用户名: 密码: 验证码:
迷宫流道灌水器水力与抗堵性能评价及结构优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在非压力补偿型灌水器中,迷宫型灌水器由于具有结构相对简单、水力性能好、制造成本低等诸多优点而广泛用于滴灌系统,但由于灌水器内部的迷宫流道结构细微弯曲,易发生堵塞,同时又要求具有良好的水力特性,因而水力性能和抗堵性能成为评价其性能优劣的两大重要指标。本文即在此背景下分别研究了迷宫流道灌水器的水力特性,探索了其堵塞机理,并为其水力性能与抗堵性能分别提出了新的评价方法,在此基础上根据二者之间的对立关系建立了一种迷宫流道的多目标结构优化方法。
     采用数值方法分析迷宫型灌水器的水力特性,计算模型分别选取层流、紊流模型,并进行了结果对比。由迷宫流道内部流体的流态分析得出层、紊流转捩提前,根据这一现象通过分析建立了三角形迷宫流道的特征参数与临界雷诺数之间的数学模型。对三角形和梯形迷宫流道灌水器进行水力性能的实验测试,借此从宏观角度检验数值方法预测水力性能的准确性以及层、紊流模型的适用性。此外,构建了迷宫流道内流体流动特性的可视化测试系统,并利用其可视化流道内部流体的微观流动特性,从微观角度验证数值计算的准确性。
     在此基础上,综合考虑迷宫流道单元的沿程损失和局部损失,提出以单变量——压力损失系数来评价灌水器水力性能的优劣,克服了以往双变量评价的不足之处。联合采用参数化设计方法和正交实验设计方法分析了迷宫流道特征参数对压力损失系数的影响关系,α影响最大,S/H和H/D其次,D/W影响最小,随后建立了两者之间的数学模型。为验证该评价方法的正确性,以主航道型迷宫流道为例,探索了其特征参数——圆弧半径比与压力损失系数的关系,发现二者呈负相关,该结论与主航道思想是吻合的。
     分别采用颗粒随机轨道模型和欧拉-欧拉双流体模型分析了灌水器迷宫流道内的液固两相流动规律,得到颗粒在迷宫流道内的运动轨迹以及可能出现沉积的区域,从数值上揭示了迷宫流道发生堵塞的机理,随后由颗粒的沉积和运动轨迹测试实验分别验证采用两种数学模型的液固两相数值计算的正确性。在此基础上提出一种基于颗粒通过率概念的迷宫流道抗堵性能评价方法,结果表明特征参数对颗粒通过率的影响程度为α>D/W>S/H>H/D,采用回归分析方法建立起颗粒通过率与流道特征参数之间的数学模型。将此评价方法用于主航道思想设计的迷宫流道,发现随着圆弧半径比的增大,颗粒通过率也随之增大,这一结论与主航道思想的特点是一致的。
     针对迷宫型灌水器的水力性能和抗堵性能之间存在的对立性,同时以评价水力性能的压力损失系数和评价抗堵性能的颗粒通过率为优化目标,采用基于NSGA-ΙΙ的多目标遗传优化方法分别求解出了梯形流道和主航道型迷宫流道各特征参数的Pareto最优解集,并可根据决策者的设计权重将其权衡解的求解转化为函数极小值的求解。该方法适用于同形不同尺寸的迷宫流道结构优化,为性能优良的灌水器结构定型提供理论依据。
Labyrinth-channel emitters are widely applied in drip irrigation systems for such advantages as simple structure, high hydraulic performance and low manufacture cost among those pressure non-compensating emitters. However, due to their small size of the labyrinth channels, labyrinth-channel emitters are apt to clogging. Hydraulic performance and anti-clogging performance, therefore, are two important factors evaluating the quality of emitters. In this dissertation, the hydraulic characteristic and clogging mechanism of labyrinth channel are analyzed respectively, and new evaluation methods for both hydraulic and anti-clogging performances are developed. Finally, a multi-objective structural optimization model for labyrinth channels is proposed according to the relationship between hydraulic and anti-clogging performance.
