用户名: 密码: 验证码:
GATA-4基因转染促进骨髓间充质干细胞心肌分化和血管形成的研究及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分MSC的分离培养及GATA-4基因的转染
     目的:基因修饰骨髓间充质干细胞(MSCs)是增加细胞抗缺氧和心肌分化的新方向。分离、培养和纯化大鼠MSC,以逆转录病毒为载体将GATA-4基因转染MSC,建立稳定的GATA-4基因修饰的MSC细胞模型。
     方法:从雄性大鼠骨髓中分离MSC,培养至第3代MSC,经pMSCV逆转录病毒表达系统转染GATA-4基因(MSCGATA-4),对照组为仅表达GFP的空质粒组(MSCNull)。通过实时定量聚合酶链反应(Real-time quantitative polymerase chainreaction, Real-time PCR)、Western blot印迹和免疫组化的方法鉴定GATA-4基因转染的效果。
     结果:MSCGATA-4组GATA-4mRNA和蛋白表达明显高于对照组MSCNull,P<0.05。Real-time PCR数据显示,MSCGATA-4组GATA-4mRNA的表达是MSCNull组的258倍。通过免疫组化检测发现,虽然MSCGATA-4组和MSCNull组的GFP都显示阳性,但只有MSCGATA-4组细胞核呈GATA-4阳性表达。
     结论:本研究成功建立了GATA-4基因修饰MSC的培养系统,为进一步探讨GATA-4在MSC的心肌分化及血管新生中的作用奠定了基础。
     第二部分GATA-4基因转染促进MSC向心肌分化的研究及机制探讨
     目的:GATA-4是心肌转录因子,在心肌分化中起着重要的作用。我们从体外研究了GATA-4转染MSC是否促进其分化为心肌样细胞。
     方法:
     (1)分离和培养新生大鼠心室肌细胞(CM)。并通过光镜、透射电镜和免疫组化鉴定心肌细胞;
     (2)MSCGATA-4与CM共培养1周,通过Real-time PCR和Western blot检测其心肌基因BNP、α-actinin和Islet-1的表达情况。
     (3)通过免疫荧光α-actinin染色法检测MSCGATA-4组和MSCNull组的心肌分化情况。
     (4)通过膜片钳技术检测MSCGATA-4组和MSCNull组细胞的电生理特点:分别记录内向整流性钾流(Ik1)、瞬时外向性钾流(Ito)、延迟整流性钾流(IKDR)、L-型钙离子流(ICa-L)、TTX敏感的钠离子流(INa., TTX)和动作电位(AP)的表达,
     (5)通过流式细胞仪器检测MSCGATA-4组和MSCNull组心肌分化率的情况。
     (6)用Microarray、Real-time PCR和Western blot检测MSCGATA-4组和MSCNull组胰岛素样生长因子结合蛋白(Insulin-Like Growth Factor Binding Protein, IGFBP-4)的表达。
     (7)为了研究IGFBP-4对GATA-4调节MSC的心肌分化作用,我们进行了MSCGATA-4组的IGFBP-4基因敲除,以scrambled siRNA作为阴性对照组。并用Real-time PCR和Western blot检测IGFBP-4基因敲除效果。
     (8)观察敲除IGFBP-4基因后,GATA-4对MSC心肌分化的作用。
     结果:
     (1)MSCGATA-4组的心肌基因BNP、α-actinin和Islet-1的表达明显高于对照组(转染空质粒组MSCNull)(P<0.05)。
     (2)MSCGATA-4组记录到表达高水平的Ik1、Ito、IKDR、ICa-L和INa., TTX。与MSCNull组相比较,它们的电流密度明显增加,P<0.05。
     (3)MSCGATA-4与CM和共培养时,部分细胞记录到低幅度的动作电位(AP);而MSCNull组没有记录到AP。
     (4)共培养7天后,部分GFP+的MSC细胞表达α-actinin。MSCGATA-4组(34%±4%)的阳性率与MSCNull组(15%±2%)相比较,明显增加,P<0.05。
     (5)通过Microarray、Real-time PCR和Western blot检测,IGFBP-4表达在MSCGATA-4组较MSCNull组明显增加,P<0.05。
     (6)经siRNA敲除IGFBP-4基因后,定量PCR显示IGFBP-4-siRNA-MSCGATA-4中IGFBP-4基因的表达仅是MSCGATA-4组的38%(P<0.05),Western blot显示IGFBP-4-siRNA-MSCGATA-4细胞中IGFBP-4蛋白表达明显减少,只有MSCGATA-4组的28%(P<0.05)。
     (7)IGFBP-4基因敲除后,IGFBP-4-siRNA-MSCGATA-4细胞中心肌基因(BNP、α-actinin和Islet-1)的表达,与MSCGATA-4组相比较,显著减低,P<0.05。
     (8)通过流式细胞仪检测各组MSC的心肌分化率。结果显示,MSCGATA-4组的心肌分化率(34.09±4.65%)明显比MSCNull组心肌分化率(14.54±1.62%)增高,P<0.05。而IGFBP-4基因沉默以后,沉默组(IGFBP-4-siRNA-MSCGATA-4)的心肌分化率(16.87±1.98%)明显比MSCGATA-4组低(P<0.05)。
     (9)功能研究表明当敲除IGFBP-4基因时,MSCGATA-4组分化潜能被降低。
     结论:GATA-4过表达可以促进MSC分化为心肌样细胞,其机制可能与IGFBP-4的表达上调有关。
     第三部分GATA-4基因转染促进MSC新生血管形成的体外和体内研究
     目的:干细胞移植入受体心脏后,可以释放可溶性因子,增加心肌修复和血管再生。我们假设GATA-4过表达于MSC中可以通过增加其旁分泌作用,促进血管新生和细胞存活,从而改善心肌梗死后的心肌再生。
     方法:
     (1)用ELISA方法检测不同组细胞(MSCNull和MSCGATA-4组)上清中生长因子VEGF、IGF-1和b-FGF的表达。
     (2)用定量PCR方法检测不同组细胞中VEGF、IGF-1和b-FGF基因的表达情况。
     (3)为了检测细胞在缺氧条件下抵抗作用,细胞分别被缺氧不同时间24、48和72小时,用MTT观察细胞的增殖情况。
     (4)用绿色荧光的PKH67标记人脐静脉内皮细胞(HUVEC);用不同组MSC细胞培养上清刺激HUVEC,体外观察不同组的毛细血管样结构的形成。同时加入VEGF或和IGF-1的中和抗体,孵育12小时,观察对毛细血管样结构形成的影响。
     (5)把HUVEC细胞球体接种到3D立体胶培养系统,加入细胞培养上清,同时加VEGF或和IGF-1的中和抗体作用24小时,观察对球体出芽的数量和总长度的影响。
     (6)用结扎冠状动脉左前降支的方法建立雌性大鼠的急性心肌梗死模型,各组MSC被注射到梗死周边区域的心肌内。
     (7)用定量PCR检测雌性大鼠中雄性Sry基因的表达,检测缺血心肌中MSC的存活。
     (8)用超声心动图评估心肌功能,同时检测新生血管的形成及梗死面积等。
     结果:
     (1)定量PCR的结果显示,MSCGATA-4组中VEGF和IGF-1基因的表达明显比MSCNull组表达高,P<0.05。
     (2)ELISA结果显示,在MSCGATA-4上清中VEGF和IGF-1的分泌明显比MSCNull上清高,P<0.05。b-FGF的分泌没有显著性差异,P>0.05。
     (3)细胞缺氧48和72小时时,MTT细胞增殖明显减小。而GATA-4过度表达可以部分预防MTT的减小。
     (4)用MSCGATA-4组上清处理的HUVEC,与对照组MSCNull相比较,显著增加了血管样结构的形成和HUVEC的迁移(通过每个球体出芽的数量和出芽的总长度来评估),P<0.05。将中和抗体VEGF、IGF-1分别或同时加入到MSCGATA-4组中,可以明显减少MSCGATA-4组新生毛细血管的形成,与不加抗体的MSCGATA-4组相比较,P<0.05。
     (5)通过Sry基因的检测,在MSCGATA-4治疗组的梗死及梗死周边区,Sry基因的表达明显增高;与MSCNull组或MSCbas组相比较,有显著性的差异,P<0.05。可见过度表达GATA-4可以明显增加MSC在缺血心肌的存活率。
     (6)通过心脏超声检查,用MSCGATA-4移植治疗的动物组心功能明显改善;与MSCNull组或MSCbas组相比较,有显著性的差异,P<0.05。
     (7)通过组织化学染色可见,MSCGATA-4组血管密度增加,心梗面积降低;与MSCNull组或MSCbas组相比较,有显著性的差异,P<0.05。
     结论:GATA-4过表达于MSC,可以增加缺血心肌的MSC存活和新生血管的形成,是心肌梗死的一个有效的治疗方法。
Part ⅠIsolation and Culture of Mesenchymal Stem Cells from Rat BoneMarrow and Transduction of GATA-4Gene
     Objective: Gene modified mesenchymal stem cells (MSCs) is a new direction toincrease cell resistance to hypoxia and increase myocardial transdifferentiation. Isolation,culture and purification of mesenchymal stem cells from rat bone marrow. Establishmentof stable cell model of GATA-4gene modified MSCs through retroviral transduction ofGATA-4gene into MSC.
