用户名: 密码: 验证码:
正交曲线坐标系下的地震波数值模拟技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有限差分方法是一种高效、灵活且适应性很强的方法,被广泛应用于各种复杂介质的地震波数值模拟中,是目前勘探地震学和天然地震学中研究地震波传播规律不可或缺的重要工具。但是,当有不规则的起伏地表存在时,现有的各种有限差分方法不能很好的实施自由边界条件或者是在实施自由边界条件时需要进行复杂的坐标旋转及(或)插值运算,这不仅会影响到数值模拟结果的精度,同时也会增加求解过程的复杂性,降低模拟效率。
     目前,用于模拟起伏地表条件下地震波传播的各种有限差分方法在实施自由边界条件时所采用的数值离散方法常受限于所选用的网格坐标系统,不能很好的对起伏地形条件下的地震波传播的影响进行模拟。本论文从以下几个方面对这种方法进行改进:(1)采用了流体力学中广泛使用的正交曲线网格,能够对起伏地表进行贴体的网格剖分,相比于常规的阶梯状网格近似方法,具有更好的近似效果,可以有效的避免阶梯状网格近似在数值模拟时产生的角点散射和绕射干扰;(2)选用张量形式的波动方程作为起伏地表地震波数值模拟的控制方程,这种形式的波动方程适用于任意曲线坐标系;(3)引入空气动力学中的选择性滤波同位网格有限差分算法,对张量形式的波动方程进行离散求解。这种差分算法能够适应于复杂非均匀介质,同时还避免了交错网格有限差分格式在曲线坐标系中数值精度不高,需要进行复杂插值运算等缺陷;(4)在正交曲线坐标系下,采用应力镜像法来实施边界条件,能使其简便易行,且与笛卡尔坐标系下的自由边界条件具有相似的形式;(5)将非分裂的ADE-PML吸收边界条件引入正交曲线坐标系下的地震波数值模拟中,用来消除人工边界反射的影响。
     本文将正交曲线网格生成技术、选择性滤波同位网格有限差分算法、应用镜像法自由边界条件和ADE-PML吸收边界条件结合起来用于起伏地表条件下地震波传播规律的研究,并进行了对比验证。结果表明,这种方法具有较高的数值精度,能够模拟任意起伏地形下的地震波传播。
     最后,采用本文算法对山峰,山谷以及正弦函数起伏模型下的地震波进行了数值模拟,研究了这些地形条件下的波场传播特征响应。
With its advantage of high-efficiency, flexibility and high-adaptation, finite differnce method is widely used to simulate seismic wave propagation in various complex medium. This method has played an important role in the study of properties of seismic wave propagation in both exploration seismology and earthquake seismology. However, when irregularly topographic free surface exists, most of the current finite-differnce approaches can not achieve good results in implementing the free-surface boundary conditions and always involve complicated coordinate rotations and interpolations, which may not only affect the numerical accuracy of simulations, but make the forward modeling more complicated and low-efficient.
     At present, all finite difference methods used to synthetize seismic wave propagation in the presence of topography are limited to the coordinate system chosen. The discrete free surface conditions are not so well suited to model seismic waves when dealing with irregular surface. In this study, several efforts are made to improve the algorithm:(1) We introduced the orthogonally curvilinear grids to discretize the irregular physical domain. This coordinate system is body-conformal and much more accurate than staircased discretization to topography. Thus, corner wave scatterings and diffractions are avoided as a result;(2) Tensorial wave equations are introduced to simulate wave propagation as the control equation, which is well suited to arbitraryly curvilinear coordinate system;(3) We used selective filtering non-staggered finite difference method, which is commonly used in aeroacoustics, to solve tensorial wave equations. This algorithm is adaptive to complex heterogeneous medium and complicated interpolations are avoided which is the drawback of staggered-grid finite difference method;(4) In orthogonally curvilinear coordinate system, the free-surface boundary conditions are imposed by stress imaging method, which makes the boundary condtions simply to implement and has the similar form of that in Cartesian coordinate system;(5) An unsplit ADE-PML absorbing boundary condtion is utilized to attenuate reflected energy from artifical boundaries in curvilinear coordinate system.