     The hydraulic characteristic of labyrinth-channel emitter is numerically analyzed by both laminar flow and turbulence models respectively, and a comparison is made between the computational results by the two models. The analysis of the flow field distribution in labyrinth channels showed that the transitional Reynolds number from laminar flow to turbulence is much lower than 2300, a mathematic relationship is consequently established between critical Reynolds number and the key parameters of triangular labyrinth channel based on this result. On the other hand, the experiments on hydraulic performance of triangular and trapezoidal channel emitters are carried out to verify the predicted accuracy of numerical analysis from the macroscopical view and the applicability of laminar flow and turbulence model. In addition, the flow visualization system is constructed and the flow field behavior is visualized in labyrinth channels, which verify the accuracy of numerical simulation from microscopical perspective.
     In an overall consideration of the major and minor losses of labyrinth channel unit, a single variable, pressure loss coefficient (PLC), is presented to evaluate the hydraulic performance of emitters. Parameterized design method and orthogonal experiments method are introduced to study the relationship between the key parameters of labyrinth channel and PLC, the influence degree of each factor ranks as follows:α> S/H > H/D > D/W, and a model is regressed between them using the linear multivariable regression method. In addition, the key parameter of main-flow channels, the ratio of arc radius to the length of straight line, is discussed with PLC in order to validate the evaluation methods. The result shows that the PLC increases as the ratio decreases, which is coincident with the idea of main-flow channel.
     The liquid-solid two-phase flow in labyrinth channels of emitter is numerically simulated by using the stochastic trajectory model and Eulerian-Eulerian model. The trajectories and potential deposition regions of solid particles are obtained, which can be used to explain the clogging mechanism of labyrinth channels. And then the experiments on particle deposition and particle motion are performed to compare with the analysis of two-phase flow. According to the stochastic trajectory model, an evaluation method for anti-clogging performance of labyrinth channels is proposed by introducing the variable of passage rate of particles (PRP). The analytic results show that the key parameterαis the most important factor on PRP, and then D/W, H/D is least, and another mathematic model between the four key parameters and PRP is regressed. Furthermore, the evaluation method is also tested for main-flow labyrinth channels. The PRP increases as the ratio of arc radius to the length of straight line increases, which is in accord with the design idea of main-flow channels.
     Considering the contradiction between hydraulic and anti-clogging performance of the labyrinth-channels emitters, PLC evaluating the hydraulic performance and PRP evaluating the anti-clogging performance are chosen as the optimization objectives, and multi-objective genetic algorithm NSGA-II is employed to solve the Pareto fronts of key parameters of trapezoidal and main-flow channels. The trade-off solutions can be obtained by calculating the minimum value of the function according to the weights of equations. This optimization method is well applicable for the labyrinth channels with the same shape but different dimensions, which benefits to the structural finalization of emitters with high performance.
引文
[1]水利部农村水利司.水土资源评价与节水灌溉规划[M].北京:中国水利水电出版社,1998.
    [2]水利部农村水利司.微灌工程技术[M].北京:中国水利水电出版社,1998.
    [3]周兆君.论我国农业节水灌溉及其发展[J].现代农业,2006,(12):79.
    [4]王留运,叶清平,岳兵.我国微灌技术发展的回顾与预测[J].节水灌溉,2000,(3):3-7.
    [5]姚振宪,何松林.滴灌设备与滴灌系统规划设计[M].北京:中国农业出版社,1999.
    [6]杨培岭,任树梅.发展我国设施农业节水灌溉技术的对策研究[C].21世纪中国微灌发展战略研讨会论文.1999,21-25.
    [7] Dasberg S, Or D. Drip irrigation[M]. Berlin: Springer, 1999.
    [8] Keller J, Bliesner RD. Sprinkle and trickle irrigation[M]. New York: AVI Book, 1990.
    [9]秦为耀,丁必然,曾建军,等.节水灌溉技术[M].北京:中国水利水电出版社,2001.
    [10]张俊,赵万华,粟晓玲,等.微灌长流道灌水器结构特性的研究综述[J].农业工程学报,2005,21(1):182-185.
    [11]凌智勇,丁建宁,杨继昌,等.微流动的研究现状及影响因素[J].江苏大学学报,2002,23(6):1-5.
    [12]陶然,权晓波,徐建中.微尺度流动研究中的几个问题[J].工程热物理学报,2001,22(5):575-577.
