用户名: 密码: 验证码:
3T MRI在复杂型先天性心脏病双向Glenn分流术后的临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.通过流体模型,检验3.0 T磁共振相位对比法成像(3.0 T PC-MRI)速度编码值(Venc)、编码方向的选择及其对恒定流体流速和变速流体流速测量的准确性和稳定性。
     2.探讨非屏气电影法用于不能配合屏气患者心功能检查的可行性及评价非屏气多时相采集电影回放法测量左心室功能的价值。
     3.采用相位对比法磁共振成像(PC-MRI)测量肺、体循环大血管血流动力学信息,探讨肺、体循环差异,同时验证PC-MRI对人体血流参数测量的准确性。
     4.探讨3.0 T MRI SE序列结合电影成像评价复杂型先天性心脏病(CCHD)双向Glenn分流术(BGS)后心内畸形、主心室功能和房室瓣功能的诊断价值。
     5.应用PC-MRI结合CE-MRI评估BGS后,肺血流量与肺血管发育关系,进而计算主-肺侧支血管血流量(APCF)和心内分流量。
     材料与方法:
     1.固定流体流速和Venc,检验不同编码方向的流体信息;固定流体流速和编码方向,检验不同Venc对固定流速的影响:固定Venc和编码方向,检验PC-MRI对不同恒定流速(注射流率0-5 ml/s)所测流速值与实际流速的差别;检验PC-MRI对变速流体测量的准确性;采用t检验以检验PC-MRI所测流速值与实际流速的差异是否具有统计学意义。
     2.采用非屏气法和多次屏气法快速稳态平衡进动序列(FIESTA)对15例健康志愿者进行3.0 T MRI检查,用Report Card软件分析左心室功能,比较两种方法测量所得心功能指标,包括左心室舒张末期容积(EDV)、收缩末期容积(ESV)、射血分数(EF)、平均心肌质量(MM)、心输出量(CO)及相应的体表面积标准化的左心室舒张来期容积指数(EDVI)、心肌质量指数(MMI)、心脏指数(CI),采用配对样本t检验分析两种方法测量结果的差异性和相关性。
     3.使用GE 3.0 T MRI扫描仪,采用PC-MRI对15例健康志愿者的主肺动脉、右肺动脉、左肺动脉、主动脉、上腔静脉和下腔静脉进行血流测量,然后,计算各血管一个心动周期的净血流量和返流分数。采用配对样本t检验分析肺、体血流差异。
     4.采用Triple-IR和快速稳态平衡进动序列(FIESTA)对22例BGS术后患者进行心脏检查,用Report Card软件分析心内畸形、主心室和房室瓣收缩功能;分析3.0 T MRI测量主心室舒张末期容积(EDV)、收缩末期容积(ESV)、射血分数(EF)及轴缩短率(FS)与超声心动图(UCG)测量相应指标的相关性;应用独立样本t检验分析BGS术后主心室舒张末期容积指数(EDVI)、收缩末期容积指数(ESVI)、心脏指数(CI)及EF与健康志愿者左心室相应功能指标的差异;应用Spearman等级相关对电影MRI所测的房室瓣返流程度与UCG进行检验分析。
     5.应用3.0 T PC-MRI对22例BGS术后患者肺、体循环各大血管进行血流测量,用Report Card软件计算主动脉搏出量(Qs),上、下腔静脉回流量(Qv),左、右肺动脉血流量(Qp); APCF=Qs-Qv;心内分流量=Qv-Qp。应用CE-MRI测量肺血管发育指标。对肺、体循环血流差异及双肺动脉血流差异采用配对样本t检验;对肺血管发育指标与肺血流量关系采用Pearson's和Spearman's相关分析;对不同前向性血流组肺血流量及APCF的差异采用独立样本t检验;MRI与UCG对腔-肺吻合口测量的差异采用配对样本t检验和Pearson's相关分析。将心内分流量与主心室舒张末期容积指数(EDVI)和UCG测量的房室瓣返流面积进行相关性分析。所有结果取P<0.05为差异有统计学意义。
     结果:
     1.只有选择层面(SLICE)或上、下(SI)编码方向才能正确反映质子流动的方向;在Venc适当大于实际流速时,不同注射流率PC-MRI所测流速值与流速真实值之间差异无统计学意义(t=-0.861,P=0.405),二者呈显著正相关关系(r=0.999,P<0.001);3.0 T PC-MRI在测量变速流体的最大、最小和平均值与相应的实际流速一致性良好。
     2.非屏气法和多次屏气测得左心室各项功能指标分别为:EDV为(123.85±19.48)ml和(121.97±17.53)ml,ESV为(46.64±8.34)ml和(45.57±9.18)ml,EF为(62.65±5.12)%和(62.39±4.67)%,MM为(106.25±18.07)g和(106.25±18.07)g;EDVI为(70.44±7.11)ml/m2和(69.58±6.53) ml/m2,MMI为(60.83±5.45)g/m2和(60.17±6.34)g/m2,CO为(5.70±0.778)L/min和(5.69±0.88)L/min,CI为(3.26±0.24)L/min/m2和(3.27±0.30)L/min/m2。两种方法所得的上述各项指标经配对样本t检验,差异无统计学显著性意义(P值均>0.05),相关性良好(r=0.633-0.957)。
