用户名: 密码: 验证码:
大脑网络的模块化Latching动力模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然是灵感的源泉。人工智能的发展史就是不断向自然智能学习的过程。人们在探索大脑认知机制的道路上永不止息。在人类历史漫长的进化过程中,大脑皮层经历了加速变厚进而层叠、表面积和体积加速增加的过程。5万年前,人猿揖首话别。从形态和结构上,人类和其同宗近亲并不存在本质的差别。但是人类却具有其它任何物种都不具有的、目前为止自然界出现的最高形式的智能——语言。人类语言能力的优势在于能从有限的元素构造出无穷的语句。而将其模型化则是对语言进行深入研究的首要任务。
     Latching (锁连)是SISSA (意大利国际高等研究生院)的A. Treves根据语言无穷递归的思想,利用Potts网络构造出来的一种自适应迭代动力学模型。当网络满足一定的条件时,Latching能利用有限的模式生成无穷的模式序列。尽管Latching动力很好的解释了思维、行动、语言中存在的策略转移现象,但也面临着一些最基本的挑战。比如,Latching动力是建立在单个网络上的,而我们熟知的大脑皮层存在很多功能分区。如何结合大脑的连接结构去构造更加符合大脑皮层的Latching动力学模型呢?本文成功构造了模块化Latching动力学模型,并研究了不同的网络结构对Latching序列的影响。作为对模块化Latching动力的支持,本文还研究了听觉模态下的功能子网络结构及其实现机制。具体内容包括以下研究内容:
     首先,论文探讨了Potts模型的离散状态在大脑中的可能存在机制。通过对微柱神经元和连接结构的梳理,搭建了微柱的神经元网络。并用Izhikevich神经元模型对网络实现了仿真。仿真的结果表明,微柱的Potts态可能源于神经元子集的同步放电。
     其次,在正式开始对Latching动力进行模块化扩展之前,首先利用开源的fMRI数据对听觉皮层的子网络进行了分析。通过单步Mean-Shift转移对fMRI的时序信号进行聚类分析,发现在听觉皮层中,无论是基本级的激活区域,还是比较抽象的高级激活区域,功能子网络都呈现模块化无标度分布。
     本文的核心工作就是利用听觉皮层功能子网络的特点对Latching作模块化扩展。本文率先设计并实现了Potts网络中的异联想突触连接公式,将Latching动力推广到模块化网络。并引入突触传输时延和自适应阈值反馈控制使得系统看起来更加符合大脑中的神经传导机制。作为引入模块化Latching动力学模型的载体,分析了大脑网络(M-网络)中Latching转移的特点。
     随后,又比较了大脑网络和小脑网络(K-网络)中Latching动力学的差异。研究显示,小脑网络中的Latching链具有相对固定的转移路径,大脑网络则更加可变。小脑网络中的Latching链长度对网络的重绕概率相对稳定,而大脑网络对重绕概率非常敏感。此外,噪声连接和反馈连接对大脑网络的影响较小,而小脑网络则比较敏感。这些结论提示网络的结构可能是促成人类智能出现的原因之一。
     最后,论文还探讨功能网络切换的可能机制。当刺激出现时大脑中将存在定向快速Latching动力,那么是什么样的机制促成了网络的快速切换呢?通过对听觉实验的开源fMRI实验的分析发现,网络可能存在着层次性的激活机制,某些核心体素在网络的快切换中可能扮演关键的角色。
Inspiration always stems from nature. The development history of artifcialintelligence just witnesses the process of human learning from the natural intelli-gence. And it seems such a kind of pursuit will never stop in the future. In the longriver of human evolution, the cortex grows thicker, and further into lamination. Theincreasing speed of cortical surface and volume have being accelerated in the pastten thousands of years. About50thousands years ago, the humankind departedfrom their brothers, apes. Though there are no qualitative diferent traits that candiferentiate humankind from their clan relatives, but the language ability, whichis considered to be the most outstanding intelligence in the nature, is amazinglyunique for the humankind. Human language is able to construct infnite sentencesfrom fnite gradients. And how to model such an ability is the frst task towards thefuture studies on languages.
     Latching chain, designed by Alessandro Treves from SISSA using Potts net-work, is a kind of adaptive dynamics model that derived from the idea of infniterecursion of language. Latching dynamics generates infnite patterns sequences fromfnite pattern set when some specifc network connection conditions are fulflled.Though latching chain well explains the strategy transition phenomenon in actions,thoughts and language, they also face many basic challenges. For example, latchingchain is built on a single network, which is contrary to the imaging evidences onfunctional area divisions. How to construct a more feasible latching dynamics modelaccording to the cortical network connections? In this thesis, a modular latchingmodel is successfully constructed. And the impacts of diferent network structuresto the modular latching chain are also studied. As a support for the modular latch-ing dynamics, the functional networks of auditory modality and the fast-rewiringmechanism underlying the object-cognition are also investigated by analyzing theopen fMRI dataset. The details are described as follows:
     Firstly, as an efort to help others understand the Potts network, the possibleelectrophysiological mechanism of the discrete states of Potts unit is discussed bynetwork simulation, where the neuron characters and network structure are synthe-sized and constructed from the minicolumn. Simulation results using Izhikevich neuronal model shows that the Potts state may stem from the synchronous spikingof neuronal subsets.