    [13] Pfahler J, Harley J, Bau H. Gas and liquid flow in small channels[J]. ASME Proc, 1991(32): 49-60.
    [14]杜东兴.可压缩性及粗糙度对微细管内流动及换热的影响[D].北京:清华大学,2000.
    [15] Stemme G, Kittilsland G, Norden B. A sub-micron particle filter in silicon channels[J]. Sensors and Actuators, 1990, 431(4): 21-23.
    [16] Mala GM, Li D. Flow characteristics of water in microtubes[J]. International Journal of Heat and Fluid Flow, 1999, 20:142-148.
    [17] Choi SB, Barron RF, Warrington RQ. Fluid flow and heat transfer in microtubes[J]. ASME DSC, 1991,32:123-133.
    [18] Wang BX, Peng XF. Experimental investigation on liquid forced-convection heat transfer through microchannels[J]. International Journal of Heat and Fluid Flow, 1994, 37(1): 73-82.
    [19] Wu HY, Cheng P. Friction factors in smooth trapezoidal silicon microchannels with different aspect rations[J]. International Journal of Heat and Mass Transfer, 2003, 46: 2519-2525.
    [20] Peng XF, Peterson GP. Forced convection heat transfer of single-phase binary mixtures through microchannels[J]. Experimental Thermal Fluid Science, 1996, 12: 98-104.
    [21] Nguyen NT, Bochnia D, Kiehnscherrf R, et al. Investigation of forced convection in microfluid systems[J]. Sensors Actuaators A, 1996, 55: 49-55.
    [22] Pfund D, Rector D, Shekarriz A, et al. Pressure drop measuresments in a microchannel[J]. AICHE Journal, 2000, 46: 1496-1507.
    [23] Yang CY, Chien HT, Lu SR, et al. Friction characteristics of water, R134a and air in small tubes[C]. Proceedings of International Conference on Heat Transfer and Transport Phenomena in Microscale, New York, USA, 2000, 168-174.
    [24] Qu W, Mudawar I. Experimental and numerical study of the pressure drop and heat transfer in a single-phase micro-channel heat sink[J]. International Journal of Heat and Mass Transfer, 2002, 45:2549-2565.
    [25] Agostini B, Watel B, Bontemps A, et al. Liquid flow friction factor and heat transfer coefficient in small channels: an experimental investigation[J]. Experimental Thermal and Fluid Science, 2004, 28: 97-103.
    [26]景思睿,张鸣远.流体力学[M].西安:西安交通大学出版社,2001.
    [27] Pfahler J, Harley J, Bau H. Liquid and gas transport in small channels[J]. ASME DSC, 1990, 149-157.
    [28] Peng XF, Peterson GP, Wang BX. Friction flow characteristics of water flowing through rectangular microchannels[J]. Experimental Heat Transfer, 1994, 7: 249-264.
    [29] Qu WL, Mohiuddin M, Li DQ. Pressure-driven water flows in trapezoidal silicon microchannels[J]. International Journal of Heat and Mass Transfer, 2000, 43: 353-364.
    [30] Urbanek W, Zemel JN, Bau H. An investigation of the temperature dependence of poiseuille numbers in microchannel flow[J]. Journal of Micromechanics and Microengineering: Struct. Dev. Syst, 1993, 3: 206-208.
    [31] Jiang XN, Zhou ZY, Huang ZY, et al. Laminar flow through microchannels used for microscale cooling systems[C]. IEEE/CPMT Electronic Packaging Technology Conference, 1997, 119-122.
    [32] Peng XF, Peterson GP. Convective heat transfer and flow friction for water flow in microchannel structures[J]. International Journal of Heat and Mass Transfer, 1996, 39: 2599-2608.
    [33] Wilding P, Shoffner MA, Kircka LJ. Manipulation and flow of biological fluids in straight channels micromachined in silicon[J]. Clinical Chemistry, 1994, 40: 43-47.
    [34] Wu S, Braxxle J, Tai Y, et al. A suspended microchannel with integrated temperature sensors for high pressure flow studies[C]. MEMS’98, Heidelberg, Germany, 1998, 25-29.
    [35] Harley JC, Huang YF, Bau HH, et al. Gas flow in micro-channels[J]. Journal of Fluid Mechanics, 1995, 284: 257-274.