     In the present study, orthogonally curvilinear grids, selective filtering non-staggered finite-difference method, stress imaging free-surface boundary condition as well as ADE-PML absorbing boundary condition are integrated to simulate seismic wave propagation in the presence of topographic free surface. Validations are made and results showed that the proposed algorithm can be a good alternative in modeling seimic wave in the case of arbitrary topography.
     Finally, simulation results are provided for hill and canyon models as well as for sine curve model to study the properties of wave propagation in topographic surface.
引文
Akcelik V, Jaramaz B and Ghattas O. Nearly orthogonal two-dimensional grid generation with aspect ratio control. Journal of computational physics,2001, 171(2):805-821
    Aki K and Richards P. Quantitative Seismology, Second Edition. University Science Books,2002
    Allampalli V, Hixon R, Nallasamy M et al.. High-accuracy large-step explicit Runge-Kutta (HALE-RK) schemes for computational aeroacoustics. Journal of Computational Physics,2009,228(10):3837-3850
    Alterman Z and Karal F. Propagation of elastic waves in layered media by finite difference methods. Bulletin of the Seismological Society of America,1968, 58(1):367-398
    Appelo D and Petersson N. A stable finite difference method for the elastic wave equation on complex geometries with free surface. Communications in Computational Physics,2009,5(l):84-107
    Asakawa E. Seismic ray tracing using linear traveltime interpolation. Geophysical Prospecting,1993,41(1):99-111
    Bayliss A, Jordan K, Lemesurier B et al.. A fourth-order accurate finite-difference scheme for the computation of elastic-waves. Bulletin of the Seismological Society of America,1986,76(4):1115-1134
    Berenger J. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics,1994,114(2):185-200
    Berland J, Bogey C, Marsden O et al..2007. High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems. Journal of Computational. Physics,224(2):637-662
    Bogey C, Bailly C.2004. A family of low dispersive and low dissipative explicit schemes for flow and noise computations. Journal.of Computational Physics, 194(1):194-214
    Bohlen T and Saenger E.3-D viscoelastic finite-difference modeling using the rotated staggered grid—tests of accuracy. EAGE 65th Conference & Exhibition,2003
    Bohlen T and Saenger E. Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves. Geophysics,2006,71(4):T109-115
    Boore D. Finite-difference methods for seismic waves, In:Methods in Computational Physics, Vol.11,1-37. Bolt B.A.(Editor), Academic Press, New York
    Bouchon M, Campillo M and Gaffet S. A boundary integral equation-discrete wavenumber representation method to study wave propagation in multilayered medium having irregular interfaces. Geophysics,1989,54(9):1134-1140
    Bouchon M, Schultz C and Toksoz M. Effect of three-dimensional topography on seismic motion. Journal of geophysical research,1996,101(B3):5835-5846
    Calvo M, Franco J and Randez L. A new minimum storage Runge-Kutta scheme for computational acoustics. Journal of Computational Physics,2004,201(1):1-12
    Campillo M and Bouchon M. Synthetic SH seismograms in a laterally varying medium by the discrete wavenumber method. Geophys.J.R.Astr.Soc,1985,83(1): 307-317
    Campillo M. Modeling of SH wave propagation in an irregularly layered medium—Application to seismic profiles near a dome. Geophysical Prospecting, 1987,35(3):236-249
    Carcione J, Herman G and Kroode A. Seismic modeling. Geophysics,2002,67(4): 1304-1325
    Cerjan C, Kosloff D, Kosloff R et al.. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics,1985,50(4):705-708
    Che C, Wang X and Lin W. The Chebyshev spectral element method using staggered predictor and corrector for elastic wave simulations. Applied geophysics,2010, 7(2):174-184