     Secondly, before the modular extension of Latching dynamics, the function-al network structure of auditory modality is studied by analyzing the open fMRIdataset. One-step mean-shift clustering algorithm is proposed to cluster the fMRItemporal signal. Results show that the functional subnetworks in both the basic-level activation and the subordinate-level activation follow the modular scale-freedistribution.
     Then it comes the central part of the thesis, the modular extension of latchingdynamics. Taking the modular small-world network structure into consideration,we successfully design the weight formula of the hetero-associative connection. Theintroduction of transmission delay and adaptive threshold as a global feedback makesthe system more similar to the actual neuronal information processing mechanism.As a carrier supporting the modular latching dynamics, the dynamics features ofcerebrum (M-network) are studied by computation simulations.
     After the introduction of modular latching chain, the dynamics diferences be-tween cerebrum and cerebellum (K-network) are compared. Simulation studies showthat the latching chains in the K-network have relative more fxed transition path-way, while they are more fexible in the cerebrum. The length of latching chainsof M-network is robust to the changes of rewiring probability. On contrary, on-ly a small range of rewiring probability supports longer latching chains. Besidesthat, M-network is more robust to the noise pattern pairs and feedback connectionsthant K-nework. These result hints that the specifc connection structure maybeone important factor leading to the advent of human cognition.
     Lastly, we discuss the probable switching mechanism underlying the fast cogni-tion to the complex stimulus. There would be directed and fast latching-switchingwhen outer stimuli enters. So what mechanism support the fast-rewiring of func-tional network in the brain? Through the open fMRI dataset analysis, we concludethat there may be hierarchical activation mechanism. That is, fast-rewiring maydepends on some skeleton voxels.
引文
[1] Hauser M D, Dehaene S, Dehaene-Lambertz G, et al. Spontaneous number dis-crimination of multi-format auditory stimuli in cotton-top tamarins (Saguinusoedipus)[J]. Cognition,2002,86(2):B23–B32.
    [2] Amit D J. Neural networks counting chimes[J]. Proc. Natl. Acad. Sci. USA,1987,85:2141–2145.
    [3] Hauser M, Chomsky N, Fitch W T. The language faculty: what is it, who hasit, and how did it evolve?[J]. Science,2002,298:1569–1579.
    [4] Meck W H, Church R M. A mode control model of counting and timing pro-cesses.[J]. Journal of Experimental Psychology: Animal Behavior Processes,1983,9(3):320.
    [5] Brannon E M, Terrace H S. The evolution and ontogeny of ordinal numericalability[J]. The cognitive animal: Empirical and theoretical perspectives onanimal cognition,2002:197–204.
    [6] Pinker S, Jackendof R. The faculty of language: what’s special about it?[J].Cognition,2005,95(2):201–236.
    [7] Jackendof R, Pinker S. The nature of the language faculty and its impli-cations for evolution of language (Reply to Fitch, Hauser, and Chomsky)[J].Cognition,2005,97(2):211–225.
    [8] Fitch W T. Evolutionary Developmental Biology and Human Language Evo-lution: Constraints on Adaptation[J]. Evolutionary Biology,2012:1–25.
    [9] Treves A. Frontal latching networks: A possible neural basis for infnite re-cursion[J]. Cognitive Neuropsychology,2005,22(3-4):276–291.
    [10] Hopfeld J J. Neural networks and physical systems with emergent collectivecomputational abilities[J]. Proc. Nat. Acad. Sci,1982,79:2554–2558.
    [11] Sherrington D, Kirkpatrick S. Solvable model of a spin-glass[J]. Physicalreview letters,1975,35(26):1792.
    [12] Edwards S F, Anderson P W. Theory of spin glasses[J]. Journal of Physics F:Metal Physics,1975,5(5):965–974.
    [13] Mydosh J. From Giant Moment to Kondo and Spin Glass Behavior: TheElectrical Resistivity of PdFe and (PdFe) H[J]. Physical Review Letters,1974,33(26):1562–1566.
    [14] Amit D J, Gutfreund H, Sompolinsky H. Spin-glass models of neural network-s[J]. Physical Review A,1985,32(2):1007.
    [15] Amit D J, Gutfreund H, Sompolinsky H. Storing Infnite Numbers of Patternsin a Spin-Glass Model of Neural Networks[J]. Phys. Rev. Lett.,1985,55:1530–1533.
    [16] Amit D J, Gutfreund H, Sompolinsky H. Information storage in neural net-works with low levels of activity[J]. Phys. Rev. A,1987,35(5):2293–2303.
    [17] Hopfeld J J. Neurons with graded response have collective computationalproperties like those of two-state neurons[J]. Proceedings of the national a-cademy of sciences,1984,81(10):3088–3092.