    [36] Judy J, Maynes D, Webb BW. Characterization of frictional pressure drop for liquid flows through microchannels[J]. International Journal of Heat and Mass Transfer, 2002, 45: 3477-3489.
    [37] Xu B, Ooi KT, Wong NT. Experimental investigation of flow friction for liquid flow in microchannels[J]. International Communications in Heat and Mass Transfer, 2000, 27(8): 1165-1176.
    [38]江小宁.微量流体测量与控制系统实验研究[D].博士学位论文,北京:清华大学,1996.
    [39] Souza MP, Sparrow EM. Periodically converging-diverging tubes and their turbulent heat transfer, pressure drop, fluid flow, and enhancement characteristics[J]. Journal of Heat Transfer, 1985, 107(35): 564-569.
    [40] Amano RS. Numerical study of laminar and turbulent heat transfer in a periodically corrugated wall channel[J]. Journal of Heat Transfer, 1985, 107(35): 564-569.
    [41] Ludger F. Friction factors for fully developed laminar flow in ducts confined by corrugated parallel walls[J]. International Journal of Heat Transfer, 1997, 40(3): 635-639.
    [42] Giampietro F. Heat transfer optimization in corrugated wall channels[J]. International Journal of Heat Transfer, 2000, 43(3): 4299-4310.
    [43] Mahmud S, Sadrul Islam AKM, Feroz CM. Flow and heat transfer characteristics inside a wavy tube[J]. Heat and Mass Transfer, 2003, 39: 387-393.
    [44] Nishimura T, Bian YN, Matsumoto Y, et al. Fluid flow and mass transfer characteristics in a sinusoidal wavy-walled tube at moderate Reynolds numbers for steady flow[J]. Heat and Mass Transfer, 2003, 39: 239-248.
    [45] Nishimura T, Murakami S, Arakawa S, et al. Flow observations and mass transfer characteristics in symmetrical wavy-walled channels at moderate Reynolds numbers for steady flow[J]. International Journal Heat Mass Transfer, 1990, 33(5): 835-845.
    [46]阴继翔,李国君,丰镇平.两种波纹通道内周期性充分发展对流换热的数值研究[J].热能动力工程,2005,20(3):250-254.
    [47] Comini G, Nonino C, Savino S. Effect of aspect ratio on convection enhancement in wavy channels[J]. Numerical Heat Transfer, Part A, 2003, 44: 21-37.
    [48] Yang CY, Asako Y, Yamaguchi Y, et al. Numerical prediction of transitional characteristics flow and heat transfer in a duct[J]. Journal of Heat Transfer, 1997, 119: 62-69.
    [49] Zhou H, Martinuzzi RJ, Khayat RE, et al. Influence of wall shape on vortex formation in modulated channel flow[J]. Physics of Fluids, 2003, 15(10): 3114-3133.
    [50]李玉柱,苑明顺.流体力学[M].北京:高等教育出版社,1998.
    [51]魏正英,唐一平,卢秉恒.滴灌管内嵌管状滴头的快速制造方法研究[J].农业工程学报,2001,17(2):55-58.
    [52] Bralts VF, Wu IP, Gitlin HM. Manufacturing variation and drip irrigation uniformity[J]. Transactions of the ASAE, 1981, 24: 113-119.
    [53] Peng GF, Wu IP, Phene C J. Temperature effects on drip line hydraulics[J].Transactions of the ASAE, 1986, 29(1): 211-215.
    [54] Wu IP, Phene CJ. Temperature effect on drip emitters and lateral lines[C]. ASAE Conference, 1984, 26-28.
    [55] Kang YH. Effect of operating pressures on microirrigation uniformity[J]. Irrigation Science, 2000, 20(1): 23-27.
    [56]郑耀泉.讨论我国滴头性能技术指标和结构型式的选择问题[J].灌溉排水,1992,11(2):8-13.
    [57] Wu IP, Gitlin HM. Drip irrigation design based on uniformity[J]. Transaction of the ASAE, 1974, 17(3): 429-432.
    [58] Wu IP. Energy gradient line approach for direct hydraulic calculation in drip irrigation design[J]. Irrigation Science, 1992, 13: 21-29.