    Chen J. Modeling the scalar wave equation with Nystrom methods. Geophysics,2006, 71(5):T151-158
    Cohen G and Joly P. Fourth order schemes for the heterogeneous acoustic equation. Computer Methods in Applied Mechanics and Engineering,1990,80(1-3): 397-407
    Collino F, Tsogka C. Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics,2001, 66(1):294-307
    Coutant O, Virieux J and Zollo A. Numerical source implementation in a 2D finite difference scheme for wave propagation. Bulletin of the Seismological Society of America,1995,85(5):1507-1512
    Crase E. High-order (space and time) finite-difference modeling of the elastic wave equation.60th SEG Annual meeting, Expended Abstracts,1990
    Dablain M. The application of high-order differencing to the scalar wave equation. Geophysics,1986,51(1):54-66
    Dai N, Vafidis A and Kanasewich E. Wave propagation in heterogeneous, porous media:A velocity-stress, finite-difference method. Geophysics,1995,60(2): 327-340
    Dong L, She D, Guan L et al.. An eigenvalue decomposition method to construct absorbing boundary conditions for acoustic and elastic wave equations. Journal of Geophysics and Engineering,2005,2(3):192-198
    Durand S, Gaffet S and Virieux J. Seismic diffracted waves from topography using 3D discrete wavenumber-boundary integral equation simulation. Geophysics, 1999,64(2):572-578
    Engquist B, Majda A. Absorbing boundary conditions for the numerical simulation of waves. Mathmatics of Computation,1977,31(139),629-651
    Fornberg B. The pseudospectral metho—accurate representation of interfaces in elastic wave calculations. Geophysics,53(5):625-637
    Fu L. Numerical study of generalized Lipmann-Schwinger integral equation including surface topography. Geophysics,2003,68 (2):665-671
    Frankel A and Leith W. Evaluation of topographic effects on P-waves and S-waves of explosions at the northern novaya test site using 3D numerical simulations. Geophysical Research Letter,1992,19(18):1887-1890
    Galis M, Moczo P and Kristek J. A 3-D hybrid finite-difference—finite-element viscoelastic modeling of seismic wave motion. Geophysical Journal International,2008,175(1):153-184
    Gjoystdal H, Iversen E, Lecomte I et al.. Improved applicability of ray tracing in seismic acquisition, imaging and interpretation. Geophysics,2007,72(5): SM261-271
    Gottschammer E and Olsen K. Accuracy of the explicit planar free-surface boundary condition implemented in a fourth-order staggered-grid velocity-stress finite-difference scheme. Bulletin of the Seismological Society of America,2001,91(3): 617-623
    Graves R. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite-differences. Bulletin of the Seismological Society of America,1996,86 (4):1091-1106
    Hayashi K, Burns D and Toksoz M. Discontinuous-grid finite-difference seismic modeling including surface topography. Bulletin of the Seismological Society of America,2001,91(6):1750-1764
    Hestholm S and Ruud B.2D finite-difference elastic wave modeling including surface topography. Geophysical Prospecting,1994,42(5):371-390
    Hestholm S and Ruud B.3D finite-difference elastic wave modeling including surface topography. Geophysics,1998,63(2):613-622
    Hestholm S, Ruud B and Husebye E.3-D versus 2-D finite-difference seismic synthetics including real surface topography. Physics of the Earth and Planetary Interiors,1999,113(1-4):339-354
    Hestholm S and Ruud B.2D finite-difference viscoelastic wave modeling including surface topography. Geophysical Prospecting,2000,48(2):341-373
    Higdon R. Absorbing boundary conditions for elastic waves. Geophysics,1991,56(2): 231-241
    Holberg O. Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena. Geophysical Prospecting,1987,35(6):629-655