     Methods: MSCs were isolated and cultured from male rat bone marrow. GATA-4(MSCGATA-4) was overexpressed in MSC by using a murine stem cell virus (pMSCV)retroviral expression system at the third passage. Control cells were infected with emptyvector (MSCNull). Gene and protein expression of GATA-4in MSCGATA-4were analyzedusing real-time quantitative polymerase chain reaction (real-time PCR), Western blottingand immunofluorescence.
     Results: Compared with control cells (MSCNull), mRNA and protein level ofGATA-4were enhanced in MSCGATA-4, as shown by real-time PCR and Western blot,P<0.05. Real-time PCR data indicated that the mRNA expression level of GATA-4was258-fold higher in MSCGATA-4vs. MSCNull. Whereas both MSCGATA-4and MSCNullwereGFP immunopositive, only MSCGATA-4stained intensely for GATA-4immunofluorescence.
     Conclusions: Retroviral-mediated transduction and expression of bicistronicGATA-4/GFP construct were evaluated by the methods of immunostaining, real-time PCR,and Western blotting, as a basis for further exploration of GATA-4in regulating MSCsmyocardial transdifferentiation and angiogenesis.
     Part IITransduction of GATA-4Promotes Myocardial Transdifferentiationof Mesenchymal Stem Cells and Its Related Mechanism
     Objective: GATA-4is a cardiac transcription factor and plays an important role incell lineage differentiation during development. We investigated whether retroviraltransduction of GATA-4increased adult mesenchymal stromal cell (MSC)transdifferentiation into a cardiac phenotype in vitro.
     Methods:
     (1)Native cardiomyocytes (CM) were isolated from ventricles of neonatal rats.Cardiomyocytes were indentified through the methods of light-electricity microscopy,transmission electron microscopy and immunocytochemistry.
     (2)The expression of cardiac genes, including brain natriuretic peptide (BNP),Islet-1and α-sarcomeric actinin (α-SA), was detected by real-time PCR and Western blotafter MSC were co-cultured with native CM for7days.
     (3)Myocardial transdifferentiation of MSCGATA-4and MSCNullwere determined byα-sarcomeric actinin immunostaining.
     (4)Electrophysiological properties of ion channels were assessed in MSC usingpatch-clamp technology. TTX-sensitive Na+current (INa.TTX), L-type calcium current (ICa.L),transient outward K+current (Ito), delayed rectifier K+current (IKDR), the inwardlyrectifying K+current (IK1) and action potential (AP) were recorded in MSCGATA-4andMSCNullafter MSC were co-cultured with native CM.
     (5)The transdifferentiation rate was calculated directly from flow cytometry in MSCGATA-4and MSCNull.
     (6)The gene expression level of insulin-like growth factor binding protein-4(IGFBP-4)in MSCGATA-4and MSCNullwere analyzed using real-time PCR and Westernblotting and Microarray.
     (7)To study the role of IGFBP-4in GATA-4-mediated myocardialtransdifferentiation, IGFBP-4activity was knocked down in MSCGATA-4by siRNA genesilencing. Non-silencing, scrambled siRNA was used as a negative control. IGFBP-4geneexpression was analyzed using real-time PCR and Western blotting.
     (8)Myocardial transdifferentiation rate of MSCGATA-4after knockdown of IGFBP-4was observed.
     Results:
     (1) The expression of cardiac genes, including brain natriuretic peptide (BNP),Islet-1and α-sarcomeric actinin (α-SA), was up-regulated in MSCGATA-4compared withcontrol cells that were transfected with Green Fluorescent Protein (GFP) only (MSCNull).
     (2) MSCGATA-4exhibited higher levels of INa.TTX, ICa.L, Ito, IKDRand IK1channelactivities reflective of electrophysiological characteristics of CM.
     (3) Low amplitude of action potential was recorded in MSCGATA-4after MSC wereco-cultured. No action potential was recorded in MSCNull.
     (4) Some GFP+cells were positive for α-actinin staining after MSC were co-culturedwith native CM for7days. The transdifferentiation rate was significantly higher inMSCGATA-4(34%±4%), compared with MSCNull(15%±2%), P<0.05.
     (5) At the same time, IGFBP-4was significantly up-regulated in MSCGATA-4, asshown by real-time PCR and Western blot and microarray, compared with MSCNull,P<0.05.
     (6)After knocking down IGFBP-4in MSCGATA-4, real-time PCR showed that theexpression level of IGFBP-4in IGFBP-4-siRNA-MSCGATA-4(IG4-siRNA) was only38%of that in MSCGATA-4(P<0.05). IGFBP-4protein was reduced in IG4-siRNA cells by28%compared with MSCGATA-4(P<0.05).
     (7) The effect of GATA-4on expressing cardiac markers (BNP、α-actinin和Islet-1) inMSC was suppressed when IGFBP-4-siRNA was transfected in MSCGATA-4, compared withMSCGATA-4, P<0.05.
     (8) The transdifferentiation of various MSC was quantified using fluorescencea-activated cell sorting (FACS). The transdifferentiation rate was higher in MSCGATA-4(34.09±4.65%) than in MSCNull(14.54±1.62%; P<0.05). However, after IGFBP-4was knockeddown in the MSCGATA-4, the transdifferentiation rate was lower in IGFBP-4-siRNA (16.87±1.98%) than in MSCGATA-4(P<0.05).
     (9)Functional studies indicated that the differentiation potential of MSCGATA-4wasdecreased by knockdown of IGFBP-4.
     Conclusions: Retroviral transduction of GATA-4significantly increases MSCdifferentiation into a myocardial phenotype, which might be associated with theup-regulation of IGFBP-4.
     Part ⅢTransduction of GATA-4Improved in vivo and in vitroAngiogenesis of Mesenchymal Stem Cells and Its RelatedMechanism
     Objective: Transplanted mesenchymal stem cells (MSC) release soluble factors thatcontribute to cardiac repair and vascular regeneration. We hypothesized that retroviraltransduction of GATA-4enhances the MSC secretome, thereby increasing angiogenesisand cell survival and promoting postinfarction cardiac angiogenesis.
     Methods:
     (1) The concentration of VEGF, IGF-1, and basic FGF in conditioned medium (CdM)of MSC were measured using ELISA.
     (2) The gene expression levels of VEGF, IGF-1, and basic FGF in transduced MSC were detected using quantitative real-time PCR.
     (3) To study the resistance of MSC to oxidative stress, MSCs were exposed tohypoxia for24h,48h,72h and (3,4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) intake was assessed.
     (4) Human umbilical vein endothelial cells (HUVECs)were labeled with PKH67celltracker dye using PKH67Green Fluorescent Cell Linker kit. Conditioned medium wereadded into HUVECs and capillary-like structure formation was assessed. IGF-1-and/orVEGF neutralizing antibodies were added to CdMGATA-4. After12h of incubation,capillary-like structure formation was assessed.