    [18] Willshaw D J, Buneman O P, Longuet-Higgins H C. Non-holographic associa-tive memory.[J]. Nature,1969.
    [19] Barlow H B, et al. Single units and sensation: a neuron doctrine for perceptualpsychology[J]. Perception,1972,1(4):371–394.
    [20] Braitenberg V. Cell assemblies in the cerebral cortex[C]//. Heim R, Palm G.Theoretical Approaches to Complex Systems.[S.l.]: Springer, Berlin,1978:171–188.
    [21] Perez Vicente C, Amit D. Optimised network for sparsely coded patterns[J].Journal of physics. A, mathematical and general,1989,22(5):559–569.
    [22] Sompolinsky H. Neural networks with nonlinear synapses and a static noise[J].Physical Review A,1986,34(3):2571.
    [23] Derrida B, Gardner E, Zippelius A. An exactly solvable asymmetric neuralnetwork model[J]. Europhys. Lett.,1987,4:167–173.
    [24] Gardner E, Derrida B. Optimal storage properties of neural network models[J].Journal of Physics A: Mathematical and General,1989,21(1):271.
    [25] Kanter I. Potts-glass models of neural networks[J]. Phys. Rev. A,1988,37:2739–2742.
    [26] Meunier C, Hansel D, Verga A. Information processing in three-state neuralnetworks[J]. Journal of Statistical Physics,1989,55(5):859–901.
    [27] Gerl F, Bauer K, Krey U. Learning with Q-state clock neurons[J]. Zeitschriftfu¨r Physik B Condensed Matter,1992,88(3):339–347.
    [28] Katayama K, Horiguchi T. Layered neural network with intra-layer connec-tions using Q-states clock neurons[J]. Physica A: Statistical Mechanics andits Applications,2001,297(3):532–548.
    [29] Boll′e D, Cools R, Dupont P, et al. Mean-feld theory for the q-state potts-glassneural network with biased patterns[J]. Journal of Physics A: Mathematicaland General,1992,26(3):549.
    [30] Kropf E, Treves A. The storage capacity of potts models for semantic memoryretrieval[J]. Journal of Statistical Mechanics: Theory and Experiment,2005,8(P08010).
    [31] Kropf E, Treves A. The complexity of latching transitions in large scalecortical networks[J]. Natural Computing,2007,6(2):169–185.
    [32] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J].Science,1998,286:509–512.
    [33] Russo E, Treves A. Cortical free association dynamics: distinct phases ofa latching network[J]. Phys Rev E Stat Nonlin Soft Matter Phys.,2012,85(5(051920)):1–18.
    [34] Gutfreund H. Neural networks with hierarchically correlated patterns[J]. Phys-ical Review A,1988,37(2):570.
    [35] Russo E, Namboodiri V M, Treves A, et al. Free association transitions inmodels of cortical latching dynamics[J]. New J Phys,2008,10(015008):1–19.
    [36] Tsodyks M, Feigelman M. The enhanced storage capacity in neural networkswith low activity level[J]. Europhys. Let.,1998,6(2):101–105.
    [37] Russo E, Pirmoradian S, Treves A. Associative latching dynamics vs. Syn-tax[C]//. Wang R, Gu F. Advances in Cognitive Neurodynamics(II).[S.l.]:Springer,2010:111–115.
    [38] Treves A. Spatial cognition, memory capacity and evolution of mammalianhippocampal networks[C]//. Tommasi L, Peterson M A, Nadel L. CognitiveBiology, Evolutionary and Developmental Perspectives on Mind, Brain andBehavior.[S.l.]: MIT Press,2009:41–60.
    [39] Gros C. Cognitive computation with autonomously active neural networks:an emerging feld[J]. Cognitive Computation,2009,1(1):77–90.
    [40] Ananthanarayanan R, Esser S K, Simon H D, et al. The cat is out of the bag:cortical simulations with109neurons,1013synapses[C]//High PerformanceComputing Networking, Storage and Analysis, Proceedings of the Conferenceon..[S.l.]:[s.n.],2009:1–12.
    [41] Markram H. The blue brain project[J]. Nature Reviews Neuroscience,2006,7(2):153–160.
    [42] Akrami A, Liu Y, Treves A, et al. Converging neuronal activity in inferiortemporal cortex during the classifcation of ‘morphed’ stimuli[J]. CerebralCortex,2009,19(4):760–776.
    [43] Treves A, Roudi Y. Of the evolution of the brain[EB/OL].[2013-06-30].http://people.sissa.it/~ale/TrevesRoudi.pdf.
    [44] Lorente de N′o R. Cerebral cortex: architecture, intracortical connections,motor projections[J]. Physiology of the nervous system,1949:288–330.
    [45] Mountcastle V B, et al. Modality and topographic properties of single neuronsof cat’s somatic sensory cortex[J]. J. Neurophysiol,1957,20(4):408–434.
    [46] Favorov O V, Kelly D G. Minicolumnar organization within somatosensorycortical segregates: I. Development of aferent connections[J]. Cerebral Cortex,1994,4(4):408–427.