    Hestholm S. Three-dimensional finite difference viscoelastic wave modeling including surface topography. Geophysical Journal International,2002a,139(3): 852-878
    Hestholm S and Ruud B.3D free-boundary conditions for coordinate-transform finite-difference seismic modelling. Geophysical Prospecting,2002b,50(5): 463-474
    Hu F, Hussaini M and Manthey J. Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics. Journal of Computational Physics,1996, 124(1):177-191
    Hustedt B, Operto S and Virieux J. Mixed-grid and staggered-grid finite-difference methods for frequency-domain acoustic wave modeling. Geophysical Journal International,2004,157(3):1269-1296
    Igel H, Mora P and Riollet. Anisotropic wave-propagation through finite-difference grids. Geophysics,1995,60(4):1203-1216
    Ilan A. Finite-difference modeling for P-pulse propagation in elastic media with arbitrary polygonal surface. Journal of Geophysics,1977,43(1):41-58
    Jih R, McLaughlinf K and Der Z. Free-boundary conditions of arbitrary polygonal topography in a two-dimensional explicit elastic finite-difference scheme. Geophysics,1988,53(8):1045-1055
    Kelly K, Ward R, Treitel S et al.. Synthetic seismograms:a finite-difference approach. Geophysics,1976,41(2):2-27
    Ketcheson D. Runge-Kutta methods with minimum storage implementations. Journal of Computational Physics,2010,229(10):1763-1773
    Komatitsch D, Coutel F and Mora P. Tensorial formulation of the wave equation for modeling curved interfaces. Geophysical Journal International,1996,127(1): 156-168
    Komatitsch D and Vilotte J. The spectral element method:an effficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America,1998,88(2):368-392
    Komatitsch D and Tromp J. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophysical Journal International, 1999,139(3):806-822
    Komatitsch D and Tromp J. Spectral-element simulations of global seismic wave propagation-Ⅰ. Validation. Geophysical Journal International,2002,149(2): 390-412
    Komatitsch D, Liu Q, Tromp J et al.. Simulations of ground motion in the Los Angeles basin based upon the spectral-element method. Bulletin of the Seismological Society of America,2004,94(1):187-206
    Komatitsch D, Martin R. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics,2007,72(5): SM155-SM167
    Komatitsch D, Erlebacher G, Goddeke D et al.. High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster. Journal of Computational Physics,2010,229(20):7692-7714
    Kosloff D and Baysal E. Forward modeling by a Fourier method. Geophysics,1982, 47(10):1402-1412
    Kosloff D, Kessler D, Quieroz A et al.. Solution of the equations of dynamic elasticity by a Chebyshev spectral method. Geophysics,1990,55(6):734-748
    Kosloff D and Carcione J. Two-dimensional simulation of Rayleigh waves with staggered sine/cosine transforms and variable grid spacing. Geophysics,2010, 75(4):T133-T140
    Kristek J, Moczo P and Archuleta R. Efficient methods to simulate planar free surface in the 3D fourth-order staggered-grid finite-difference schemes. Stud. Geophys. Geod.,2002,46(2):355-381
    Kristek J, Moczo P, Galis M. A brief summary of some PML formulations and discretizations for the velocity-stress equation of seismic motion. Studia Geophysica et Geodaetica,2009,53(4):459-474
    Kristek J, Moczo P and Galis M. Stable discontinuous staggered grid in the finite-diffenrece modeling of seismic motion. Geophysical Journal International, 2010,183(3):1401-1407
    Lan H and Zhang Z. Three-dimensional wave-field simulation in heterogeneous transversely isotropic medium with irregular free surface. Bulletin of the Seismological Society of America,2011a,101(3):1354-1370
    Lan H and Zhang Z. Comparative study of the free-surface boundary condition in two-dimensional finite-difference elastic wavefield simulation. Journal of Geophysics and Engineering,2011b,8(2):275-286