     (5) Spheroids of HUVEC were then embedded in3D Collagen Cell Culture Systemfor24h in the presence or absence of CdM. IGF-1-and/or VEGF neutralizing antibodieswere added to CdMGATA-4. The number of sprouts and cumulative sprout length in eachspheroid were detected and calculated.
     (6) MSCs were injected into the peri-infarct region in an acute myocardial infarctionmodel in Sprague-Dawley rats developed by ligation of the left anterior descendingcoronary artery.
     (7) Survival of male donor MSCs that expressed Sry gene in the female recipienthearts was assessed using real-time PCR. MSC survival in ischemic myocardium wasassayed.
     (8) Cardiac function was assessed by echocardiography. Infarction size andangiogenesis were detected.
     Results:
     (1) Expression of IGF-1and VEGF-A in MSC was significantly upregulated inMSCGATA-4compared with MSCNull, P<0.05.
     (2) levels of IGF-1and VEGF-A in CdM were assessed by ELISA and shown to besignificantly increased in CdMGATA-4, P<0.05, but b-FGF was unchanged, P>0.05.
     (3) MTT intake was significantly reduced when MSCs were exposed to hypoxia for48or72h. Overexpression of GATA-4partially prevented this reduction.
     (4) HUVEC treated with MSCGATA-4conditioned medium (CdMGATA-4) exhibitedincreased formation of capillary-like structures and promoted migration (HUVECmigration was investigated by measuring both the number of sprouts per spheroid andcumulative sprout length), compared with HUVECs treated with MSCNullconditionedmedium, P<0.05. This CdMGATA-4-stimulated increase in formation of capillary-likestructures and migration were diminished by treatment with neutralizing antibodies againstIGF-1, VEGF, or both, compared with HUVECs treated with only MSCGATA-4conditionedmedium, P<0.05.
     (5) Sry gene in peri-infarcted and infarcted myocardium was significantly higher inMSCGATA-4-transplanted hearts, compared with MSCNullor MSCbas, P<0.05.Overexpression of GATA-4significantly increased MSC survival in ischemic myocardium.
     (6) MSCGATA-4-treated animals showed significantly improved cardiac function asassessed by echocardiography, compared with MSCNullor MSCbas-treated animals, P<0.05.
     (7) Histological studies revealed increased blood vessel density and reducedinfarction size in MSCGATA-4-treated animals, compared with MSCNullor MSCbas-treatedanimals, P<0.05.
     Conclusions: Transduction of GATA-4in MSCs increased both MSC survival andangiogenic potential in ischemic myocardium and may therefore represent a novel andefficient therapeutic approach for postinfarct remodeling.
引文
1. Agnihotri S, Wolf A, Picard D, Hawkins C, Guha A. GATA4is a regulator ofastrocyte cell proliferation and apoptosis in the human and murine central nervoussystem. Oncogene.2009;28(34):3033-3046.
    2. Altarche-Xifro W, Curato C, Kaschina E, et al. Cardiac c-kit+AT2+cellpopulation is increased in response to ischemic injury and supports cardiomyocyteperformance. Stem Cells.2009;27(10):2488-2497.
    3. Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heartdisease: mechanisms and significance. Annu Rev Physiol.2010;72:19-44.
    4. Ptaszek LM, Mansour M, Ruskin JN, Chien KR. Towards regenerative therapy forcardiac disease. Lancet.2012;379(9819):933-942.
    5. Bergmann O, Zdunek S, Alkass K, Druid H, Bernard S, Frisen J. Identification ofcardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover.Exp Cell Res.2011;317(2):188-194.
    6. Shi RZ, Li QP. Improving outcome of transplanted mesenchymal stem cells forischemic heart disease. Biochem Biophys Res Commun.2008;376(2):247-250.
    7. Feygin J, Mansoor A, Eckman P, Swingen C, Zhang J. Functional and bioenergeticmodulations in the infarct border zone following autologous mesenchymal stemcell transplantation. Am J Physiol Heart Circ Physiol.2007;293(3):H1772-1780.
    8. Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent leftventricular remodeling of ischemic heart through paracrine signaling. Circ Res.2006;98(11):1414-1421.
    9. Wang T, Tang W, Sun S, et al. Mesenchymal stem cells improve outcomes ofcardiopulmonary resuscitation in myocardial infarcted rats. J Mol Cell Cardiol.2009;46(3):378-384.
    10. Chacko SM, Khan M, Kuppusamy ML, et al. Myocardial oxygenation andfunctional recovery in infarct rat hearts transplanted with mesenchymal stem cells.Am J Physiol Heart Circ Physiol.2009;296(5):H1263-1273.
    11. Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transfer aftermyocardial infarction: eighteen months' follow-up data from the randomized,controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarctregeneration) trial. Circulation.2006;113(10):1287-1294.
    12. Mohyeddin-Bonab M, Mohamad-Hassani MR, Alimoghaddam K, et al.Autologous in vitro expanded mesenchymal stem cell therapy for human oldmyocardial infarction. Arch Iran Med.2007;10(4):467-473.
    13. Schuleri KH, Feigenbaum GS, Centola M, et al. Autologous mesenchymal stemcells produce reverse remodelling in chronic ischaemic cardiomyopathy. EurHeart J.2009;30(22):2722-2732.
    14. Nagaya N, Fujii T, Iwase T, et al. Intravenous administration of mesenchymalstem cells improves cardiac function in rats with acute myocardial infarctionthrough angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol.2004;287(6):H2670-6.
    15. Yoon J, Min BG, Kim YH, et al. Differentiation, engraftment and functionaleffects of pre-treated mesenchymal stem cells in a rat myocardial infarct model.Acta Cardiol.2005;60(3):277-84.
    16. Li W, Ma N, Ong LL, et al. Bcl-2engineered MSCs inhibited apoptosis andimproved heart function. Stem Cells.2007;25(8):2118-2127.
    17. Pons J, Huang Y, Takagawa J, et al. Combining angiogenic gene and stem celltherapies for myocardial infarction. J Gene Med.2009;11(9):743-753.
    18. Zhu W, Chen J, Cong X, Hu S, Chen X. Hypoxia and serum deprivation-inducedapoptosis in mesenchymal stem cells. Stem Cells.2006;24(2):416-425.
    19. Koninckx R, Hensen K, Daniels A, et al. Human bone marrow stem cellsco-cultured with neonatal rat cardiomyocytes display limited cardiomyogenicplasticity. Cytotherapy.2009;11(6):778-792.
    20. Muller-Ehmsen J, Whittaker P, Kloner RA, et al. Survival and development ofneonatal rat cardiomyocytes transplanted into adult myocardium.J Mol CellCardiol.2002;34(2):107-16.
    21. Pons J, Huang Y, Takagawa J, et al. Combining angiogenic gene and stem celltherapies for myocardial infarction.J Gene Med.2009;11(9):743-53.
    22. Sheikh AY, Huber BC, Narsinh KH, et al. In vivo functional and transcriptionalprofiling of bone marrow stem cells after transplantation into ischemicmyocardium.Arterioscler Thromb Vasc Biol2012;32(1):92-102.
    23. Agbulut O, Mazo M, Bressolle C, et al. Can bone marrow-derived multipotentadult progenitor cells regenerate infarcted myocardium? Cardiovasc Res2006;72(1):175-83.
    24. Wang X, Zhao T, Huang W, et al. Hsp20-engineered mesenchymal stem cells areresistant to oxidative stress via enhanced activation of Akt and increased secretionof growth factors. Stem Cells.2009;27(12):3021-31.
    25. Liu XH, Bai CG, Xu ZY, et al. Therapeutic potential of angiogenin modifiedmesenchymal stem cells: angiogenin improves mesenchymal stem cells survivalunder hypoxia and enhances vasculogenesis in myocardial infarction. MicrovascRes.2008;76(1):23-30.