     3.主肺动脉、右肺动脉和左肺动脉一个心动周期的平均血流量分别为(69.42±12.35)mL,(38.78±6.81)mL和(32.27±6.49)mL,右肺动脉血流量显著大于左肺动脉血流量(t=3.092,P=0.004),左肺动脉返流分数明显大于右肺动脉返流分数(t=5.502,P=0.001)。主动脉一个心动周期的平均血流量为(70.1±12.42)mL;上腔静脉血流量(25.5±4.14 mL)明显低于下腔静脉血流量(42.14±9.26 mL)(t=-6.866,P<0.001),下腔静脉返流分数(9.77±1.83%)明显大于上腔静脉返流分数(6.86±1.92%)(t=4.250,P<0.001)。主、肺动脉搏出量及腔静脉回流量比值为1:1.009:0.974。
     4. Triple-IR结合FIESTA能清楚显示心内畸形和心脏大血管连接部畸形;3.0 TMRI测量获得的EDV、ESV、EF及FS与UCG测量值之间差异无统计学意义(P值均>0.05),二者相关性良好(r=0.727-0.99);BGS术后,主心室EDVI、MMI及CI均较健康志愿者增大,但EF值较健康志愿者减低;电影MRI测量房室瓣返流程度与UCG测量结果呈显著正相关性(rs=0.712,P<0.001),二者对房室瓣返流严重程度测量的吻合度较好(Kappa=0.453,P=0.01)。
     5.BGS术后,肺、体循环血流量存在明显差异(Qs大于Qv,Qv大于Qp);右肺血流量(56.1±10.9%)明显多于左肺血流量(43.9±10.9%);APCF为0.89±0.47 L/min,动脉前向性血流组明显多于静脉前向性血流组;PC-MRI测量肺血流量与CE-MRI测量肺动脉发育指标呈显著正相关(r=0.456-0.698);MRI与UCG测量腔-肺吻合口宽度、峰值流速及压差呈显著正相关(r=0.427-0.858);心内分流量(0.61±0.29 L/min)与主心室EDVI及UCG所测房室瓣返流面积呈显著正相关(r=0.806及r=0.685)。
     结论:
     1.选择合适的Venc和编码方向是准确测量流体动力学参数的前提;3.0 TPC-MRI能客观、准确地测量流体模型的动力学信息。
     2.非屏气法多时相采集电影MRI能较准确地测量左心室功能,而且可用于不能配合屏气患者的心功能检查。
     3. PC-MRI能够准确测量肺、体循环大血管血流量,所测健康志愿者的肺、体循环血流量及返流分数对心脏病患者的检查及术后复查具有重要参考意义。
     4.3.0 T MRI SE序列结合电影成像能准确评价CCHD患者BGS术后主心室的结构和功能,评价房室瓣返流方面与UCG相关性良好,具有较好的临床应用价值。
     5.3.0 T PC-MRI测量肺血流量与CE-MRI测量肺血管发育指标具有良好相关性,二者结合可更好地评估整体肺血情况;心内分流量与EDVI及房室瓣返流关系密切;APCF对治疗决策及评估预后有重要意义。
Objectives:
     1. To verify the effection of velocity encoding value and encoding direction in phase-contrast imaging sequence on 3.0 Tesla MR system (3.0 T PC-MRI), and to assess the accuracy and the stability for the quantitative measurement of the constant flow and variable velocity flow by using a self-made flow phantom.
     2. To explore the feasibility of multi-phase acquisition sequence during cardiac cycle (cine MRI) without breath-hold to evaluate the cardiac function for patients with incompatible breath-hold, and to investigate the values of left ventricular function by using this sequence.
     3. To measure the hemodynamic information of great vessels of pulmonary circulation and systemic circulation by using phase-contrast imaging sequence on 3.0 Tesla MR system (3.0 T PC-MRI), and to validate the accuracy of the results from PC-MRI sequence in vivo simultaneously.