    Lee S, Chen H, Liu Q et al.. Three-Dimensional Simulations of Seismic Wave Propagation in the Taipei Basin with Realistic Topography Based upon the Spectral-Element Method. Bulletin of the Seismological Society of America,2008, 98(1):253-264
    Lee S., Komatitsch D, Huang B et al.. Effects of topography on seismic wave propagation:An example from northern Taiwan. Bulletin of the Seismological Society of America,2009,99(1):314-325
    Levander A. Fourth-order finite-difference P-SV seismograms. Geophysics,1988, 53(11):1425-1436
    Liseikin V. Grid generation methods[M]. New York:Springer,2010
    Liu E and Zhang Z. Numerical study of elastic wave scattering by cracks or inclusions using the boundary integral equation method. Journal of Computational Acoustics,2001,9(3):1039-1054
    Liu E, Zhang Z, Yue J et al.. Boundary integral modelling of elastic wave propagation in multi-layered 2D medium with irregular interfaces. Commun.Comput.Phys., 2008,3(1):52-62
    Liu Q, Tao J. The perfectly matched layer for acoustic waves in absorptive media. Journal of the Acoustical Society of America,1997,102(4):2072-2082
    Ma X, Yang D and Liu F. A nearly analytic symplectically partitioned Runge-Kutta method for 2-D seismic wave equations. Geophysical Journal International, 2011,187(1):480-496
    Magnier S, Mora P and Tarantola A. Finite difference on minimal grids. Bulletin of the Seismological Society of America,1994,59(9):1435-1443
    Martin R, Komatitsch D. An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave equation in poroelastic media. Geophysics, 2008,73(4):T51-T61
    Martin R, Komatitsch D. An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation. Geophysical Journal International,2009,179(1):333-344
    Martin R, Komatitsch D, Gedney S D et al. A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using auxiliary differential equations(ADE-PML). Computer Modeling in Engineering & Sciences,2010,56(1):17-40
    Michea D and Komatitsch D. Accelerating a 3D finite-difference wave propagation code using GPU graphics cards. Geophysical Journal International,2010,182(1): 389-402
    Mittet R. Free-surface boundary conditions for elastic staggered-grid modeling schemes. Geophysics,2002,67(5):1616-1623
    Moczo P, Bystricky E, Kristek J et al.. Hybrid modelling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures. Bulletin of the Seismological Society of America,1997,87(5):1305-1323
    Moczo P, Kristek J, Vavrycuk V et al..3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. Bulletin of the Seismological Society of America,2002,92(8):3042-3066
    Nielsen P, Berg P and Skovgaard O. Using the pseudo-spectral technique on curved grids for 2D acoustic forward modeling. Geophysical Prospecting,1994,42(4): 321-342
    Ohminato T and Chouet B. A free-surface boundary condition for including 3D topography in the finite-difference method. Bulletin of the Seismological Society of America,1997,87(2):494-515
    Oprsal I and Zahradnik J. Elastic finite-difference method for irregular grids. Geophysics,1999,64(1):240-250
    Pitarka A and Irikura K. Modeling 3D surface topography by finite-difference method: Kobe-JMA station site, Japan, case study. Geophysical Research letters,1996, 23(20):2729-2732
    Reshef M and Kosloff D. Applications of elastic forward modeling to seismic interpretation. Geophysics,1985,50(8):1266-1272
    Reshef M. Depth migration from irregular surfaces with depth extrapolation methods. Geophysics,1991,56(2):119-122
    Rial J, Saltzman N and Ling H. Earthquake-induced resonance in sedimentary basins. American Scientist,1992,80:566-578
    Richter G. An explicit finite element method for the wave equation. Applied Numerical Mathematics,1994,16(1-2):65-80.