    [47] Peters A, Sethares C. Myelinated axons and the pyramidal cell modules inmonkey primary visual cortex[J]. The Journal of comparative neurology,1996,365(2):232–255.
    [48] Hodgkin A L, Huxley A F. A quantitative description of membrane currentand its application to conduction and excitation in nerve[J]. The Journal ofphysiology,1952,117(4):500.
    [49] Traub R D, Wong R, Miles R, et al. A model of a CA3hippocampal pyramidalneuron incorporating voltage-clamp data on intrinsic conductances[J]. Journalof Neurophysiology,1991,66(2):635–650.
    [50] McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervousactivity[J]. Bulletin of mathematical biology,1943,5(4):115–133.
    [51] Portillo I J G, Gleiser P M. An adaptive complex network model for brainfunctional networks[J]. PloS one,2009,4(9):e6863.
    [52] Lundqvist M, Rehn M, Djurfeldt M, et al. Attractor dynamics in a modularnetwork model of neocortex[J]. Network: Computation in Neural Systems,2006,17(3):253–276.
    [53] Hebb D O. The organization of behavior: A neuropsychological theo-ry[M].[S.l.]: Wiley, New York,1949.
    [54] Palm G. Neural assemblies, an alternative approach to artifcial intelli-gence[M].[S.l.]: Springer-Verlag New York, Inc.,1982.
    [55] EkebergO¨, Wallen P, Lansner A, et al. A computer based model for realisticsimulations of neural networks[J]. Biological cybernetics,1991,65(2):81–90.
    [56] Lansner A, Frans′en E. Modelling Hebbian cell assemblies comprised of corticalneurons[J]. Network: Computation in Neural Systems,1992,3(2):105–119.
    [57] Mountcastle V B. Perceptual Neuroscience: The Cerebral Cortex[M].[S.l.]:Harvard Univ. Press, Cambridge, MA,1998.
    [58] Lansner A, Frans′en E, Sandberg A. Cell assembly dynamics in detailed andabstract attractor models of cortical associative memory[J]. Theory in Bio-science,2003,122(1):19–36.
    [59] Abeles M. Local Cortical Circuits: An Electrophysiological study[M].[S.l.]:Springer, Berlin,1982.
    [60] Pulvermu¨ller F, Knoblauch A. Discrete combinatorial circuits emerging inneural networks: A mechanism for rules of grammar in the human brain?[J].Neural Networks,2009,22:161–172.
    [61] Lu¨cke J, von der Malsburg C, Wu¨rtz R. Macrocolumns as decision units[J].Artifcial Neural Networks—ICANN2002,2002:139–139.
    [62] Lu¨cke J, Bouecke J. Dynamics of cortical columns–self-organization of recep-tive felds[J]. Artifcial Neural Networks: Biological Inspirations–ICANN2005,2005:31–37.
    [63] DeFelipe J, Farin as I. The pyramidal neuron of the cerebral cortex: mor-phological and chemical characteristics of the synaptic inputs[J]. Progress inneurobiology,1992,39(6):563–607.
    [64] Peters A. The morphology of minicolumns[J]. The Neurochemical Basis ofAutism,2010:45–68.
    [65] Fanselow E E, Richardson K A, Connors B W. Selective, state-dependentactivation of somatostatin-expressing inhibitory interneurons in mouse neo-cortex[J]. Journal of neurophysiology,2008,100(5):2640–2652.
    [66] Binzegger T, Douglas R J, Martin K A. A quantitative map of the circuit ofcat primary visual cortex[J]. The Journal of Neuroscience,2004,24(39):8441–8453.
    [67] Markram H, Toledo-Rodriguez M, Wang Y, et al. Interneurons of the neocor-tical inhibitory system[J]. Nature Reviews Neuroscience,2004,5(10):793–807.
    [68] Richardson K, Fanselow E, Connors B. Neocortical anatomy and physiology[J].Epilepsy. A comprehensive textbook.2nd ed. Philadelphia (PA): LippincottWilliams and Wilkins,2007:323–335.
    [69] Gupta A, Wang Y, Markram H. Organizing principles for a diversity ofGABAergic interneurons and synapses in the neocortex[J]. Science,2000,287(5451):273–278.
    [70] Izhikevich E M. Which model to use for cortical spiking neurons?[J]. NeuralNetworks, IEEE Transactions on,2004,15(5):1063–1070.
    [71] Buxhoeveden D P, Casanova M F. The minicolumn hypothesis in neuro-science[J]. Brain,2002,125(5):935–951.
    [72] Haeusler S, Schuch K, Maass W. Motif distribution, dynamical properties,and computational performance of two data-based cortical microcircuit tem-plates[J]. Journal of physiology, Paris,2009,103(1):73.
    [73] McCormick D A, Connors B W, Lighthall J W, et al. Comparative electro-physiology of pyramidal and sparsely spiny stellate neurons of the neocortex[J].Journal of Neurophysiology,1985,54(4):782–806.
    [74] Callaway E M, et al. Feedforward, feedback and inhibitory connections inprimate visual cortex[J]. Neural Networks,2004,17(5):625–632.