    26. Shinmura D, Togashi I, Miyoshi S, et al. Pretreatment of human mesenchymalstem cells with pioglitazone improved efficiency of cardiomyogenictransdifferentiation and cardiac function. Stem Cells.2011;29(2):357-66.
    27. Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Aktprevent remodeling and restore performance of infarcted hearts. Nat Med.2003;9(9):1195-201.
    28. Pasha Z, Wang Y, Sheikh R, et al. Preconditioning enhances cell survival anddifferentiation of stem cells during transplantation in infarcted myocardium.Cardiovasc Res.2008;77(1):134-42.
    29. Kobayashi S, Lackey T, Huang Y, et al. Transcription factor gata4regulatescardiac BCL2gene expression in vitro and in vivo. Faseb J.2006;20(6):800-2.
    30. Jay PY, Bielinska M, Erlich JM, et al. Impaired mesenchymal cell function inGata4mutant mice leads to diaphragmatic hernias and primary lung defects. DevBiol.2007;301(2):602-14.
    31. Molkentin JD. The zinc finger-containing transcription factors GATA-4,-5, and-6.Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem.2000;275(50):38949-52.
    32. Hu DL, Chen FK, Liu YQ, et al. GATA-4promotes the differentiation of P19cellsinto cardiac myocytes. Int J Mol Med.2010;26(3):365-72.
    33. Kawamura T, Ono K, Morimoto T, et al. Acetylation of GATA-4is involved in thedifferentiation of embryonic stem cells into cardiac myocytes. J Biol Chem,2005;280(20):19682-8
    34. Shan X, Xu X, Cao B, et al. Transcription factor GATA-4is involved inerythropoietin-induced cardioprotection against myocardial ischemia/reperfusioninjury. Int J Cardiol.2009;134(3):384-92.
    35. Wang HH, Li PC, Huang HJ, et al. Peritoneal dialysate effluent during peritonitisinduces human cardiomyocyte apoptosis by regulating the expression of GATA-4and Bcl-2families. J Cell Physiol.2011;226(1):94-102.
    36. Rysa J, Tenhunen O, Serpi R, et al. GATA-4is an angiogenic survival factor of theinfarcted heart. Circ Heart Fail.2010;3(3):440-50.
    37. Heineke J, Auger-Messier M, Xu J, et al. Cardiomyocyte GATA4functions as astress-responsive regulator of angiogenesis in the murine heart.J Clin Invest.2007;117(11):3198-210.
    38. Li H, Zuo S, He Z, et al. Paracrine factors released by GATA-4overexpressedmesenchymal stem cells increase angiogenesis and cell survival. Am J PhysiolHeart Circ Physiol.2010;299(6):H1772-81.
    39. Yu B, Gong M, He Z, et al. Enhanced mesenchymal stem cell survival induced byGATA-4overexpression is partially mediated by regulation of the miR-15family.Int J Biochem Cell Biol.2013;45(12):2724-35.
    40. Yu B, Gong M, Wang Y, et al. Cardiomyocyte protection by GATA-4geneengineered mesenchymal stem cells is partially mediated by translocation ofmiR-221in microvesicles. PLoS One.2013;8(8):e73304.
    1. Fridenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stemcells: in vitro cultivation and transplantation in diffusion chambers. Cell TissueKinet.1987;20(3):263-72.
    2. Uemura R, Xu M, Ahmad N, et al. Bone marrow stem cells prevent left ventricularremodeling of ischemic heart through paracrine signaling. Circ Res.2006;98(11):1414-21.
    3. Wang T, Tang W, Sun S, et al. Mesenchymal stem cells improve outcomes ofcardiopulmonary resuscitation in myocardial infarcted rats. J Mol Cell Cardiol.2009;46(3):378-84.
    4. Schuleri KH, Feigenbaum GS, Centola M, et al. Autologous mesenchymal stemcells produce reverse remodelling in chronic ischaemic cardiomyopathy. EurHeart J.2009;30(22):2722-32.
    5. Chacko SM, Khan M, Kuppusamy ML, et al. Myocardial oxygenation andfunctional recovery in infarct rat hearts transplanted with mesenchymal stem cells.Am J Physiol Heart Circ Physiol.2009;296(5): H1263-73.
    6. Pittenger MF, Mackay AM, Jaiswal SC, et al. Multilineage potential of adult humanmesenchymal stem cells. Science.1999;284(5411):143-7.
    7. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bonemarrow. Analysis of precursor cells for osteogenic and hematopoietic tissues.Transplantation.1968;6(2):230-47.
    8. Chin SP, Poey AC, Wong CY, et al. Intramyocardial and intracoronary autologousbone marrow-derived mesenchymal stromal cell treatment in chronic severedilated cardiomyopathy. Cytotherapy.2011;13(7):814-21.
    9. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotentmesenchymal stromal cells. The International Society for Cellular Therapyposition statement. Cytotherapy.2006;8(4):315-7.
    10. Zhu W, Chen J, Cong X, et al. Hypoxia and serum deprivation-induced apoptosisin mesenchymal stem cells. Stem Cells.2006;24(2):416-25.
    11.Pons J, Huang Y, Takagawa J, et al. Combining angiogenic gene and stem celltherapies for myocardial infarction. J Gene Med.2009;11(9):743-53.
    12. Koninckx R, K Hensen, A Daniels, et al. Human bone marrow stem cellscocultured with neonatal rat cardiomyocytes display limited cardiomyogenicplasticity. Cytotherapy.2009;11(6):778-92.
    13.Aries A, Paradis P, Lefebvre C, et a1. Essential role of GATA4in cell survival anddrug-induced cardiotoxicity. Proc Natl Acad Sci USA,2004;101(18):6975-80.
    14. Li H, Zuo S, He Z, et al. Paracrine factors released by GATA-4overexpressedmesenchymal stem cells increase angiogenesis and cell survival. Am J PhysiolHeart Circ Physiol,2010;299(6):H1772-81.
    15. Wang HH, Li PC, Huang HJ, et al. Peritoneal dialysate effluent during peritonitisinduces human cardiomyocyte apoptosis by regulating the expression of GATA-4and Bcl-2families. J Cell Physiol.2011;226(1):94-102.
    16. Suzuki, Y.J., Cell signaling pathways for the regulation of GATA-4transcriptionfactor: Implications for cell growth and apoptosis. Cell Signal,2011;23(7):1094-99.
    17. Kitta K, Clement SA, Remeika J, et al. Endothelin-1induces phosphorylation ofGATA-4transcription factor in the HL-1atrial-muscle cell line. Biocham J.2001;359(Pt2):375-80.
    18. Kitta K, Day RM, Kim Y, et al. Hepatocyte growth factor induces GATA-4phosphorylation and cell survival in cardiac muscle cells. J Biol chem.2003;278(7):4705-12.
    19. Docheva D, Popov C, Mutschler W, et al. Human mesenchymal stem cells incontact with their environment: surface characteristics and the integrin system. JCell Mol Med.2007;11(1):21-38.
    20. Friedenstein AJ. Precursor cells of mechanocytes. I Int Rev Cytol.1976;47:327-59.Review.
    21. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues.Science.1997;276(5309):71-4. Review.
    22. Pittenger MF, Mackay AM, Jaiswal SC, et al. Multilineage potential of adulthuman mesenchymal stem cells. Science.1999;284(5411):143-7.
    23. Hong L, Peptan I, Clark P, et al. Ex vivo adipose tissue engineering by humanmarrow stromal cell seeded gelatin sponge. Ann Biomed Eng.2005;33(4):511-7.
    24. Gronthos S, Zannettino AC, Hay SJ, et al. Molecular and cellular characterisationof highly purified stromal stem cells derived from human bone marrow. J Cell Sci.2003;116(Pt9):1827-35.
    25. Colter DC, Class R, DiGirolamo CM, et al. Rapid expansion of recycling stemcells in cultures of plastic-adherent cells from human bone marrow. Proc NatlAcad Sci U S A.2000;97(7):3213-8.
    26. Peister A, Mellad JA, Larson BL, et al. Adult stem cells from bone marrow (MSCs)isolated from different strains of inbred mice vary in surface epitopes, rates ofproliferation, and differentiation potential. Blood.2004;103(5):1662-8.
