray tracing in elliptical anisotropic media using the linear traveltime interpolation (LTI) method applied to traveltime seismic tomography [J]. Geophysical prospecting,2002,50:55-72.
    [116]张建,陈世军.复杂介质地震初至波数值模拟[J].计算物理,2003,20(5):429-433.
    [117]聂建新,杨慧珠.地震波旅行时二次/线性联合插值法[J].清华大学学报,2003,43(11):1495-1498.
    [118]Kumar D, Sen M K, Ferguson R J. Traveltime calculation and prestack depth migration in tilted transversely isotropic media [J]. Geophysics,2004,69(1): 37-44.
    [119]彭直兴,张芬,周熙襄等.地震波旅行时非线性/线性联合插值法[J].成都理工大学学报(自然科学版),2005,32(3):322-324.
    [120]彭直兴,张春红,周熙襄等.基于非线性插值的地震波旅行时计算[J].物探化探计算技术,2006,28(1):10-13.
    [121]涂齐催,刘怀山.利用线性旅行时插值射线追踪计算近地表模型初至波走时[J].物探与化探,2006,30(2):148-153.
    [122]张赛民,周竹生,陈灵君等.对旅行时进行抛物型插值的地震射线追踪方法[J].地球物理学进展,2007,22(1):43-48.
    [123]彭直兴,沈忠民.基于双线性插值的三维地震波旅行时计算[J].西南石油大学学报(自然科学版),2008,30(5):85-87.
    [124]张东,谢宝莲,杨艳等.一种改进的线性走时插值射线追踪算法[J].地球物理学报,2009,52(1):200-205.
    [125]梅胜全,邓飞,钟本善,周熙襄.基于改进的双线性旅行时插值的三维射线追踪[J].物探化探计算技术,2010,32(2):152-157.
    [126]黄翼坚,朱光明,敦敏.直达波旅行时线性插值算法[J].石油地球物理勘探,2010,45(2):225-229.
    [127]Vinje V, Iversen E, Gjoystdal H. Traveltime and amplitude estimation using wavefront construction [J]. Geophysics,1993,58(8):1157-1166.
    [128]韩复兴.论波前构建法中的几个计算问题[D].长春:吉林大学地球探测科学与技术学院,2009年.
    [129]Vinje V, Iversen E, Asteb(?)l K, et al. Estimation of multivalued arrivals in 3D models using wavefront construction-Part Ⅰ [J]. Geophysical Prospecting, 1996,44:819-842.
    [130]Vinje V, Iversen E, Asteb(?)l K, et al. Estimation of multivalued arrivals in 3D models using wavefront construction-Part II:Tracing and interpolation [J]. Geophysical Prospecting,1996,44:843-858.
    [131]Bulant P, Klimes, L. Interpolation of ray theory traveltimes within ray cells [J]. Geophysical journal International,1999,139:273-282.
    [132]Coman R, Gajewski D.3D traveltime and migration weight computation using wavefront oriented ray tracing [C].63rd Mtg., Eur. Assn. Geosci. Eng., Extended Abstracts,2001, P008.
    [133]Ettrich N, Gajewski D. Wave front construction in smooth media for prestack depth migration [J]. Pageoph,1996,148:481-502.
    [134]Coman R and Gajewski D.3-D multi-valued traveltime computation using a hybrid method[C].70th Annual International Meeting, SEG, Expanded Abstracts,2000:2309-2312.
    [135]韩复兴,孙建国,杨昊.不同插值算法在波前构建射线追踪中的应用与对比[J],计算物理,2008,25(2):197-202.
    [136]韩复兴,孙建国,杨昊.基于二维三次卷积的波前构建射线追踪[J].吉林大学学报(地球科学版),2008,38(2):336-340.
    [137]Vinje V, Asteb(?)l K, Iversen E, et al.3-D ray modeling by wavefront construction in open models [J], Geophysics,1999,64(6):1912-1919.
    [138]Gibson R L, Jr, Durussel, V and Lee K J. Modeling and velocity analysis with a wavefront-construction algorithm for anisotropic media [J]. Geophysics, 2005,70(4):T63-T74.
    [139]何洋.基于波前构建的射线走时和振幅计算[D].长春:吉林大学地球探测科学与技术学院,2005年.
    [140]韩复兴,孙建国,孙章庆.光滑算子对地震波走时和路径的影响[J].石油地球物理勘探,2008,43(4):405-409.
    [141]Lambare G, Lucio P S, Hanyga A. Two-dimensional multivalued traveltime and amplitude maps by uniform sampling of a ray field [J]. Geophysical journal International,1996,125:584-598.
    [142]Han F X, Sun J G, Sun Z Q, et al. Positioning of grid points in wave front construction [J]. Applied Geophysics,2009,6(3):248-258.
    [143]韩复兴,孙建国,孙章庆.波前构建法中网格点相对定位及属性计算研究[J].地球物理学进展,2009,24(5):1748-1756.
    [144]秦孟兆,陈景波Maslov渐近理论与辛几何算法.地球物理学报,2000,43(4):522-533.
    [145]高亮,李幼铭,陈旭荣等.地震射线辛几何算法初探,地球物理学报,2000,43(3):402-410.
    [146]Sava P, Fomel S.3-D traveltime computation using Huygens wavefront tracing [J]. Geophysics,2001,66(3):883-889.
    [147]Bancroft J C, Du X. The computation of traveltimes when assuming locally circular or spherical wavefronts [J].76th Annual International Meeting, SEG, Expanded Abstracts,2006:2231-2235.
    [148]Kononov A, Gisolf D, Verschuur E. Application of neural networks to travel-times computation [J].77th Annual International Meeting, SEG, Expanded Abstracts,2007:1785-1789.
    [149]Velis D R, Ulrych T J. Simulated annealing two-point ray tracing [J]. Geophysical Research Letters,1996,23(2):201-204.
    [150]Velis D R, Ulrych T J. Simulated annealing ray tracing in complex three-dimensional media [J]. Geophys. J. Int.,2001,145:447-459.
    [151]Bona A, Slawinski M A, and Smith P. Ray tracing by simulated annealing: Bending method. Geophysics,2009,74(2):T25-T32.
    [152]Sethian J A. A fast marching level set method for monotonically advancing fronts [J]. Proc. Natl. Acad. Sci.,1996,93:1591-1595.
    [153]Leidenfrost A, Ettrich N, Gajewski D, et al. Comparison of six different methods for calculating traveltimes [J]. Geophysical Prospecting,1999,47: 269-297.
    [154]de Kool M, Rawlinson N, Sambridge M. A practical grid-based method for tracking multiple refraction and reflection phases in three-dimensional heterogeneous media. Geophysical journal International,2006,167:253-270.
    [155]Rawlinson, N., Sambridge M. Multiple reflection and transmission phases in complex layered media using a multistage fast marching method. Geophysics, 2004,69(5):1338-1350.
    [156]Rawlinson N, Sambridge M. Wave front evolution in strongly heterogeneous layered media using the fast marching method [J]. Geophysical journal International,2004,156:631-647.
    [157]Sethian J A. Fast marching methods [J]. SIAM REVIW,1999,41(2):199-235.
    [158]孙章庆,孙建国,张东良.二维起伏地表条件下坐标变换法直流电场数值模拟[J].吉林大学学报(地球科学版),2009,39(3):528-534.
    [159]孙章庆,孙建国,张东良.2.5维起伏地表条件下坐标变换法直流电场数值模拟[J].吉林大学学报(地球科学版),2010,40(2):425-431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700