    [75] Thomson A M, West D C, Wang Y, et al. Synaptic connections and smallcircuits involving excitatory and inhibitory neurons in layers2–5of adult ratand cat neocortex: triple intracellular recordings and biocytin labelling invitro[J]. Cerebral Cortex,2002,12(9):936–953.
    [76] Treves A. Computational constraints that may have favoured the laminationof sensory cortex[J]. Journal of Computational Neuroscience,2003,14(3):271–282.
    [77] Netof T I, Clewley R, Arno S, et al. Epilepsy in small-world networks[J]. TheJournal of neuroscience,2004,24(37):8075–8083.
    [78] Jablonski P, Poe G R, Zochowski M. Structural network heterogeneities andnetwork dynamics: A possible dynamical mechanism for hippocampal memoryreactivation[J]. Physical Review E,2007,75(1):011912.
    [79] Golomb D, Ermentrout G B. Slow excitation supports propagation of slowpulses in networks of excitatory and inhibitory populations[J]. Physical ReviewE,2002,65(6):061911.
    [80] French D, Gruenstein E. An integrate-and-fre model for synchronized burst-ing in a network of cultured cortical neurons[J]. Journal of computationalneuroscience,2006,21(3):227–241.
    [81] Bear M F, Connors B W, Paradiso M A. Neuroscience[M].[S.l.]: LippincottWilliams&Wilkins,2007.
    [82] Favorov O V, Kelly D G. Minicolumnar organization within somatosensorycortical segregates: II. Emergent functional properties[J]. Cerebral Cortex,1994,4(4):428–442.
    [83] Jain A K, Vailaya A. Image retrieval using color and shape[J]. Pattern recog-nition,1996,29(8):1233–1244.
    [84] Zhang D, Islam M M, Lu G. A review on automatic image annotation tech-niques[J]. Pattern Recognition,2012,45(1):346–362.
    [85] Park S B, Lee J W, Kim S K. Content-based image classifcation using a neuralnetwork[J]. Pattern Recognition Letters,2004,25(3):287–300.
    [86] Snow J C, Strother L, Coros A C, et al. How independent are form and colorin the ventral visual pathway?[J]. Journal of Vision,2012,12(9):510–510.
    [87] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapidscene analysis[J]. Pattern Analysis and Machine Intelligence, IEEE Transac-tions on,1998,20(11):1254–1259.
    [88] PASCAL. The PASCAL Object Recognition Database Collection[EB/OL].
    [2013-06-30]. http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html.
    [89] Canny J. A computational approach to edge detection[J]. Pattern Analysisand Machine Intelligence, IEEE Transactions on,1986(6):679–698.
    [90] Pirmoradian S, Treves A. BLISS: an artifcial language for learnability stud-ies[J]. Cognitive Computation,2011:1–15.
    [91] Bullmore E, Sporns O. Complex brain networks: graph theoretical analysisof structural and functional systems[J]. Nature Reviews Neuroscience,2009,10(3):186–198.
    [92] Eguiluz V M, Chialvo D R, Cecchi G A, et al. Scale-free brain functionalnetworks[J]. Physical review letters,2005,94(1):18102.
    [93] Achard S, Salvador R, Whitcher B, et al. A resilient, low-frequency, small-world human brain functional network with highly connected association cor-tical hubs[J]. The Journal of Neuroscience,2006,26(1):63–72.
    [94] Park C h, Kim S Y, Kim Y H, et al. Comparison of the small-world topologybetween anatomical and functional connectivity in the human brain[J]. Phys-ica A: statistical mechanics and its applications,2008,387(23):5958–5962.
    [95] Tomasi D, Volkow N D. Association between functional connectivity hubs andbrain networks[J]. Cerebral Cortex,2011,21(9):2003–2013.
    [96] Buckner R L, Sepulcre J, Talukdar T, et al. Cortical hubs revealed by intrin-sic functional connectivity: mapping, assessment of stability, and relation toAlzheimer’s disease[J]. The Journal of Neuroscience,2009,29(6):1860–1873.
    [97] Ferrarini L, Veer I M, Baerends E, et al. Hierarchical functional modularityin the resting-state human brain[J]. Human brain mapping,2009,30(7):2220–2231.
    [98] Adams R B, Janata P. A comparison of neural circuits underlying auditoryand visual object categorization[J]. Neuroimage,2002,16(2):361–377.
    [99] Davis M H, Johnsrude I S, et al. Hearing speech sounds: top-down infuenceson the interface between audition and speech perception[J]. Hearing research,2007,229(1-2):132–147.
    [100] Peelle J E, Johnsrude I S, Davis M H. Hierarchical processing for speech inhuman auditory cortex and beyond[J]. Frontiers in human neuroscience,2010,4.
    [101] Okada K, Rong F, Venezia J, et al. Hierarchical organization of human audi-tory cortex: evidence from acoustic invariance in the response to intelligiblespeech[J]. Cerebral Cortex,2010,20(10):2486–2495.