    27. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrowstromal cells differentiate into neurons. J Neurosci Res.2000;61(4):364-70.
    28. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for definingmultipotent mesenchymal stromal cells. The International Society for CellularTherapy position statement. Cytotherapy.2006;8(4):315-7.
    29. Bushman F, Lewinski M, Ciuffi A, et al. Genome-wide analysis of retroviral DNAintegration. Nat Rev Microbiol.2005;3(11):848-58.
    30. Daniel R, Smith JA. Integration site selection by retroviral vectors: molecularmechanism and clinical consequences. Hum Gene Ther.2008;19(6):557-68
    31. McTaggart S, Al-Rubeai M. Retroviral vectors for human gene delivery.Biotechnol Adv.2002;20(1):1-31.
    32. St rvold GL, Gjernes E, Askautrud HA, et al. A retroviral vector for siRNAexpression in mammalian cells. Mol Biotechnol,.2007;35(3):275-82.
    33. L w R. The use of retroviral vectors for tet-regulated gene expression in cellpopulations. Methods Mol Biol,2009,506:221-42.
    1. Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated frommarrow stromal cells in vitro. J Clin Invest.1999;103(5):697-705.
    2. Fukuda K. Development of regenerative cardiomyocytes from mesenchymal stemcells for cardiovascular tissue engineering. Artif Organs.2001;25(3):187-93.
    3. Nagaya N, Kangawa K, Itoh T, et al. Transplantation of mesenchymal stem cellsimproves cardiac function in a rat model of dilated cardiomyopath
    4. Orlic D, Kajstura J, Chimenti S, et al. B y. Circulation.2005;112(8):1128-35. onemarrow cells regenerate infracted myocardium.Nature.2001;410(6829):701-5.
    5. Xu W, Zhang X, Qian H, el a1. Mesenchymal stem cells from adult human bonemarrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med(Maywood).2004;229(7):623-31.
    6. Antonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, et a1. Cardiomyogenicpotential of human adult bone marrow mesenchymal stem cells in vitro.ThoracCardiovasc Surg.2008;56(2):77-82.
    7. Xu M, Wani M, Dai YS, et al. Differentiation of bone marrow stromal cells into thecardiac phenotype requires intercellular communication with myocytes.Circulation.2004;110(17):2658-65.
    8. Li X, Yu X, Lin Q, et al. Bone marrow mesenchymal stem cells differentiate intofunctional cardiac phenotypes by cardiac microenvironment. J Mol Cell Cardiol.2007;42(2):295-303.
    9. Koninckx R, K Hensen, A Daniels, et al.Human bone marrow stem cells coculturedwith neonatal rat cardiomyocytes display limited cardiomyogenic plasticity.Cytotherapy.2009;11(6):778-92.
    10. Xu M, Millard RW, Ashraf M.Role of GATA-4in differentiation and survival ofbone marrow mesenchymal stem cells. Prog Mol Biol Transl Sci.2012;111:217-41. Review.
    11. Hu DL, Chen FK, Liu YQ, et al. GATA-4promotes the differentiation of P19cellsinto cardiac myocytes. Int J Mol Med.2010;26(3):365-72.
    12. He Z, Li H, Zuo S, et al. Transduction of Wnt11promotes mesenchymal stemcells transdifferentiation into cardiac phenotypes. Stem Cells Dev.2011;20(10):1771-8.
    13. Yazawa K, Kaibara M, Ohara M, et al. An improved method for isolating cardiacmyocytes useful for patch-clamp studies. Jpn J Physiol.1990;40(1):157-63.
    14.李红霞,韩莲花,杨向军。乳鼠心室肌细胞的分离培养及纯化的改良。苏州大学学报:医学版,2007;27(1):63-65。
    15. Li H, Zuo S, Pasha Z, et al. GATA-4promotes myocardial transdifferentiation ofmesenchymal stromal cells via up-regulating IGFBP-4. Cytotherapy.2011;13(9):1057-65.
    16. Takebayashi S, Li Y, Kaku T, et al. Remodeling excitation-contraction coupling ofhypertrophied ventricular myocytes is dependent on T-type calcium channelsexpression. Biochem Biophys Res Commun.2006;345(2):766-73.
    17. Perrier E, Kerfant BG, Lalevee N, et al. Mineralocorticoid receptor antagonismprevents the electrical remodeling that precedes cellular hypertrophy aftermyocardial infarction. Circulation.2004;110(7):776-83.
    18. Ashamalla SM, Navarro D, Ward CA. Gradient of sodium current across the leftventricular wall of adult rat hearts. J Physiol.2001;536(Pt2):439-43.
    19.王如兴,蒋文平.正常耐钙Spraque-Dawley大鼠心室肌细胞分离方法及体会.中国心脏起搏与心电生理杂志2007;21(1):59-62.
    20. Isenberg G, Klockner U. Calcium tolerant ventricular myocytes prepared bypreincubation in a "KB medium". Pflugers Arch.1982;395(1):6-18.
    21. Li GR, Deng XL, Sun H,et al. Ion channels in mesenchymal stem cells from ratbone marrow. Stem Cells.2006;24(6):1519-28.
    22. Li HX, Zhou YF, Jiang B, et al.GATA-4induces changes in electrophysiologicalproperties of rat mesenchymal stem cells. Biochim Biophys Acta.2014Feb26. pii:S0304-4165(14)00081-6. doi:10.1016/j.bbagen.2014.02.020.[Epub ahead ofprint]
    23. Zhu W, Shiojima I, Ito Y, et al. IGFBP-4is an inhibitor of canonical Wntsignalling required for cardiogenesis. Nature.2008;454(7202):345-9.
    24. Balnave CD, Vaughan-Jones RD. Effect of intracellular pH on spontaneous Ca2+sparks in rat ventricular myocyte. J Physiol.2000;528(Pt1):25-37.
    25. Stilli D, Berni R, Bocchi L, et al. Vulnerability to ventricular arrhthmias andheterogeneity of action potential duration in normal rats. Exp Physiol.2004;89(4):387-96.
    26. Wittenberg BA, Robinson TF. Oxygen requirements, morphology, cell coat andmembrane permeability of calcium-tolerant myocytes from hearts of adult rats.Cell Tissue Res.1981;216(2):231-51.
    27. Mitra R, Morad M. A uniform enzymatic method for dissociation of myocytesfrom hearts and stomachs of vertebrates. Am J Physiol.1985;249(5Pt2):H1056-60.
    28. Bustamante JO, Watanabe T, McDonald TF. Single cells from adult mammalianheart: isolation procedure and preliminary electrophysiological studies. Can JPhysiol Pharmacol.1981;59(8):907-10.
    29. Venetucci LA, Trafford AW, Díaz ME, et al. Reducing ryanodine receptor openprobability as a means to abolish spontaneous Ca2+release and increase Ca2+transient amplitude in adult ventricular myocytes. Circ Res.2006;98(10):1299-305.
    30.Bendukidze Z, Isenberg G, Klockner U. Ca-tolerant guinea-pig ventricularmyocytes as isolated by pronase in the presence of250microM free calcium.Basic Res Cardiol.1985;80(Suppl1):13-7.
    31. Despa S, Brette F, Orchard CH, et al. Na/Ca exchange and Na/K-ATPase functionare equally concentrated in transverse tubules of rat ventricular myocytes. BiophysJ.2003;85(5):3388-96.
    32. Tytgat J. How to isolate cardiac myocytes. Cardiovasc Res.1994;28(2):280-3.
    33. Caplan AI, Bruder SP. Mesenchymal stem cells:building blocks for molecularmedicine in the21st century. Trends Mol Med.2001;7(6):259-64.
    34. Deans RJ, Moseley AB. Mesenchymal stem cells:biology and potential clinicaluses. Exp Hematol.2000;28(8):875-84.
    35. Janderova L, McNeil M, Murrell AN, et al. Human mesenchymal stem cells as anin vitro model for human adipogenesis. Obes Res.2003;11(1):65-74.