    Robertsson J. A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography. Geophysics,1996, 61(6):1921-1934
    Ruud B and Hestholm S.2D surface topography boundary conditions in seismic wave modeling. Geophysical Prospecting,2001,49(4):445-460
    Sadd M. Elasticity—Theory,Applications and Numerics,2nd Edition. Burlington: Academic Press,2009
    Saenger E, Gold N and Shapiro S. Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion,2000,31(1):77-92
    Saenger E and Bohlen T. Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid. Geophysics,2004,69(2): 583-591
    Saenger E, Bohlen T. Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid. Geophysics,2004,69(2):583-591
    Sanchez-Sesma F, Bravo M and Herrera I. Surface motion of topographical irregularities for incident P, SV, and Rayleigh waves. Bulletin of the Seismological Society of America,1985,75(1):263-269
    Sanchez-Sesma F and Campillo M. Diffraction of P, SV, and Rayleigh waves by topographic features:A boundary integral formulation. Bulletin of the Seismological Society of America,1991,81(6):2234-2253
    Sanchez-Sesma F and Campillo M. Topographic effects for incident P, SV and Rayleigh waves. Tectonophysics,1993,218(1-3):113-125
    Sato M. Comparing three methods of free boundary implementation for analyzing elastodynamics using the finite-difference time-domain formulation. Acoustic Science and Technology,2007,28(1):49-52
    Schultz C. A density-tapering approach for modeling the seismic response of free-surface topography. Geophysical Research Letters,1997,24(22):2809-2812
    Selem A. Reflection survey in rough topography. Geophysical Prospecting,1955,3(3), 246-257
    Sheriff R and Geldart L. Exploration seismology, Second Edition. Cambridge University Press,1995
    Sorenson R and Steger J. Automatic mesh-point clustering near a boundary in grid generation. Journal of computational physics,1979,33(3):405-410
    Sun J, Sun Z, Han F. A finite difference schemes for solving the eikonal equation including surface topography. Geophysics,2011,76(4):T53-63
    Tal-Ezer H. Spectral methods in time for hyperbolic equations. SIAM Journal on Numerical Analysis,1986,23(1):11-26
    Tam C and Webb J. Dispersion-Relation-Preserving finite-difference schemes for computational acoustics. Journal of Computational Physics,1993,107(2): 262-281
    Tarrass I, Giraud L and Thore P. New curvilinear scheme for elastic wave propagation in presence of curved topography. Geophysical Prospecting,2011,59(5):889-906
    Tessmer E, Kosloff D and Behle A. Elastic wave propagation simulation in the presence of surface topography. Geophysical Journal international,1992,108(2): 621-632
    Tessmer E and Kosloff D.3-D elastic modeling with surface topography by a Chebyshev spectral method. Geophysics,1994,59(3):464-473
    Thompson J, Warsi Z and Mastin C. Numerical grid generation—Foundation and Application[M]. New York:North Hollad Publishing Co.,1985:188-263
    Thompson J, Soni B and Weatherill N. Handbook of grid generation [M]. New York: CRC Press LLC,1999
    Thomas P and Middlecoff J. Direct control of the grid point distribution in meshes generated by elliptic equations. AIAA Journal,1980,18(6):652-656
    Toro E and Millington R. ADER:High-order non-oscillatory advection schemes.8th International Conference on Nonlinear Hyperbolic Problems, Expanded Abstracts,2000
    Titarev V and Toro E. ADER schemes for three-dimensional non-linear hyperbolic systems. Journal of Computational Physics,2005,204(2):715-736
    Toshinawa T and Ohmachi T. Love wave propagation in a three-dimensional sedimentary basin. Bulletin of the Seismological Society of America,1992,82(4): 1661-1667
    Tselios K and Simos T. Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. Journal of Computational and Applied Mathematics,2005,175(1):173-181
    Tsingas C, Vafidis A and Kanasewich E. Elastic wave propagation in transversely isotropic media using finite differences. Geophysical Prospecting,1990,38(8): 933-949
    Vidale J and Clayton R. A stable free-surface boundary condition for two-dimensional elastic finite-difference wave simulation. Geophysics,1986,51(12):2247-2249
    Vidale J. Finite-difference calculations of traveltimes. Bulletin of the Seismological Society of America,1988,78(6):2062-2076