    [102] Friston K, Holmes A, Ashburner J, et al. SPM8[EB/OL].[2013-06-30]. http://www.fl.ion.ucl.ac.uk/spm/.
    [103] fMRIDC. fMRIDC site[EB/OL].[2013-06-30]. http://www.fmridc.org/f/fmridc/54.html.
    [104] Talairach P, Tournoux J. A stereotactic coplanar atlas of the human brain[缺文献类型标志代码].[S.l.]: Stuttgart: Thieme.
    [105] Cheng J, Shi F, Wang K, et al. Nonparametric Mean Shift Functional Detec-tion in the Functional Space for Task and Resting-state fMRI[C]//Workshopon fMRI data analysis: statistical modeling and detection issues in intra-andinter-subject functional MRI data analysis, in conjunction with the MICCAI2009..[S.l.]:[s.n.],2009.
    [106] Comaniciu D, Meer P. Mean shift: A robust approach toward feature spaceanalysis[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2002,24(5):603–619.
    [107] Tomasi D, Volkow N D. Functional connectivity density mapping[J]. Proceed-ings of the National Academy of Sciences,2010,107(21):9885–9890.
    [108] Farooqui A A, Mitchell D, Thompson R, et al. Hierarchical organization ofcognition refected in distributed frontoparietal activity[J]. The Journal ofNeuroscience,2012,32(48):17373––17381.
    [109] Shen K, Bezgin G, Hutchison R M, et al. Information processing architec-ture of functionally defned clusters in the macaque cortex[J]. The Journal ofNeuroscience,2012,32(48):17465––17476.
    [110] Spoormaker V I, Schro¨ter M S, Gleiser P M, et al. Development of a large-scalefunctional brain network during human non-rapid eye movement sleep[J]. TheJournal of Neuroscience,2010,30(34):11379–11387.
    [111] Grifths T D, Warren J D. What is an auditory object?[J]. Nature ReviewsNeuroscience,2004,5(11):887–892.
    [112] Rothschild G, Nelken I, Mizrahi A. Functional organization and populationdynamics in the mouse primary auditory cortex[J]. Nature neuroscience,2010,13(3):353–360.
    [113] Amati D, Shallice T. On the emergence of modern humans[J]. Cognition,2007,103:358–385.
    [114] Koechlin E, Summerfeld C. An information theoretical approach to prefrontalexecutive function[J]. Trends Cogn. Sci.,2007,11:229–235.
    [115] Seyed-Allaei S, Amati D, Shallice T. Internally driven strategy change[J].Thinking&Reasoning,2010,16(4):308–331.
    [116] Amit D J. Modeling Brain Function: The world of Attractor Neural Network-s[M].[S.l.]: New York, NY: Cambridge University Press,1989.
    [117] Fulvi Mari C, Treves A. Modeling neocortical areas with a modular neuralnetwork[J]. Biosystems,1998,48:47–55.
    [118] Pulvermu¨ller F. A brain perspective on language mechanisms: from discreteneuronal ensembles to serial order[J]. Progress in neurobiology,2002,67(2):85–111.
    [119] Schyns P. A modular neural network model of concept acquisition[J]. CognitiveScience,1991,15:461–508.
    [120] Harris K D, Csicsvari J, Hirase H, et al. Organization of cell assemblies in thehippocampus[J]. Nature,2003,424(6948):552–556.
    [121] Devlin J, Gonnerman L, Andersen E, et al. Category-specifc semantic d-efcitsin focal and widespread brain damage. A computational account[J]. J.Cog. Neurosci.,1998,10:77–94.
    [122] Roxin A, Riecke H, Solla S A. Self-sustained activity in a small world networkof excitable neurons[J]. Phys. Rev. Lett.,2004,92(19):198101:1–4.
    [123] Bassett D S, Bullmore E. Small-world brain networks[J]. The Neuroscientist,2006,12(6):512–523.
    [124] Mu¨ller-Linow M, Hilgetag C C, Hu¨tt M T. Organization of excitable dynam-ics in hierarchical biological networks[J]. PLoS computational biology,2008,4(9):e1000190.
    [125] Guo D, Li C. Self-sustained irregular activity in2-D small-world networks ofexcitatory and inhibitory neurons[J]. IEEE Transactions on Neural Networks,2010,21(6):895–905.
    [126] Sabatini B L, Regehr W G. Timing of synaptic transmission[J]. Annual Reviewof Physiology,1999,61:521–542.
    [127] Hohlweg W. The regulatory centers of endocrine glands in the hypothala-mus[M]//Pioneers in Neuroendocrinology.[S.l.]: Springer,1975:159–172.
    [128] Leutgeb J K, Leutgeb S, Moser M B, et al. Pattern separation in the dentategyrus and CA3of the hippocampus[J]. Science,2007,315(5814):961–966.
    [129] Fuster J M, Bodner M, Kroger J K. Cross-modal and cross-temporal associa-tion in neurons of frontal cortex[J]. Nature,2000,405:347–351.
    [130] Ikegaya Y, Aaron G, Cossart R, et al. Synfre chains and cortical songs:temporal modules of cortical activity[J]. Science,2004,304:559–564.