    36.Li GR, Sun H, Deng XL, et al. Characterization of ionic currents in humanmesenchymal stem cells from bone marrow. Stem Cells.2005;23(3):371-82.
    37. Heubach JF, Graf EM, Leutheuser J, et al. Electrophysiological properties ofhuman mesenchymal stem cells. J Physiol.2004;554(Pt3):659-72.
    38. Deng XL, Sun HY, Lau CP, et al. Properties of ion channels in rabbitmesenchymal stem cells from bone marrow. Biochem Biophys Res Commun.2006;348(1):301-9.
    39. Kohler R, Wulff H, Eichler I, et al. Blockade of the intermediate-conductancecalcium-activated potassium channel as a new therapeutic strategy for restenosis.Circulation.2003;108(9):1119-25.
    40. Jensen BS, Hertz M, Christophersen P, et al. The Ca2+-activated K+channel ofintermediate conductance:a possible target for immune suppression. Expert OpinTher Targets.2002;6(6):623-36.
    41. Coetzee WA1, Amarillo Y, Chiu J, et al.Molecular diversity of K+channels. AnnN Y Acad Sci.1999;868:233-85.
    42. Lin CS, Boltz RC, Blake JT, et a1. Voltage-gated potassium channels regulatecalcium-dependent pathways involved in human T lymphocyte activation.J ExpMed.1993;177(3):637-45.
    43. Gu Y, Preston MR, EI Haj AJ, et al. Three types of K(+) currents in murineosteocyte-like cells (MLO-Y4). Bone.2001;28(1):29-37.
    44. Maltsev VA, Wobus AM, Rohwedel J, et al.Cardiomyocytes differentiated in vitrofrom embryonic stem cells developmentally express cardiac-specific genes andionic currents.Circ Res.1994;75(2):233-44.
    45.Kohyama J1, Abe H, Shimazaki T, et al. Brain from bone: efficient "meta-differentiation" of marrow stroma-derived mature osteoblasts to neurons withNoggin or a demethylating agent. Differentiation.2001;68(4-5):235-44.
    46. Oka T, Xu J, Molkentin JD. Re-employment of developmental transcriptionfactors in adult heart disease. Semin Cell Dev Biol.2007;18(1):117-31.
    47. Moon RT, Kohn AD, De Ferrari GV, et al. WNT and beta-catenin signalling:diseases and therapies. Nat Rev Genet.2004;5(9):691-701.
    48. Naito AT, Shiojima I, Akazawa H, et al. Developmental stagespecific biphasicroles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. ProcNatl Acad Sci U S A.2006;103(52):19812-7.
    49. Ueno S, Weidinger G, Osugi T, et al. Biphasic role for Wnt/betacatenin signalingin cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad SciU S A.2007;104(23):9685-90.
    50. Foley A, Mercola M. Heart induction: embryology to cardiomyocyte regeneration.Trends Cardiovasc Med.2004;14(3):121-5.
    51. Kofidis T, de Bruin JL, Yamane T, et al. Stimulation of paracrine pathways withgrowth factors enhances embryonic stem cell engraftment and host-specificdifferentiation in the heart after ischemic myocardial injury. Circulation.2005;111(19):2486-93
    1. Tongers J, Losordo DW, Landmesser U. Stem and progenitor cell-based therapy inischaemic heart disease: promise, uncertainties, and challenges. Eur Heart J.2011;32(10):1197-206.
    2. Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adoptmature haematopoietic fates in ischaemic myocardium. Nature.2004;428(6983):668-73.
    3. Britten MB, Abolmaali ND, Assmus B, et al. Infarct remodeling after intracoronaryprogenitor cell treatment in patients with acute myocardial infarction(TOPCARE-AMI): Mechanistic insights from serial contrast-enhanced magneticresonance imaging. Circulation.2003;108(18):2212-8.
    4. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarctedmyocardium. Nature.2001;410(6829):701-5.
    5. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expandedendothelial progenitor cells for myocardial ischemia. Circulation.2001;103(5):634-7.
    6. Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cellsimproves damaged heart function. Circulation.1999;100(19Suppl): II247-56.
    7. Uemura R, Xu M, Ahmad N, et al. Bone marrow stem cells prevent left ventricularremodeling of ischemic heart through paracrine signaling. Circ Res.2006;98(11):1414-21.
    8. Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis forAkt-modified mesenchymal stem cell-mediated cardiac protection and functionalimprovement. FASEB J.2006;20(6):661-9.
    9. Tang YL, Zhao Q, Qin X, et al. Paracrine action enhances the effects of autologousmesenchymal stem cell transplantation on vascular regeneration in rat model ofmyocardial infarction. Ann Thorac Surq.2005;80(1):229-36; discussion236-7.
    10. Ye NS, Chen J, Luo GA, et al. Proteomic profiling of rat bone marrow mesenchymalstem cells induced by5-azacytidine. Stem Cells Dev.2006;15(5):665-76.
    11. Kinnair T, Stabile E, Burnent MS, et al. Local delivery of marroow-derived stromalcells augment collateral perfusion through paracrine mechanism. Circulation.2004;109(12):1543-9.
    12. Wang T, Tang W, Sun S, et al. Mesenchymal stem cells improve outcomes ofcardiopulmonary resuscitation in myocardial infarcted rats. J Mol Cell Cardiol.2009;46(3):378-84.
    13. Shabbir A, Zisa D, Suzuki G, et al. Heart failure therapy mediated by the trophicactivities of bone marrow mesenchymal stem cells: a noninvasive therapeuticregimen. Am J Physiol Heart Circ Physiol.2009;296(6):H1888-97.
    14. Nguyen BK, Maltais S, Perrault LP, et al. Improved function and myocardial repair ofinfarcted heart by intracoronary injection of mesenchymal stem cell-derived growthfactors. J Cardiovasc Transl Res.2010;3(5):547-58.
    15. Miyamoto S, Kawaguchi N, Ellison GM, et al. Characterization of long-term culturedc-kit+cardiac stem cells derived from adult rat hearts. Stem Cells Dev.2010;19(1):105-16.
    16. Sadat S, Gehmert S, Song YH, et al. The cardioprotective effect of mesenchymalstem cells is mediated by IGF-I and VEGF. Biochem Biophys Res Commun.2007;363(3):674-9.
    17. Chen J, Zhang ZG, Li Y, et al. Intravenous administration of human bone marrowstromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats.Circ Res.2003;92(6):692-9.
    18. Schinkothe T, Bloch W, Schmidt A. In vitro secreting profile of human mesenchymalstem cells. Stem Cells Dev.2008;17(1):199-206.
    19.侯炳波.骨髓间充质干细胞通过旁分泌作用治疗心肌缺血研究进展.中国分子心脏病学杂志,2007,7:117-120.
    20. Gruh I, Beilner J, Blomer U, et al. No evidence of transdifferentiation of humanendothelial progenitor cells into cardiomyocytes after co-culture with neonatal ratcardiomyocytes. Circulation.2006;113(10):1326-34.
    21. Koninckx R, HensenK, DanielsA, et al. Human bone marrow stem cells co-culturedwith neonatal rat cardiomyocytes display limited cardiomyogenic plasticity.Cytotherapy.2009;11(6):778-92.
    22. Pons J, Huang Y, Takagawa J, et al. Combining angiogenic gene and stem celltherapies for myocardial infarction. J Gene Med.2009;11(9):743-53.
    23. Muller-Ehmsen J, Krausgrill B, Burst V, et al. Effective engraftment but poormid-term persistence of mononuclear and mesenchymal bone marrow cells in acuteand chronic rat myocardial infarction. J Mol Cell Cardiol.2006;41(5):876-84.
    24. Robey TE, Saiget MK, Reinecke H, et al. Systems approaches to preventingtransplanted cell death in cardiac repair. J Mol Cell Cardiol.2008;45(4):567-81.
    25. Nahrendorf M, Swirski FK, AikawaE, et al. The healing myocardium sequentiallymobilizes two monocyte subsets with divergent and complementary functions. J ExpMed.2007;204(12):3037-47.