    Virieux J. P-SV wave propagation in heterogeneous media:Velocity-stress finite-difference method. Geophysics,1986,56(4):889-901
    Virieux J, Calandra H and Plessix R. A review of the spectral, pseudo-spectral, finite-difference and finite-element modeling techniques for geophysical imaging. Geophysical Prospecting,2011,59(5):794-813
    Wang X, Fu L, Dodds K et al.. Effects of the traction-free surface with rugged topography on seismic wave propagation:Numerical modelling. Exploration Geophysics,2001,32(3&4):327-333
    Wang Y, Xu J and Schuster G. Viscoelastic wave simulation in basin by a variable-grid finite-difference method. Bulletin of the Seismological Society of America,2001, 91(6):1741-1749
    Widess M. Effect of surface topography on seismic mapping. Geophysics,1945, 11(3):362-372
    Wong H. Effect of surface topography on the diffraction of P, SV, and Rayleigh waves. Bulletin of Seismological Society of America,1982,72(4):1167-1183
    Wu R and Maupin V. Advances in wave propagation in heterogeneous earth. San Diego:Academic Press,2007:468-480
    Xu Y, Xia J and Miller R. Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach. Geophysics,2007,72(5): 147-153
    Yang D, Liu E, Zhang Z et al.. Finite-difference modelling in two-dimensional anisotropic media using a flux-corrected transport technique. Geophysical Journal International,2002,148(2):320-328
    Yang D, Song G, Chen S et al.. An improved nearly analytical discrete method:An efficient tool to simulate the seismic response of 2-D porous structures. Journal of Geophysics and Engineering,2007,4(1):40-52
    Zahradnik J and Hron F. Robust finite-difference scheme for elastic-waves on coarse grids. Studia Geophysica Et Geodaetica,1992,36(1):1-19
    Zahradnik J. Simple elastic finite-difference scheme. Bulletin of Seismological Society of America,1995,85(6):1879-1887
    Zahradnik J and Priolo E. Heterogeneous formulations of elastodynamic equations and finite-difference schemes. Geophysical Journal International,1995,120(3): 663-676
    Zeng C, Xia J, Miller R et al.. Application of the multiaxial perfectly matched layer (M-PML) to near-surface seismic modeling with Rayleigh waves. Geophysics, 76(3):T43-52
    Zeng Y and Liu Q. A multidomain PSTD method for 3D elastic wave equations. Bulletin of the Seismological Society of America,2004,94(3):1002-1015
    Zhang W and Chen X. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation. Geophysical Journal International, 2006,167(1):337-353
    Zhang W and Shen Y. Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling. Geophysics,2010, 75(4):T141-T154
    Zhang Y, Jia Y and Wang S.2D nearly orthogonal mesh generation. International Journal for Numerical Methods in Fluids,2004,46(7):685-707
    Zhang Y, Jia Y and Wang S.2D nearly orthogonal mesh generation with controls on distortion function. Journal of computational physics,2006,218(2):549-571
    Zhang Z, Wang G and Harris J. Multi-component wavefield simulation in viscous extensively dilatancy anisotropic media. Phys.Earth.Planet.Interior,1999, 114(1-2):25-38
    Zheng H and Zhang Z. Synthetic seismograms of nonlinear seismic waves in anisotropic (VTI) media. Chinese Journal Geophysics-Chinese edition,2005, 48(3):660-671
    Zheng H, Zhang Z and Liu E. Non-linear seismic wave propagation in anisotropic media using the flux-corrected transport technique. Geophysical Journal International,2007,165(3):943-956
    褚春雷,王修田.非规则三角网格有限差分法地震正演模拟.中国海洋大学学报(自然科学版),2005,35(1):43-48
    邓建中,刘之行.计算方法(第二版)[M].西安:西安交通大学出版社,2007:218-234
    邓志文.复杂山地地震勘探[M].北京:石油工业出版社,2006:1-30
    董良国.复杂地表条件下地震波传播数值模拟.勘探地球物理进展,2005,28(3):187-194
    董良国,郭晓玲,吴晓丰,等.起伏地表弹性波传播有限差分法数值模拟.天然气工业,2007,27(10):38-41
    董敏煜.多波多分量地震勘探.北京:石油工业出版社,2002:5-13
    黄克智.张量分析.北京:清华大学出版社,2003
    蒋丽丽,孙建国.基于Poisson方程的曲网格生成技术.世界地质,2008,27(3):298-305
    蒋丽丽.面向地质条件的贴体网格生成技术.[博士学位论文].长春:吉林大学,2010
    林伟军,王秀明,张海澜.用于弹性波方程模拟的基于逐元技术的谱元法。自然科学进展,2005,15(9):1048-1057
    刘国峰,刘洪,李博等.起伏地表直接叠前时间偏移,石油地球物理勘探,2010,45(2):196-200
    刘少勇,王华忠,张兵.起伏地表Kirchoff积分法叠前深度偏移方法研究与应用.2010年国际石油地球物理技术交流会会议专刊[C],2010
    马啸,杨顶辉,张锦华.求解声波方程的辛可分Runge-Kutta方法.地球物理学报,2010,53(8):1993-2003
    牟永光.三维复杂介质地震物理模拟[M].北京:石油工业出版社,2003
    牟永光,裴正林.三维复杂介质地震波数值模拟[M].北京:石油工业出版社,2005.