    [131] Prut Y, Vaadia E, Bergman H, et al. Spatiotemporal structure of cortical ac-tivity: properties and behavioral relevance[J]. J Neurophysiol,1998,79:2857–2874.
    [132] Shmiel T, Drori R, Shmiel O, et al. Neurons of the cerebral cortex exhibitprecise interspike timing in correspondence to behaviour[J]. Proc. Natl. Acad.Sci. USA,2005,102:18655–18657.
    [133] Luczak A, Bartho′P, Marguet S L, et al. Sequential structure of neocorticalspontaneous activity in vivo[J]. PNAS,2007,104(1):347––352.
    [134] Miyashita Y, Chang H S. Neuronal correlate of pictorial short-term memoryin the primate temporal cortex[J]. Nature,1988,331:68–70.
    [135] Rehn M, Lansner A. Sequence memory with dynamical synapses[J]. Neuro-computing,2004,58-60:271–278.
    [136] Horn D, Usher M. Neural networks with dynamical thresholds[J]. Phys RevA,1989,40:1036–1044.
    [137] Wennekers T, Gunther P. Syntactic sequencing in Hebbian cell assemblies[J].Cogn. Neurodyn.,2009,79:429–441.
    [138] Morita M. Computational study on the neural mechanism of sequential patternmemory[J]. Cognitive Brain ResearchA,1996,5:137–146.
    [139] Brodmann K. Vergleichende lokalisationslehre der grobhirnrinde[J]. Barth,Leipzig,1909.
    [140] Changizi M A, Shimojo S. Parcellation and area-area connectivity as a functionof neocortex size[J]. Brain, behavior and evolution,2005,66(2):88–98.
    [141] Chklovskii D B, Schikorski T, Stevens C F. Wiring optimization in corticalcircuits[J]. Neuron,2002,34(3):341–347.
    [142] Montagnini A, Treves A. The evolution of mammalian cortex, from laminationto arealization[J]. Brain research bulletin,2003,60(4):387–393.
    [143] Braitenberg V. Brain size and number of neurons: an exercise in syntheticneuroanatomy[J]. Journal of computational neuroscience,2001,10(1):71–77.
    [144] Ito M, et al. Cerebellar circuitry as a neuronal machine.[J]. Progress inneurobiology,2006,78(3-5):272.
    [145] Feldt S E. Understanding the interplay of structure and dynamics in neuronalnetworks[D].[S.l.]: The University of Michigan,2009.
    [146] Alvarez-Buylla A, Lim D A. For the long run: maintaining germinal niches inthe adult brain[J]. Neuron,2004,41(5):683–686.
    [147] Cameron H A, Mckay R D. Adult neurogenesis produces a large pool of newgranule cells in the dentate gyrus[J]. The Journal of comparative neurology,2001,435(4):406–417.
    [148] Kempermann G, Gast D, Kronenberg G, et al. Early determination andlong-term persistence of adult-generated new neurons in the hippocampus ofmice[J]. Development,2003,130(2):391–399.
    [149] Aimone J B, Wiles J, Gage F H. Computational infuence of adult neurogenesison memory encoding[J]. Neuron,2009,61(2):187.
    [150] Kitano K, Yamada K. Functional networks based on pairwise spike synchronycan capture topologies of synaptic connectivity in a local cortical networkmodel[J]. Advances in Neuro-Information Processing,2009:978–985.
    [151] Stam C J, et al. Functional connectivity patterns of human magnetoencephalo-graphic recordings: a ‘small-world’ network?[J]. Neuroscience letters,2004,355(1-2):25.
    [152] Sporns O, Chialvo D R, Kaiser M, et al. Organization, development andfunction of complex brain networks[J]. Trends Cogn. Sci.,2004,8:418–425.
    [153] Deligianni F, Robinson E C, Beckmann C F, et al. Inference of function-al connectivity from structural brain connectivity[C]//Biomedical Imaging:From Nano to Macro,2010IEEE International Symposium on..[S.l.]:[s.n.],2010:1113–1116.
    [154] Piekniewski F, Schreiber T. Theoretical model for mesoscopic-level scale-freeself-organization of functional brain networks[J]. IEEE Trans. Neural Netw,2010,21(11):1747–1758.
    [155] Zamora-Lo′pez G, Russo E, Gleiser P M, et al. Characterizing the complexityof brain and mind networks[J]. Phil. Trans. R. Soc. A,2011,369:3730–3747.
    [156] Sporns O, Zwi J D. The small world of the cerebral cortex[J]. Neuroinformat-ics,2004,2(2):145–162.
    [157] He Y, Chen Z J, Evans A C. Small-world anatomical networks in the hu-man brain revealed by cortical thickness from MRI[J]. Cereb. Cortex,2007,17(10):2407–2419.
    [158] Gleiser P M, Spoormaker V I. Modelling hierarchical structure in functionalbrain networks[J]. Philosophical Transactions of the Royal Society A: Mathe-matical, Physical and Engineering Sciences,2010,368(1933):5633–5644.