    26. Wang X, Zhao T, Huang W, et al. Hsp20-engineered mesenchymal stem cells areresistant to oxidative stress via enhanced activation of Akt and increased secretionof growth factors. Stem Cells.2009;27(12):3021-31
    27. Matsumoto R1, Omura T, Yoshiyama M, et al. Vascular endothelial growthfactor-expressing mesenchymal stem cell transplantation for the treatment of acutemyocardial infarction. Arterioscler Thromb Vasc Biol.2005;25(6):1168-73.
    28. Sun L, Cui M, Wang Z, et al. Mesenchymal stem cells modified withangiopoietin-1improve remodeling in a rat model of acute myocardial infarction.Biochem Biophys Res Commun.2007;357(3):779-84.
    29. Gao F, He T, Wang H, et al. A promising strategy for the treatment of ischemicheart disease: Mesenchymal stem cell-mediated vascular endothelial growth factorgene transfer in rats. Can J Cardiol.2007;23(11):891-8.
    30. Strauer BE, Brehm M, Zeus T, et al. Intracoronary, human autologous stem celltransplantation for myocardial regeneration following myocardial infarction. DtschMed Wochenschr.2001;126(34-35):932-8.
    31.宋雷,杨跃进.间充质干细胞治疗心肌梗死的现状及展望.心血管病学进展,2009,30:624-627.
    32. Xu M, Millard RW, Ashraf M. Role of GATA-4in differentiation and survival of bonemarrow mesenchymal stem cells. Proq Mol Biol Transl Sci.2012;111:217-41.
    33. Herrmann JL, Abarbanell AM, Wang Y, et al. Transforming growth factor-alphaenhances stem cell-mediated postischemic myocardial protection. Ann Thorac Surg.2011;92(5):1719-25.
    34. Rysa J, Tenhunen O, Serpi R, et al. GATA-4is an angiogenic survival factor of theinfarcted heart. Circ Heart Fail.2010;3(3):440-50.
    35. Heineke J, Auger-Messier M, Xu J, et al. Cardiomyocyte GATA4functions as astress-responsive regulator of angiogenesis in the murine heart. J Clin Invest.2007;117(11):3198-210.
    36. Li H, Zuo S, He Z, et al. Paracrine factors released by GATA-4overexpressedmesenchymal stem cells increase angiogenesis and cell survival. Am J Physiol HeartCirc Physiol.2010;299(6):H1772-81.
    37. Thirunavukkarasu M, Juhasz B, Zhan L,et al. VEGFR1(Flt-1+/-) gene knockoutleads to the disruption of VEGF-mediated signaling through the nitric oxide/hemeoxygenase pathway in ischemic preconditioned myocardium. Free Radic Biol Med.2007;42(10):1487-95.
    38. Kim SH, Moon HH, Kim HA, et al. Hypoxia-inducible vascular endothelial growthfactor-engineered mesenchymal stem cells prevent myocardial ischemic injury. MolTher.2011;19(4):741-50.
    39. Aries A, Paradis P, Lefebvre C, et al. Essential role of GATA-4in cell survival anddrug-induced cardiotoxicity. Proc Natl Acad Sci USA.2004;101(18):6975-80.
    40. Suzuki YJ, Nagase H, Day RM, et al. GATA-4regulation of myocardial survival inthe preconditioned heart. J Mol Cell Cardiol,2004;37(6):1195-203.
    41. Kim Y, Ma AG, Kitta K, et al. Anthracycline-induced suppression of GATA-4transcription factor: implication in the regulation of cardiac myocyte apoptosis.Mol Pharmacol.2003;63(2):368-77.
    42. Chipuk JE, Green DR. How do BCL-2proteins induce mitochondrial outermembrane permeabilization? Trends Cell Biol,2008,18(4):157-64.
    43. Kobayashi S, Lackey T, Huang Y, et al. Transcription factor gata4regulates cardiacBCL2gene expression in vitro and in vivo. FASEB J.2006;20(6):800-2.
    44. Li W, Ma N, Ong LL, et al. Bcl-2engineered MSCs inhibited apoptosis andimproved heart function.Stem Cells.2007;25(8):2118-27.
    45. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell.2004;116(2):281-97. Review.
    46. Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that somemicroRNAs downregulate large numbers of target mRNAs. Nature.2005;433(7027):769-73.
    47. Yang J, Cao Y, Sun J, Zhang Y. Curcumin reduces the expression of Bcl-2byupregulating miR-15a and miR-16in MCF-7cells. Med Oncol.2010;27(4): Cells.2009;27(12):3021-31.
    48. Tsubokawa T, Yagi K, Nakanishi C, et al. Impact of anti-apoptotic and anti-oxidativeeffects of bone marrow mesenchymal stem cells with transient overexpression ofheme oxygenase-1on myocardial ischemia. Am J Physiol Heart Circ Physiol.2010;298(5): H1320-9.
    49. Zeng B, Ren X, Lin G, et al. Paracrine action of HO-1modified mesenchymal stemcells mediates cardiac protection and functional improvement. Cell Biol Int.2008;32(10):1256-64.
    1. Arced RJ, KingAA, Simon MC, et al. Mouse GATA4:a retinoic acid-inducibleGATA-binding transcription factor expressed in endodermally derived tissues andheart. Mol Cell Biol.1993;13(4):2235-2246.
    2. Weiss MJ, Orkin SH. GATA transcription factors: key regulators of hematopoiesis.Exp Hematol.1995;23(2):99-107.
    3. Nichols KE, Crispino JD, Poncz M, et a1. Familial dyserythropoiefic anaemia andthrombocytopenia due to an inherited mutation in GATA1. Nat Genet.2000:24(3):266-270.
    4. Van Esch H, Groenen P, Nesbit MA, et a1. GATA3haplo-insufficiency causeshuman HDR syndrome. Nature.2000;406(6794):419-422.
    5. Ohneda K, Yamamoto M. Roles of hematopoietic transcription factors GATA-1and GATA-2in the development of red blood cell lineage. Acta Haematol.2002;108(4):237-245.
    6. Fujiwara Y, Chang AN, Williams AM, et a1. Functional overlap of GATA-1andGATA-2in primitive hematopoietic development. Blood.2004;103(2):583-585.
    7. Laverriere AC, MacNeill C, Mueller C, et a1. GATA-4/5/6, a subfamily of threetranscription factors transcribed in developing heart and gut. J Biol Chem.1994;269(37):23177-23184.
    8. Jiang Y, Tarzami S, Burch JB, et a1. Common role for each of the cGATA-4/5/6genes in the regulation of cardiac morphogenesis. Dev Genet.1998;22(3):263-277.
    9. Molkentin JD. The zinc finger-containing transcription factors GATA-4,-5, and-6.Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem.2000;275(50):38949-38952.
    10. Burch JB. Regulation of GATA gene expression during vertebrate development.Semin Cell Dev Biol.2005;16(1):71-81.
    11. Xu M, Millard RW, Ashraf M. Role of GATA-4in differentiation and survival ofbone marrow mesenchymal stem cells. Prog Mol Biol Transl Sci.2012;111:217-41. Review.
    12. Huang WY, Heng HH, Liew CC. Assignment of the human GATA4gene to8p23.1-->p22using fluorescence in situ hybridization analysis. Cytogenet CellGenet.1996;72(2-3):217-218.
    13. Morrisey EE, Ip HS, Tang Z, et a1. GATA-4activates transcription via two noveldomains that are conserved within the GATA-4/5/6subfamily. J Biol Chem.1997;272(13):8515-8524.
    14. Peterkin T, Gibson A, Loose M, et a1. The roles of GATA-4,-5, and-6invertebrate heart development. Semin Cell Dev Biol.2005;16(1):83-94.
    15. Pu WT, Ishiwata T, Juraszek AL, et a1. GATA4is a dosage-sensitive regulator ofcardiac morphogenesis. Dev Biol.2004;275(1):235-244.