     4. To investigate the significance of the information of the intracardiac malformations, major ventricular and atrioventricular valve function for patients with complex congenital heart disease (CCHD) underwent bidirectional Glenn shunt (BGS) from spin-echo sequence combining with cine MR imaging sequence.
     5. To calculate the aortopulmonary collateral flow (APCF) and intracardiac shunt flow (ICSF) for patients with bidirectional Glenn shunt (BGS) according the data from PC sequence, and to investigate the relationship of the parameters of pulmonary vessel growth and the pulmonary flows obtained from contrast-enhanced MR imaging (CE-MRI) sequence and phase-contrast imaging sequence.
     Materials and Methods:
     1. First, holding flow velocity and velocity encoding value, the dynamic information of the fluid flow was tested under different encoding directions. Second, holding flow velocity and encoding directions, the velocities of constant flow were tested under different velocity encoding values. Third, holding velocity encoding value and encoding direction, flow velocity value measured by PC-MRI sequence under different constant flow was compared with its actual value. Fourth, the curve of the variable velocity flow measured with PC-MRI sequence was compared with the curve of its actual variable velocity. T test was employed to assess the statistical significance of the difference between the results measured with PC-MRI sequence and their actual value.
     2. The fast imaging employing steady state acquisition (FIESTA) sequence with and without breath-hold was performed to obtain the multiphase data in 15 healthy volunteers. The left ventricular function was analyzed from the images of these volunteers on the workstation with Report Card software. The results of the function parameters of left ventricle, including end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), mean myocardial mass (MM), cardiac output (CO) and the corresponding parameters of end-diastolic volume index (EDVI), myocardial mass index (MMI) and cardiac index (CI), without breath-hold were compared with those obtained with multi-breathhold sequence. Paired-samples t-test was employed to assess their difference, and pearson's correlation analysis was performed between the results without breath-hold sequence and with multi-breathhold sequence.
     3. PC-MRI sequences were performed on GE 3 tesla MR scanner in 15 healthy volunteers in order to evaluate the blood flow status in main pulmonary artery (MPA), right pulmonary artery (RPA), left pulmonary artery (LPA), ascending aorta (AA), superior vena cava (SVC) and inferior vena cava (IVC). The net flow volume and regurgitation fraction of each vessel were calculated for each volunteer during one cardiac cycle. Paired-samples t-test was employed to assess the statistical significant difference.
     4. Triple-IR sequence and cine MR sequence were performed in 22 patients with BGS. According to these MR images, intracardiac malformations, major ventricular and atrioventricular valve function were evaluated with Report Card software on workstation. End-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), fractional shortening (FS), mean myocardial mass (MM), cardiac output (CO) and the corresponding parameters of end-diastolic volume index (EDVI), myocardial mass index (MMI) and cardiac index (CI) of major ventricular were measured with cine MR imaging sequence. The correlation analysis of the results of EDV, ESV, EF and FS obtained from ultrasound cardiography (UCG) and MRI was performed. The results of EDVI, MMI, CI and EF of BGS in the patients and healthy volunteers were compared and independent-samples t-test was employed to evaluate the statistical significance of the results' difference. Spearman rank correlation coefficients were employed to analyze the difference of the regurgitation degree of atrioventricular valve obtained with cine MRI and UCG.
     5. PC-MRI sequence was performed to measure the flow of great vessels of right pulmonary artery (RPA), left pulmonary artery (LPA), ascending aorta (AA), superior vena cava (SVC) and inferior vena cava (IVC), and the quantity of AA (Qs) per minute (Qs), the quantity of pulmonary per minute (Qp), and the quantity of venous return per minute (Qv) were calculated by using Report Card software. APCF was calculated as the difference of Qs and Qp, and ICSF were calculated as the difference of Qv and Qp. CE-MR imaging sequence was performed to assess the pulmonary vessels growth. The relationship of parameters of pulmonary vessels growth and corresponding blood flow was evaluated with the correlation analysis. The statistical significant difference of pulmonary blood flow and APCF at the different antegrade flow groups was evaluated with independent samples t-test. The results of the width of superior cavo-pulmonary anastomosis measured with MRI and UCG were evaluated with paired-samples t-test and pearson's correlation analysis. The relationship of ICSF and EDVI obtained with MRI was evaluated with correlation and regression analysis, and so did the relationship of ICSF and the regurgitation area of atrioventricular valve obtained with UCG.