    [59] Tal S, Zur B. Flow regime in helical long-path emitters[J]. Journal of Irrigation Drainage Division, 1980, 106(1): 27-35.
    [60]方部玲,赵德菱,韩柏和,等.园片迷宫长流道滴头的研究[C].耕作机械学会论文集,1997: 145-150.
    [61]雷显龙.滴头分形流通道设计及其水力特性的实验研究[D].北京:北京农业工程大学,2000.
    [62]国家技术监督局.农业灌溉设备-滴头技术规范和实验方法[S].1997.
    [63] Solomon K. Manufacturing variation of trickle emitters[J]. Transactions of the ASAE, 1979, 22(5): 1034-1038.
    [64] Bralts VF, Wu IP, Gitlin HM. Manufacturing variation and drip irrigation uniformity[J]. Transactions of the ASAE, 1981, 24(1): 113-119.
    [65] Ozekici B, Sneed RE. Manufacturing variation for various trickle irrigation on-line emitters[J]. Applied Engineering in Agriculture, 1995, 11(2): 235-242.
    [66] Kirnak H, Dogan E, Demir S, et al. Determination of hydraulic performance of trickle irrigation emitters used in irrigation systems in the Harran Plain[J]. Turkish Journal of Agriculture and Forestry, 2004, 28: 223-230.
    [67] Madramootoo CA, Khatri KC, Rigby M. Hydraulic performances of five different trickle irrigation emitters[J]. Canada Agricultural Engineering, 1988, 30(1): 1-4.
    [68]郑耀泉,宁堆虎.滴头制造偏差的模拟与滴灌系统随机设计方法的研究[J].水利学报,1991,22(7):3-9.
    [69]王留运.微灌灌水器制造偏差系数的计算方法与研究[J].节水灌溉,1993,(2):8-13.
    [70]陈振宇,高志强,赵美香,等.国内外常用滴(渗)管滴头供水规律实验研究[J].山西农业大学学报,1998,18(3):262-265.
    [71]王瑞环,赵万华,杨来侠,等.基于快速成形技术滴头的结构实验研究[J].西安交通大学学报,2003,37(5):542-545.
    [72]姚彬,刘志烽,张建萍.流道长度对内镶贴片式滴头性能参数影响的初步研究[J].节水灌溉,2003,(5):38-39.
    [73]张宝峰.三角形迷宫流道灌水器参数化设计研究[D].西安:西安交通大学,2005.
    [74]王建东,李光永,邱象玉,等.流道结构形式对滴头水力性能影响的实验研究[J].农业工程学报,2005,21(supp):100-103.
    [75]卢勇.滴灌滴头迷宫式流道内水力损失和流场的实验研究[D].西安:西安交通大学,2004.
    [76]李云开.滴头分形流道设计及其流动特性的实验研究与数值模拟[D].中国农业大学,2005.
    [77]王昊利,王元.Micro-PIV技术—粒子图像测速技术的新进展[J].力学进展,2005,35(1):77-90.
    [78] Bralts VF, Segerlind LJ. Finite element analysis of drip irrigation submain units[J]. Transactions of the ASAE, 1985, 28(3): 809-814.
    [79] Haghighi K, Bralts VF, Segerlind LJ. Finite element formulation of tee and bend components in hydraulic pipe network analysis[J]. Transactions of the ASAE, 1988, 31(6):1750-1758.
    [80] Bralts VF, Kelly SF, Shayya WH et al. Finite element analysis of microirrigation hydraulics using a virtual emitter system[J]. Transactions of the ASAE, 1993, 36(3): 717-725.
    [81]康跃虎.微灌系统有限元法水力解析和设计(一~八)[J].节水灌溉,1998,(1)-1999,(2).
    [82]王尚锦,刘小民,席光,等.迷宫式滴头内流动的有限元数值分析[J].农业机械学报,2000,31(4):43-46.
    [83]王尚锦,刘小民,席光,等.农灌用新型迷宫式滴头内流动特性分析[J].农业工程学报,2000,16(4):61-63.
    [84]刘小民.粘性可压缩与不可压缩流动有限元数值计算方法及其应用[D].西安:西安交通大学,2000.
    [85]魏正英.迷宫型滴灌灌水器结构设计与快速开发技术研究[D].西安:西安交通大学,2003.