    16. Xin M, Davis CA, Molkentin JD, et a1. A threshold of GATA4and GATA6expression is required for cardiovascular development. Proc NatI Acad Sci U S A.2006;103(30):11189-11194.
    17. Rajag0pal SK, Ma Q, Obler D, et a1. Spectrum of heart disease associated withmurine and human GATA4mutation. J Mol Cell Cardiol.2007;43(6):667-685.
    18. Hu DL, Chen FK, Liu YQ, et al. GATA-4promotes the differentiation of P19cellsinto cardiac myocytes. Int J Mol Med.2010;26(3):365-372.
    19. Kawamura T, Ono K, Morimoto T, et al. Acetylation of GATA-4is involved in thedifferentiation of embryonic stem cells into cardiac myocytes. J Biol Chem.2005;280(20):19682-19688.
    20. He Z, Li H, Zuo S, et al. Transduction of Wnt11promotes mesenchymal stemcells transdifferentiation into cardiac phenotypes. Stem Cells Dev.2011;20(10):1771-1778.
    21. Li H, Zuo S, Pasha Z, et al. GATA-4promotes myocardial transdifferentiation ofmesenchymal stromal cells via up-regulating IGFBP-4. Cytotherapy.2011;13(9):1057-1065.
    22. Zhu W, Shiojima I, Ito Y, et al. IGFBP-4is an inhibitor of canonical Wntsignalling required for cardiogenesis. Nature.2008;454(7202):345-349.
    23. Moon RT, Kohn AD, De Ferrari GV, et al. WNT and beta-catenin signalling:diseases and therapies. Nat Rev Genet.2004;5(9):691–701.
    24. Naito AT, Shiojima I, Akazawa H, et al. Developmental stagespecific biphasicroles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. ProcNatl Acad Sci USA.2006;103(52):19812–19817.
    25. Ueno S, Weidinger G, Osugi T, et al. Biphasic role for Wnt/betacatenin signalingin cardiac specification in zebrafish and embryonic stem cells. Proc Natl AcadSci USA.2007;104(23):9685-9690.
    26. Foley A, Mercola M. Heart induction: embryology to cardiomyocyte regeneration.Trends Cardiovasc Med.2004;14(3):121–125.
    27. Shan X, Xu X, Cao B, et al. Transcription factor GATA-4is involved inerythropoietin-induced cardioprotection against myocardial ischemia/reperfusioninjury. Int J Cardiol.2009;134(3):384-392.
    28. Wang HH, Li PC, Huang HJ, et al. Peritoneal dialysate effluent during peritonitisinduces human cardiomyocyte apoptosis by regulating the expression of GATA-4and Bcl-2families. J Cell Physiol.2011;226(1):94-102.
    29. Aries A, Paradis P, Lefebvre C, et al. Essential role of GATA-4in cell survivaland drug-induced cardiotoxicity. Proc Natl Acad Sci U S A.2004;101(18):6975-6980.
    30. Suzuki YJ, Evans T. Regulation of cardiac myocyte apoptosis by the GATA-4transcription factor. Life Sci.2004;74(15):l829-1838.
    31. Kitta K, Day RM, Kim Y, et a1. Hepatocyte growth factor induces GATA-4phosphorylation and cel survival in cardiac muscle cels. J Biol Chem.2003;278(7):4705-4712.
    32. Kakita T, Hasegawa K, Iwai-Kanai E, et a1. Calcineurin pathway is required forendothelln.1-mediated protection against oxidant stress-induced apoptosis incardiac myocytes. Circ Res.200l;88(12):1239-l246.
    33. Jay PY, Bielinska M, Erlich JM, et al. Impaired mesenchymal cell function inGata4mutant mice leads to diaphragmatic hernias and primary lung defects. DevBiol.2007;301(2):602–614.
    34. Li L, Takemura G, Li Y, et al. Preventive effect of erythropoietin on cardiacdysfunction in doxorubicin-induced cardiomyopathy. Circulation.2006;113(4):535–543.
    35. Kim Y, Ma AG, Kitta K, et al. Anthacycline-induced downregulation of GATA-4transcription factor: implication in the regulation of cardiac myocyte apoptosis.Mol Pharmacol.2003;63(2):368–377.
    36. Kobayashi S, Lackey T, Huang Y, et al. Transcription factor gata4regulatescardiac BCL2gene expression in vitro and in vivo. FASEB J.2006;20(6):800-802.
    37. Dai Y, Ashraf M, Zuo S, et al. Mobilized bone marrow progenitor cells serve asdonors of cytoprotective genes for cardiac repair. J Mol Cell Cardiol.2008;44(3):607–617.
    38. Li W, Ma N, Ong LL, et al. Bcl-2engineered MSCs inhibited apoptosis andimproved heart function. Stem Cells.2007;25(8):2118-2127.
    39. Chipuk JE, Green DR. How do BCL-2proteins induce mitochondrial outermembrane permeabilization? Trends Cell Biol.2008;18(4):157-164.
    40. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell.2004;116(2):281-297.
    41. Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that somemicroRNAs downregulate large numbers of target mRNAs. Nature.2005;433(7027):769-773.
    42. Yang J, Cao Y, Sun J, et al. Curcumin reduces the expression of Bcl-2byupregulating miR-15a and miR-16in MCF-7cells. Med Oncol.2010;27(4):1114-1118.
    43. Cimmino A, Calin GA, Fabbri M, et al. miR-15and miR-16induce apoptosis bytargeting BCL2. Proc Natl Acad Sci USA.2005;102(39):13944-13949.
    44. Rysa J, Tenhunen O, Serpi R, et al. GATA-4is an angiogenic survival factor of theinfarcted heart. Circ Heart Fail.2010;3(3):440-450.
    45. Wang X, Zhao T, Huang W, et al. Hsp20-engineered mesenchymal stem cells areresistant to oxidative stress via enhanced activation of Akt and increasedsecretion of growth factors. Stem Cells.2009;27(12):3021-3031.
    46. Tsubokawa T, Yagi K, Nakanishi C, et al. Impact of anti-apoptotic andanti-oxidative effects of bone marrow mesenchymal stem cells with transientoverexpression of heme oxygenase-1on myocardial ischemia. Am J PhysiolHeart Circ Physiol.2010;298(5): H1320-1329.
    47. Zeng B, Ren X, Lin G, et al. Paracrine action of HO-1modified mesenchymal stemcells mediates cardiac protection and functional improvement. Cell Biol Int.2008;32(10):1256-1264.
    48. Heineke J, Auger-Messier M, Xu J, et al. Cardiomyocyte GATA4functions as astress-responsive regulator of angiogenesis in the murine heart. J Clin Invest.2007;117(11):3198-3210.
    49. Li H, Zuo S, He Z, et al. Paracrine factors released by GATA-4overexpressedmesenchymal stem cells increase angiogenesis and cell survival. Am J PhysiolHeart Circ Physiol.2010;299(6):H1772-1781.
    50. Niagara MI, Haider H, Jiang S, et al. Pharmacologically preconditioned skeletalmyoblasts are resistant to oxidative stress and promote angiomyogenesis viarelease of paracrine factors in the infarcted heart. Circ Res.2007;100(4):545-555.
    51. Sheikh AY, Lin SA, Cao F, et al. Molecular imaging of bone marrow mononuclearcell homing and engraftment in ischemic myocardium. Stem Cells.2007;25(10):2677-2684.
    52. Terrovitis J, Lautamaki R, Bonios M, et al. Noninvasive quantification andoptimization of acute cell retention by in vivo positron emission tomographyafter intramyocardial cardiac-derived stem cell delivery. J Am Coll Cardiol.2009;54(17):1619-1626.
    53. Yu B, Gong M, He Z, et al. Enhanced mesenchymal stem cell survival induced byGATA-4overexpression is partially mediated by regulation of the miR-15family.Int J Biochem Cell Biol.2013;45(12):2724-2735.
    54. Yu B, Gong M, Wang Y, et al. Cardiomyocyte protection by GATA-4geneengineered mesenchymal stem cells is partially mediated by translocation ofmiR-221in microvesicles. PLoS One.2013;8(8):e73304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700