     Results:
     1. Only on the velocity encoding direction of SLICE or SI (superior and inferior) could the direction of proton flowing be correctly detected. There was no significant difference between the measured velocities with PC-MRI sequence under different flow rates and the corresponding actual flow velocities (t=-0.861, P=0.405) while the velocity encoding value was appropriately greater than the actual flow velocity. A significantly positive correlation (r=0.999, P<0.001) was demonstrated between the measured velocities and the actual velocities. There was good consistency among the measured maximum, minimum, average velocities and the corresponding actual variable flow velocities.
     2. The EDV, ESV, EF, MM, EDVI, MMI, CO and CI measured with and without breath-hold multi-phase acquisition sequence were (121.97±17.53) ml and (123.85±19.48) ml, (45.57±9.18) ml and (46.64±8.34) ml, (62.39±4.67)% and (62.65±5.12)%, (106.25±18.07) g and (105.63±19.20) g, (69.58±6.53) ml/m2 and (70.44±7.11) ml/m2, (60.17±6.34) g/m2 and (60.83±5.45) g/m2, (5.69±0.88) L/min and (5.70±0.78) L/min, (3.27±0.30) L/min/m2 and (3.26±0.24) L/min/m2, respectively. No statistical difference was found between the results of the two methods (all P>0.05), but good correlationship between the results of the two methods was demonstrated (r=0.633-0.957, all P< 0.01).
     3. The flow volume of MPA, RPA and LPA during a cardiac cycle was (69.42±12.35) ml, (38.78±6.81) ml and (32.27±6.49) ml, respectively. The flow volume of RPA was significantly higher than that of LPA (t=3.092, P= 0.004). The percentage of flow volume of RPA and LPA was 55.4% and 44.6%, respectively. The regurgitation fraction of LPA was significantly higher than that of RPA (t=5.502, P=0.001). The average flow volume of AA in one cardiac cycle was (70.1±12.42) ml. The average flow volume of SVC (25.5±4.14 ml) was significantly lower than that of IVC (42.14±9.26 ml) (t=-6.866, P<0.001). The regurgitation fraction of IVC (9.77±1.83%) was significantly higher than that of SVC (6.86±1.92%) (t=4.250, P<0.001). The ratio of flow volumes of AA, MPA and vena cava were 1:1.009:0.974.
     4. All intracardiac malformations and cardiovascular conjunction were demonstrated clearly on the images of triple-IR sequence with cine MR sequence. No statistical difference was found between the results of EDV, ESV, EF, FS obtained with cine MR imaging sequence and those with UCG (all P>0.05). A good correlation (r=0.727-0.99, all P< 0.01) was found between the two methods. The value of EDVI, MMI and CI of the patients with BGS was significantly higher than that of healthy volunteers, but the value of EF was lower. The positive correlation of the regurgitation degree of atrioventricular valve between two results obtained with MRI and UCG was found significantly (rs=0.712, P<0.001).
     5. The difference of the flow volume of systemic circulation and pulmonary circulation was found significantly. We found that Qs was higher than Qv, and Qv was higher than Qp. The flow volume of RPA (56.1±10.9%) was significantly higher than that of LPA (43.9±10.9%). The flow volume of APCF ranged from 0.21-1.53 L/min (mean 0.89 L/min), and the flow volume of antegrade venous blood flow group was significantly higher than that of antegrade arterial blood flow group. The positive relationship of the flow volume and the growth parameters of pulmonary arteries was found (r=0.456-0.698). The results of width, peak flow velocity and gradient pressure of superior cavopulmonary anastomosis obtained by MRI were closely correlated with those of UCG (r=0.427-0.858, all P< 0.05). The positive relationship between ICSF and EDVI obtained by cine MR imaging sequence, and the positive relationship between ICSF and the regurgitation area of atrioventricular valve obtained by UCG were found (r=0.685, and r=0.806).
     Conclusions:
     1. PC-MRI sequence on 3.0 T MR system can evaluate the parameters of the flow of the flow phantom accurately when the velocity encoding value and the encoding direction are selected correctly.
     2. Left ventricular function in healthy people and the patients with incompatibile breath-hold can be evaluated with multi-phase acquisition without breath-hold sequence correctly.
     3. The flow volume of great vessels of pulmonary circulation and systemic circulation can be accurately measured with PC-MRI sequence. The flow volume and regurgitation fraction of great vessels in healthy volunteers may be used as a reference.
     4. The cardiac malformation and function of the BGS patients could be accurately evaluated with cine MR imaging sequence and spin-echo sequence. A good correlationship was demonstrated in evaluating the degree of regurgitation of atrioventricular valve between cine MR imaging sequence and UCG.
     5. The SPCF and ICSF in patients with BDG can be reliably measured with PC-MRI sequence on 3.0 tesla MR system. The good correlation of the flow volume obtained by PC-MRI sequence and the growth parameters obtained by CE-MRI for pulmonary vessels are demonstrated, and so does the ICSF with EDVI and with the regurgitation area of atrioventricular valve obtained by UCG.