    [86]孟桂祥,张鸣远,赵万华,等.滴灌滴头内流场的数值模拟及流道优化设计[J].西安交通大学学报,2004,38(9):920-924.
    [87]魏青松,史玉升,董文楚,等.新型灌水器快速自主开发数字实验研究[J].节水灌溉,2004,(1):10-14.
    [88] Wei QS, Shi YS, Lu G, et al. Study of hydraulic performance of the eddy channel for drip emitters[J]. Irrigation and Drainage, 2006, 55: 61-72.
    [89] Wei QS, Shi YS, Dong WC, et al. Study on hydraulic performance of drip emitters by computational fluid dynamics[J]. Agricultural Water Management, 2006, 84: 130-136.
    [90] Salvador PG, Arviza VG, Bralts VF. Hydraulic flow behavior through an in-line emitter labyrinth using CFD techniques[C]. ASAE/CSAE Meeting. Ottawa, Canada, ASAE/CSAE, 2004:1-8.
    [91]李永欣,李光永,邱象玉等.迷宫滴头水力特性的计算流体动力学模拟[J].农业工程学报,2005,21(3):12-16.
    [92]李云开,杨培岭,任树梅,等.圆柱型灌水器迷宫式流道内部流体流动分析与数值模拟[J].水动力学研究与进展,2005,20(6):736-743.
    [93] Jun Zhang, Wanhua Zhao, Bingheng Lu et al. Numerical and experimental study on hydraulic performance of emitters with arc labyrinth channels[J]. Computers and Electronics in Agriculture, 2007, 56:120-129.
    [94]张俊,赵万华,卢秉恒,等.基于计算流体动力学的迷宫型灌水器流量预测研究[J].机械工程学报,2007,43(4):159-162.
    [95]翟国亮,吕谋超,王晖,等.微灌系统的堵塞及防治措施[J].农业工程学报,1999,15(1):144-147.
    [96] Talozi SA, Hilld JS. Simulating emitter clogging in a micro-irrigation subunit[J]. Transactions of the ASAE, 2001, 44(6): 1503-1509.
    [97] Nakayama FS, Bucks DA. Water quality in drip/trickle irrigation: a review[J]. Irrigation science, 1991, (12): 187-192.
    [98] Bucks DA, Nakayama FS, Gilbert RG. Trickle irrigation water quality and prevention maintenance[J]. Agricultural Water Management, 1979, 2: 149-162.
    [99] Wu IP. Design considerations of drip irrigation systems[C]. ICID, Fifteenth Congress, 1993:1-30.
    [100] Adin A, Sacks M. Dripper clogging factors in waste water irrigation[J]. Journal of Irrigation and Drainage Engineering, 1991,117(6): 813-826.
    [101] Taylor HD, Bastos RKX, Pearson HW, et al. Drip irrigation with waste stabilization pond effluents: solving the problem of emitter fouling[J]. Water Science Technology, 1995, 31: 417-424.
    [102] Ravina I, Paz E, Sofer Z et al. Control of Clogging in Drip Irrigation with Stored Treated Municipal Sewage Effluent[J]. Agricultural Water Management, 1997, 33: 127~137.
    [103]仵峰,范永申,李辉,等.地下滴灌灌水器堵塞研究[J].农业工程学报,2004,20(1):80-83.
    [104] Camp CR. Subsurface drip irrigation: a review[J]. Transactions of the ASAE. 1998, 41(5): 1353-1367.
    [105]张俊,洪军,赵万华,等.基于正交实验的迷宫流道灌水器参数化研究[J].西安交通大学学报,2006,40(1):31-35.
    [106]王建东.滴头水力性能与抗堵塞性能实验研究[D].北京:中国农业大学,2004.
    [107]戴燕.基于两相流的迷宫流道灌水器抗堵塞性能实验研究[D].西安:西安交通大学,2006.
    [108]宋康,赵玉龙,蒋庄德,等.激光干涉微轮廓测量仪[J].光学精密工程,2003,11(3):245-248.
    [109] Nishimura T, Ohori Y, Kawamura Y. Flow characteristics in a channel with symmetric wavy wall for steady flow[J]. Journal of Chemical Engineering of JAPAN, 1984, 17(5): 466-471.