    裴正林.任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟.石油地球物理勘探,2004,39(6):629-634
    裴正林,何光明,谢芳.复杂地表复杂构造模型的弹性波方程正演模拟.石油地球物理勘探,2010,45(6):807-818
    秦臻,张才,郑晓东,等.高精度有限差分瑞雷面波模拟及频散特征提取.石油地球物理勘探,2010,45(1):40-46
    丘磊,田钢,石战结,等.起伏地表条件下有限差分地震波数值模拟技术—基于广义正交曲线坐标系.浙江大学学报(工学版),2011a,待刊
    丘磊,田钢,王帮兵.选择性滤波同位网格有限差分法在地震波数值模拟中的应用.地震学报,2011b,待刊
    孙建国.复杂地表条件下地球物理场数值模拟方法评述.世界地质,2007,26(3):345-362
    孙建国,蒋丽丽.用于起伏地表条件下地球物理场数值模拟的正交曲网格生成技术.石油地球物理勘探,2009,44(4):494-500
    孙章庆,孙建国,韩复兴,等.波前快速推进法起伏地表地震波走时计算.勘探地球物理进展,2007,30(5):392-395.
    孙章庆,孙建国,韩复兴.复杂地表条件下基于线性插值和窄带技术的地震波走 时计算.地球物理学报,2009,52(11):2846-2853.
    孙章庆,孙建国,韩复兴.复杂地表条件下快速推进法地震波走时计算.计算物理,2010,27(2):281-286.
    王雪秋,孙建国.地震波有限差分数值模拟框架下的起伏地表处理方法综述.地球物理学进展,2008,23(1):40-48
    王者江.基于BISQ机制的三维双相正交介质正演模拟及传播特性研究[博士学位论文].长春:吉林大学,2008
    汪利民,徐义贤.三维起伏地表瑞雷面波交错网格有限差分法正演模拟.中国地球物理年会摘要,2009
    汪仁富,徐峰,刘福烈等.波动方程震源组合模拟定量研究.石油地球物理勘探,2011,46(4):538-544
    谢小碧,姚振兴.二维不均匀介质中点源P-SV波响应的有限差分近似算法.地球物理学报,1988,31(5),540-555
    徐峰,刘福烈,梁向豪.基于相控理论的炮点组合设计技术.石油地球物理勘探,2011,46(2):170-175
    阎世信,刘怀山,姚雪根.山地地球物理勘探技术[M].北京:石油工业出版社,2000:1-85
    张伟.含起伏地形的三维非均匀介质中地震波传播的有限差分算法及其在强地面震动模拟中的应用[博士学位论文].北京:北京大学,2006
    张文生.科学计算中的偏微分方程有限差分法.北京:高等教育出版社,2006
    张耀良,朱卫兵.张量分析及其在连续介质力学中的应用.哈尔滨:哈尔滨工程大学出版社,2005
    张永刚等.复杂介质地震波场模拟分析与应用[M].北京:石油工业出版社,2007.
    张正科.复杂外形网格生成技术及应用.北京航空航天大学学报,1998,24(6):642-645
    郑鸿明,吕焕通,娄兵等.地震勘探近地表异常校正[M].北京:石油工业出版社,2009
    祝贺君,张伟,陈晓非.二维各向异性介质中地震波场的高阶同位网格有限差分模拟.地球物理学报,2009,52(6):1536-1546

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700