引文
[1]de Haan MW, Kouwenhoven M, Kessels AG, et al. Renal artery blood flow: quantification with breath-hold or respiratory triggered phase-contrast MR imaging [J]. Eur Radiol,2000,10 (7):1133-1137.
    [2]Koskenvuo JW, Hartiala JJ, Knuuti J, et al. Assessing coronary sinus blood flow in patients with coronary artery disease: a comparison of phase-contrast MR imaging with positron emission tomography [J]. AJR Am J Roentgenol, 2001,177 (5):1161-1166.
    [3]Yildiz H, Erdogan C, Yalcin R, et al. evaluation of communication between intracranial arachnoid cysts and cisterns with phase-contrast cine MR imaging [J]. AJNR Am J Neuroradiol,2005,26 (1):145-151.
    [4]Oktar SO, Yucel C, Karaosmanoglu D, et al. Blood-flow volume quantification in internal carotid and vertebral arteries:comparison of 3 different ultrasound techniques with phase-contrast MR imaging [J]. AJNR Am J Neuroradiol, 2006,27 (2):363-369.
    [5]Pujadas S, Reddy GP, Weber O, et al. Phase contrast MR imaging to measure changes in collateral blood flow after stenting of recurrent aortic coarctation: initial experience [J]. J Magn Reson Imaging,2006,24 (1):72-76.
    [6]Stoquart-El Sankari S, Lehmann P, Gondry-Jouet C, et al. Phase-contrast MR imaging support for the diagnosis of aqueductal stenosis [J]. AJNR Am J Neuroradiol,2009,30 (1):209-214.
    [7]杨正汉,冯逢,王霄英,等.磁共振成像技术指南-检查规范:临床策略及新技术应用[J].北京:人民军医出版社,2007,238-241.
    [8]Lagerstrand KM, Lehmann H, Starck G, et al. Method to correct for the effects of limited spatial resolution in phase-contrast flow MRI measurements [J]. Magn Reson Med,2002,48 (5):883-889.
    [9]Greil G, Geva T, Maier SE, et al. Effect of acquisition parameters on the accuracy of velocity encoded cine magnetic resonance imaging blood flow measurements [J]. J Magn Reson Imaging,2002,15 (1):47-54.
    [10]Arheden H, Saeed M, Tornqvist E, et al. Accuracy of segmented MR velocity mapping to measure small vessel pulsatile flow in a phantom simulating cardiac motion [J]. J Magn Reson Imaging,2001,13 (5):722-728.
    [11]Lethimonnier F, Bouligand B, Thouveny F, et al. Error assessment due to coronary stents in flow-encoded phase contrast MR angiography: a phantom study [J]. J Magn Reson Imaging,1999,10 (5):899-902.
    [12]高歌军,冯晓源,耿道颖,等.液体流率MR测量实验研究[J].中国医学计算机成像杂志,2004,10:145-148.
    [13]李彩英,田建明,刘辉,等.利用磁共振相位对比法对非搏动流体模型的定量测量研究[J].中国医学影像技术,2006,22(4):535-537.
    [14]Pelc NJ, Herfkens RJ, Shimakawa A, et al. Phase contrast cine magnetic resonance imaging [J]. Magn Reson Q,1991,7 (4):229-254.
    [15]Kilner PJ, Firmin DN, Rees RS, et al. Valve and great vessel stenosis: assessment with MR jet velocity mapping [J]. Radiology,1991,178 (1): 229-235.
    [1]Grothues F, Moon JC, Bellenger NG, et al. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance [J]. Am Heart J,2004,147 (2):218-223.
    [2]Kadar K. [Tissue Doppler imaging in the assessment of right ventricular function in congenital heart disease. Correlation with echo-MRI] [J]. Orv Hetil, 2008,149 (32):1503-1508.
    [3]Sakuma H, Fujita N, Foo TK, et al. Evaluation of left ventricular volume and mass with breath-hold cine MR imaging [J]. Radiology,1993,188 (2): 377-380.
    [4]Teo KS, Carbone A, Piantadosi C, et al. Cardiac MRI Assessment of Left and Right Ventricular Parameters in Healthy Australian Normal Volunteers [J]. Heart Lung Circ,2008.
    [5]颜彦,郭兴明,肖守中.心脏功能评价指标及其检测方法进展[J].医疗卫生装备,2005,26(1):21-23.
    [6]周阳泱,韩萍,冯敢生.多层螺旋CT定量评估左心功能的研究进展[J].国外医学临床放射学分册,2005,28(3):150-152.