    [110] Nishimura T,Murakami S,Arakawa S, et al.Flow observations and mass transfer characteristics in symmetrical wavy-walled channels at moderate Reynolds numbers for steady flow[J]. International Journal of Heat and Mass Transfer, 1990, 33(5): 835-845.
    [111] Marzio P, Enrico N, Thomas J. DNS study of turbulent transport at low Prandtl numbers in a channel flow[J]. Journal of Fluid Mechanics, 2002, 458: 419-441.
    [112] Li JC. Large eddy simulation of complex turbulent flows: Physical aspects and research trends[J]. Acta Mechanica Sinica, 2001, 17(4): 289-301.
    [113] Shen L, Yue DKP. Large-eddy simulation of free-surface turbulence[J]. Journal of Fluid Mechanics, 2001, 440: 75-116.
    [114] Lauder BE, Spalding DB. Lectures in Mathematical models of turbulence[M]. London: Acedemic Press, 1972.
    [115]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998.
    [116] Yakhot V, Orzag SA. Renormalization group analysis of turbulence: basic theory[J]. Journal of Science Computation, 1986, 1(1): 1-51.
    [117] Shih TH, Liou WW, Shabbir A, et al. A new k-εeddy viscosity model for high Reynolds number turbulent flow[J]. Computers fluids, 1995, 24(3): 227-238.
    [118] Gerolymos GA, Neubauer J, Sharma VC, et al. Improved prediction of turbomachinery flows using near-wall Reynolds-stress model[J]. Journal of Turbomachinery, 2002, 124(1): 86-99.
    [119] Mohammad AQ, Jang YJ, Chen HC, et al. Flow and heat transfer in rotating two-pass rectangular channels(AR=2) by Reynolds stress turbulence model[J]. International Journal of Heat and Mass Transfer, 2002, 45(9): 1823-1838.
    [120] Warsi, ZUA. Fluid Dynamics: Theoretical and Computational Approaches[M]. Washington DC: CRC Press, 1993.
    [121]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [122] Rush TA, Newell TA, Jacobi AM. An experimental study of flow and heat transfer in sinusoidal wavy passages[J]. International Journal of Heat and Mass Transfer, 1999, 42(9): 1541-1553.
    [123]国家技术监督局.GB/T 17187-1997,滴头技术规范和实验方法[S].1997.
    [124]中华人民共和国水利部.SL/T 67.1-1994,微灌灌水器[S].1994.
    [125]范洁川.近代流动显示技术[M].北京:国防工业出版社,2002.
    [126] Melling A. Tracer Particle and Seeding for Particle Image Velocimetry[J]. Measurement Science and Technology, 1997, 8(12): 1406-1416.
    [127]阮驰,传东,白永林,等.水流场PIV测试系统示踪粒子特性研究[J].实验流体力学,2006,20(2):72-77.
    [128]赵宇.PIV测试中示踪粒子性能的研究[D].大连:大连理工大学,2004.
    [129]仵峰,范永申,李金山,等.低压条件下灌水器水力性能实验研究[J].节水灌溉,2003,1:14-16.
    [130]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994.
    [131]方开泰,马长兴.正交与均匀实验设计[M].北京:科学出版社,2001.
    [132]李忠华,张永利,孙可明.流体力学[M].沈阳:东北大学出版社,2004.
    [133]郭金吉,戴沨,徐明华.概率论与数理统计[M].北京:化学工业出版社,2003.
    [134] Takahiro A, Shougo H. Transition of the flow in a symmetric channel with periodically expanded grooves[J]. Chemical Engineering Science, 2006, 61: 2721-2729.
    [135]高允彦.正交及回归实验设计方法[M].北京:冶金工业出版社,1988.
    [136]李云雁,胡传荣.实验设计与数据处理[M].北京:化学工业出版社,2005.
    [137]朱勇华,邰淑彩,孙韫玉.应用数理统计[M].武汉:武汉水利电力大学出版社,1999.
    [138] Liu D, Garimella SV. Investigation of liquid flow in microchannels[J]. Thermophysics and Heat Transfer, 2004, 1(18): 65-72.
    [139] Moffat RJ. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1: 3-17.
    [140]卢秉恒,唐一平,李涤尘.激光快速成型制造技术的发展与应用[J].航空工程与维修,1997,(7):15-17.