    [159] Friston K, Rees G. Single Subject epoch auditory fMRI activation da-ta[EB/OL].[2013-06-30]. http://www.fl.ion.ucl.ac.uk/spm/data/auditory/.
    [160] Friston K J, Ashburner J, Frith C D, et al. Spatial registration and normal-ization of images[J]. Human brain mapping,1995,3(3):165–189.
    [161] Shih F Y. Image processing and mathematical morphology: Fundamentalsand applications[M].[S.l.]: CRC,2009.
    [162] Whitney C, Jeferies E, Kircher T. Heterogeneity of the left temporal lobe insemantic representation and control: priming multiple versus single meaningsof ambiguous words[J]. Cerebral Cortex,2011,21(4):831–844.
    [163] Friston K J, Ashburner J T, Kiebel S J, et al. Statistical Parametric Mapping:The Analysis of Functional Brain Images: The Analysis of Functional BrainImages[M].[S.l.]: Academic Press,2011.
    [164] Perotti J I, Tamarit F A, Cannas S A. A scale-free neural network for modellingneurogenesis[J]. Physica A: Statistical Mechanics and its Applications,2006,371(1):71–75.
    [165] Oshima H, Odagaki T. Storage capacity and retrieval time of small-worldneural networks[J]. Physical Review E,2007,76(3):036114.
    [166] Legenstein R, Chase S M, Schwartz A B, et al. A reward-modulated hebbianlearning rule can explain experimentally observed network reorganization in abrain control task[J]. The Journal of Neuroscience,2010,30(25):8400–8410.
    [167] Lansner A. Associative memory models: from the cell-assembly theory tobiophysically detailed cortex simulations[J]. Trends in neurosciences,2009,32(3):178–186.
    [168] Chai B, Walther D B, Beck D M, et al. Exploring functional connectivityof the human brain using multivariate information analysis[J]. Advances inneural information processing systems,2009,22:270–278.
    [169] Hough P V. Method and means for recognizing complex pattern-s[EB/OL].[S.l.]: Google Patents,[2013-06-30]. US Patent3,069,654.
    [170] Tang H, Tan K, Yi Z. Neural Networks: Computational Models and Appli-cations[M].[S.l.]: Springer-Verlag,2007.
    [171] Gardner E. The space of interactions in neural network models[J]. Journal ofphysics A: Mathematical and general,1988,21(1):257.
    [172] Treves A, Amit D J. Metastable states in asymmetrically diluted hopfeldnetworks[J]. J Phys A: Math Gen,1988,21(6):3155–3169.
    [173] Zheng P, Tan W, Zhang J. Efcient continuous-time asymmetric Hopfeldnetworks for memory retrieval[J]. Neural Computation,2010,22(6):1597–1614.
    [174] Abeles M, Vaadia E, Bergman H, et al. Dynamics of neuronal interactions inthe frontal cortex of behaving monkeys[J]. Concepts in Neuroscience,1993,4:131–158.
    [175] Knoblauch A, Palm G, et al. Pattern separation and synchronization in spikingassociative memories and visual areas.[J]. Neural networks: the ofcial journalof the International Neural Network Society,2001,14(6-7):763.
    [176] Yuste R, Tank D W. Dendritic integration in mammalian neurons, a centuryafter Cajal[J]. Neuron,1996,16:701–716.
    [177] O’Reilly R C, Frank M J. Making working memory work: A computationalmodel of learning in the prefrontal cortex and basal ganglia[J]. Neurol Com-putation,2006,18:283–328.
    [178] Kumar A, Rotter S, Aertsen A. Spiking activity propagation in neuronalnetworks: reconciling diferent perspectives on neural coding[J]. Nat. Rev.Neurosci.,2010,11:615–627.
    [179] Stam C J, Jones B F, Nolte G, et al. Small world networks and functionalconnectivity in Alzheimer’s disease[J]. Cereb Cortex.,2007,17(1):92–99.
    [180] Buhmann J. Oscillations and low fring rates in associative memory neuralnetworks[J]. Phys. Rev. A,1989,40(7):4145–4148.
    [181] McCormick D A, Contreras D. On the cellular and network bases of epilepticseizures[J]. Annu. Rev. Physiol,2001,63:815–846.
    [182] Tardif E, Probst S, A. andClarke. Laminar specifcity of intrinsic connectionsin Broca’s area[J]. Cerebral Cortex,2007,17:2949–2960.
    [183] Roth G, Dicke U. Evolution of the brain and intelligence[J]. Trends in Cogni-tive Science,2005,9(5):250–257.
    [184] Russo E, Treves A. An uncouth approach to language recursivity[J]. Biolin-guistics,2011,5(1-2):133–150.
    [185] Deng Z, Zhang Y. Collective behavior of a small-world recurrent neural systemwith scale-free distribution[J]. IEEE Trans. Neural Netw,2007,18(5):1364–1375.
    [186] Sporns O, Zwi J D. The small world of the cerebral cortex[J]. Neuroinformat-ics,2004,2(2):145–162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700