    [7]Anand IS, Florea VG, Solomon SD, et al. Noninvasive assessment of left ventricular remodeling: concepts, techniques, and implications for clinical trials [J]. J Card Fail,2002,8 (6 Suppl):S452-464.
    [8]Papavassiliou DP, Parks WJ, Hopkins KL, et al. Three-dimensional echocardiographic measurement of right ventricular volume in children with congenital heart disease validated by magnetic resonance imaging [J]. J Am Soc Echocardiogr,1998,11 (8):770-777.
    [9]Sechtem U, Pflugfelder P, Higgins CB. Quantification of cardiac function by conventional and cine magnetic resonance imaging [J]. Cardiovasc Intervent Radiol,1987,10 (6):365-373.
    [10]赵希刚,李坤成,李永忠.单次屏气电影法MRI评价左心室功能的初步研究[J].中国医学影像技术,2005,21(1):65-67.
    [11]Li W, Stern JS, Mai VM, et al. MR assessment of left ventricular function: quantitative comparison of fast imaging employing steady-state acquisition (FIESTA) with fast gradient echo cine technique [J]. J Magn Reson Imaging, 2002,16 (5):559-564.
    [12]Malm S, Frigstad S, Sagberg E, et al. Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography: a comparison with magnetic resonance imaging [J]. J Am Coll Cardiol,2004, 44 (5):1030-1035.
    [13]Danilouchkine MG, Westenberg JJ, de Roos A, et al. Operator induced variability in cardiovascular MR: left ventricular measurements and their reproducibility [J]. J Cardiovasc Magn Reson,2005,7 (2):447-457.
    [14]周璐,金征宇,张竹花,等.心脏磁共振成像评价健康志愿者心脏的结构和功能[J].中国医学科学院学报,2009,31(2):210-214.
    [1]Bogren HG, Klipstein RH, Mohiaddin RH, et al. Pulmonary artery distensibility and blood flow patterns:a magnetic resonance study of normal subjects and of patients with pulmonary arterial hypertension [J]. Am Heart J, 1989,118(5 Pt1):990-999.
    [2]Mousseaux E, Tasu JP, Jolivet O, et al. Pulmonary arterial resistance: noninvasive measurement with indexes of pulmonary flow estimated at velocity-encoded MR imaging--preliminary experience [J]. Radiology,1999, 212 (3):896-902.
    [3]雷晓燕,郭佑民,许贵平,等.中心肺动脉血流速度的MRI测量研究[J].中国医学影像技术,2006,22(3):409-412.
    [4]雷晓燕,沈亚梅,郭佑民,等.肺动脉流速的MRI测量与多普勒超声比较研究[J].实用放射学杂志,2006,22(1):27-29.
    [5]杨正汉,冯逢,王霄英,等.磁共振成像技术指南-检查规范:临床策略及新技术应用[M].北京:人民军医出版社,2007,238-241.
    [6]Evans AJ, Iwai F, Grist TA, et al. Magnetic resonance imaging of blood flow with a phase subtraction technique. In vitro and in vivo validation [J]. Invest Radiol,1993,28 (2):109-115.
    [7]Arheden H, Saeed M, Tornqvist E, et al. Accuracy of segmented MR velocity mapping to measure small vessel pulsatile flow in a phantom simulating cardiac motion [J]. J Magn Reson Imaging,2001,13 (5):722-728.
    [8]Beerbaum P, Korperich H, Barth P, et al. Noninvasive quantification of left-to-right shunt in pediatric patients:phase-contrast cine magnetic resonance imaging compared with invasive oximetry [J]. Circulation,2001,103 (20): 2476-2482.
    [9]Gatehouse PD, Keegan J, Crowe LA, et al. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI [J]. Eur Radiol,2005,15 (10): 2172-2184.
    [10]Grosse-Wortmann L, Al-Otay A, Yoo SJ. Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion: quantification with MRI [J]. Circ Cardiovasc Imaging,2009,2 (3):219-225.
    [11]Hom JJ, Ordovas K, Reddy GP. Velocity-encoded cine MR imaging in aortic coarctation: functional assessment of hemodynamic events [J]. Radiographics, 2008,28 (2):407-416.
    [12]Macgowan CK, Kellenberger CJ, Detsky JS, et al. Real-time Fourier velocity encoding: an in vivo evaluation [J]. J Magn Reson Imaging,2005,21 (3): 297-304.
    [13]Powell AJ, Geva T. Blood flow measurement by magnetic resonance imaging in congenital heart disease [J]. Pediatr Cardiol,2000,21 (1):47-58.