    [141] Padmakumari O, Sivanappan RK. Study of clogging of emitters in drip systems[C]. Proceedings of the Third International Drip/Trickle Irrigation Congress, Sanfrancisco, USA: ASAE, 1985: 80-83.
    [142] Dekreij C, Van DB, Runia WT. Drip irrigation emitter clogging in dutch greenhouses as affected by methane and organic acids[J]. Agricultural Water Management, 2003, 60(2): 73-85.
    [143] Gilbert RG, Nakayama FS, Bucks DA. Trickle irrigation: prevention of clogging[C]. Transactions of the ASAE, 1977: 24(3), 26-29.
    [144] Zhang Jun, Zhao Wanhua, Lu Bingheng et al. Numerical investigation of the clogging mechanism in labyrinth channel of the emitter. International Journal for Numerical Methods in Engineering, 2007, 70(13): 1598-1612.
    [145]王文娥,王福军,严海军迷宫滴头CFD分析方法研究[J].农业机械学报,2006,37(10):70-73.
    [146]王福军,王文娥.滴头流道CFD分析的研究进展与问题[J].农业工程学报,2006,22(7):188-192.
    [147] Mei RW, Adrian RJ, Hanratty TJ. Particle dispersion in isotropic turbulence under stokes drag and basset force with gravitational settling[J]. Journal of Fluid Mechanics, 1991, 225: 481-495.
    [148] Triesch O, Bohnet M. Measurement and CFD prediction of velocity and concentration profiles in a decelerated gas-solids flow[J]. Power Technology, 2001, 115: 101-113.
    [149] ISO Committee. Clogging Test Methods for Emitters[S]. ISO /TC 23/SC 18. 2003.
    [150] Asakura K, Asari T, Nakajima I. Simulation of solid-liquid flows in a vertical pipe by a collision model[J]. Powder Technology, 1997, 94: 201-206.
    [151] Griffiths WD, Boysan F. Computational fluid dynamics (CFD) and empirical modeling of the performance of a number of cyclone samplers[J]. Journal of Aerosol science, 1996, 27(2): 281-304.
    [152] Hoekstra AJ, Derksen JJ, Akker HEA, et al. An experimental and numerical study of turbulent swirling flow in gas cyclones[J]. Chemical Engineering Science, 1999, 54(13): 2055-2065.
    [153]黄兴华,王道连,王如竹,等.旋风分离器中气相流动特性及颗粒分离效率的数值研究[J].动力工程,2004,24(3):436-441.
    [154]王海刚,刘石.不同湍流模型在旋风分离器三维数值模拟中的应用和比较[J].热能动力工程,2003,18(4):337-342.
    [155]魏正英,赵万华,唐一平,等.滴灌灌水器迷宫流道主航道抗堵设计方法研究[J].农业工程学报,2005,21(6):1-7.
    [156] Cohon JL. Multiobjective programming and planning[M]. New York: Academic Press, 1978.
    [157] Jeffrey AJ, Deepak G, Mahmut AG, et al. Supply chain multi-objective simulation optimization[C]. Winter Simulation Conference Proceedings, 2002, 2: 1306-1314.
    [158]王小平,曹立明.遗传算法:理论、应用及软件实现[M].西安:西安交通大学出版社,2002.
    [159] Fonseca CM, Fleeting PJ. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization[C]. Proceedings of the Fifth International Conference on Genetic Algorithms, California, Morgan Kaufmann, 1993: 416-423.
    [160] Horn J, Nafploitis N, Goldberg DE. A nicked Pareto genetical gorithm for multiobjective optimization[C]. Proceedings of the First IEEE Conference on Evolutionary Computation, Z.Michalewicz, IEEE Press, 1994: 82-87.
    [161] Zitzler E. Evolutionary algorithms for multiobjective optimization: Methods and applications[D]. Switzerland: Federal Institute of Technology, 1999.
    [162] Srinivas N, Deb K. Multiobjective function optimization using nondominated sorting genetic algorithms[J]. Evolutionary Computation, 1995, 2(3): 221-248.
    [163] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-ΙΙ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
    [164]朱学军.基于Pareto多目标进化计算的健壮性设计方法及应用研究[D].上海:上海交通大学,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700