    [14]Chai P, Mohiaddin R. How we perform cardiovascular magnetic resonance flow assessment using phase-contrast velocity mapping [J]. J Cardiovasc Magn Reson,2005,7 (4):705-716.
    [15]Frydrychowicz A, Markl M, Harloff A, et al. [Flow-sensitive in-vivo 4D MR imaging at 3T for the analysis of aortic hemodynamics and derived vessel wall parameters] [J]. Rofo,2007,179 (5):463-472.
    [16]Chern MJ, Wu MT, Wang HL. Numerical investigation of regurgitation phenomena in pulmonary arteries of Tetralogy of Fallot patients after repair [J]. J Biomech,2008,41 (14):3002-3009.
    [17]Harris MA, Weinberg PM, Whitehead KK, et al. Usefulness of branch pulmonary artery regurgitant fraction to estimate the relative right and left pulmonary vascular resistances in congenital heart disease [J]. Am J Cardiol, 2005,95 (12):1514-1517.
    [18]Kang IS, Redington AN, Benson LN, et al. Differential regurgitation in branch pulmonary arteries after repair of tetralogy of Fallot: a phase-contrast cine magnetic resonance study [J]. Circulation,2003,107 (23):2938-2943.
    [19]Markl M, Draney MT, Miller DC, et al. Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement [J]. J Thorac Cardiovasc Surg,2005,130 (2):456-463.
    [20]Bell A, Beerbaum P, Greil G, et al. Noninvasive assessment of pulmonary artery flow and resistance by cardiac magnetic resonance in congenital heart diseases with unrestricted left-to-right shunt [J]. JACC Cardiovasc Imaging, 2009,2(11):1285-1291.
    [21]常时新,孔祥泉,冯敢生,等.MR相位速度图及心导管检查对肺动脉血液动力学的对比研究[J].中华放射学杂志,2001,35(6):426-429.
    [1]Mavroudis C, Backer主编CL,刘锦纷主译.小儿心脏外科学[M].北京大学医学出版社,第3版,2005:60-468.
    [2]Ascuitto R, Ross-Ascuitto N, Wiesman J, et al. Bidirectional Glenn shunt as an adjunct to surgical repair of congenital heart disease associated with pulmonary outflow obstruction: relevance of the fluid pressure drop-flow relationship [J]. Pediatr Cardiol,2008,29 (5):910-917.
    [3]许耀强,刘迎龙,吕小东,等.具有不同前向肺血流的肺血少型先天性心脏病患者在双向Glenn术后肺血管的发育[J].中国医学科学院学报,2008,30(6):717-722.
    [4]Tanoue Y, Kado H, Boku N, et al. Three hundred and thirty-three experiences with the bidirectional Glenn procedure in a single institute [J]. Interact Cardiovasc Thorac Surg,2007,6 (1):97-101.
    [5]Day RW, Etheridge SP, Veasy LG, et al. Single ventricle palliation: greater risk of complications with the Fontan procedure than with the bidirectional Glenn procedure alone [J]. Int J Cardiol,2006,106 (2):201-210.
    [6]曾嵘,庄建,岑坚正,等.70例小儿双向腔静脉-肺动脉分流手术后的临床处理[J].中华小儿外科杂志,2005,26(2):617-620.
    [7]曹鼎方,仇黎生,苏肇伉,等.双向分流术治疗儿童复杂紫绀型先天性心脏病[J].中华胸心血管外科杂志,2005,21(338-340).
    [8]Tanoue Y, Sese A, Imoto Y, et al. Ventricular mechanics in the bidirectional glenn procedure and total cavopulmonary connection [J]. Ann Thorac Surg, 2003,76 (2):562-566.
    [9]Tanoue Y, Sese A, Ueno Y, et al. Bidirectional Glenn procedure improves the mechanical efficiency of a total cavopulmonary connection in high-risk fontan candidates [J]. Circulation,2001,103 (17):2176-2180.
    [10]Masuda M, Kado H, Shiokawa Y, et al. Clinical results of the staged Fontan procedure in high-risk patients [J]. Ann Thorac Surg,1998,65 (6):1721-1725.
    [11]Choussat A, Fontan F, Besse P, et al. Selection criteria for Fontan's procedure. In: A nderson RH, Shinebourne EA, eds. Paediatric Cardiology [M] [J]. Edinburgh:Churchill Livingstone,1978:559-566.
    [12]蔡豪祺,郑景浩.改良Fontan手术的进展[J].中国胸心血管外科临床杂志,2009,16(2):137-140.
    [13]张石江.Glenn术、Fontan术及改良Fontan术[J].医学研究生学报,2000,13(5):335-343.
    [14]Sharma R, Iyer KS, Airan B, et al. Univentricular repair. Early and midterm results [J]. J Thorac Cardiovasc Surg,1995,110 (6):1692-1700; discussion 1700-1691.
    [15]Teo KS, Carbone A, Piantadosi C, et al. Cardiac MRI Assessment of Left and Right Ventricular Parameters in Healthy Australian Normal Volunteers [J]. Heart Lung Circ,2008.
    [16]Kadar K. [Tissue Doppler imaging in the assessment of right ventricular function in congenital heart disease. Correlation with echo-MRI] [J]. Orv Hetil, 2008,149 (32):1503-1508.
    [17]赵希刚,李坤成,李永忠.单次屏气电影法MRI评价左心室功能的初步研究[J].中国医学影像技术,2005,21(1):65-67.
    [18]Grothues F, Moon JC, Bellenger NG, et al. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance [J]. Am Heart J,2004,147 (2):218-223.
    [19]Anand IS, Florea VG, Solomon SD, et al. Noninvasive assessment of left ventricular remodeling: concepts, techniques, and implications for clinical trials [J]. J Card Fail,2002,8 (6 Suppl):S452-464.
    [20]Papavassiliou DP, Parks WJ, Hopkins KL, et al. Three-dimensional echocardiographic measurement of right ventricular volume in children with congenital heart disease validated by magnetic resonance imaging [J]. J Am Soc Echocardiogr,1998,11 (8):770-777.
    [21]颜彦,郭兴明,肖守中.心脏功能评价指标及其检测方法进展[J].医疗卫生装备,2005,26(1):21-23.
    [22]Sakuma H, Fujita N, Foo TK, et al. Evaluation of left ventricular volume and mass with breath-hold cine MR imaging [J]. Radiology,1993,188 (2): 377-380.
    [23]Schwerzmann M, Samman AM, Salehian O, et al. Comparison of echocardiographic and cardiac magnetic resonance imaging for assessing right ventricular function in adults with repaired tetralogy of fallot [J]. Am J Cardiol, 2007,99 (11):1593-1597.
    [24]刘坤申,冯珏.放射性核素心功能检查的应用及评价[J].中国实用内科杂志,2001,21(5):265-266.
    [25]高波,郭启勇,岳勇,等.64层螺旋CT与磁共振成像评价左心功能的比较研究[J].中国医学影像技术,2007,23(1):66-69.
    [26]赵希刚,李坤成,杜祥颖,等.64排增强螺旋CT法评价左室心功能与屏气MR电影法的比较研究[J].中华医学杂志,2006,86(38):2723-2725.
    [27]周阳泱,韩萍,冯敢生.多层螺旋CT定量评估左心功能的研究进展[J].国外医学临床放射学分册,2005,28(3):150-152.
    [28]Babu-Narayan SV, Gatzoulis MA, Kilner PJ. Non-invasive imaging in adult congenital heart disease using cardiovascular magnetic resonance [J]. J Cardiovasc Med (Hagerstown),2007,8 (1):23-29.
    [29]Dall'Armellina E, Hamilton CA, Hundley WG Assessment of blood flow and valvular heart disease using phase-contrast cardiovascular magnetic resonance [J]. Echocardiography,2007,24 (2):207-216.
    [30]杨正汉,冯逢,王霄英,等.磁共振成像技术指南-检查规范:临床策略及新技术应用[M].北京:人民军医出版社,2007,238-241.
    [31]Gatehouse PD, Keegan J, Crowe LA, et al. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI [J]. Eur Radiol,2005,15 (10): 2172-2184.
    [32]Powell AJ, Geva T. Blood flow measurement by magnetic resonance imaging in congenital heart disease [J]. Pediatr Cardiol,2000,21 (1):47-58.
    [33]孙军燕,张兆琪,李传亭,等.磁共振电影成像评价左右心室整体收缩功能[J].中华心血管病杂志,2006,34(12):1085-1088.
    [34]汪曾炜,刘维永,张宝仁主编.手术学全集2心血管外科卷[M].人民军医出版社,1995,北京:408.
    [1]Ascuitto R, Ross-Ascuitto N, Wiesman J, et al. Bidirectional Glenn shunt as an adjunct to surgical repair of congenital heart disease associated with pulmonary outflow obstruction: relevance of the fluid pressure drop-flow relationship [J]. Pediatr Cardiol,2008,29 (5):910-917.
    [2]Tanoue Y, Kado H, Boku N, et al. Three hundred and thirty-three experiences with the bidirectional Glenn procedure in a single institute [J]. Interact Cardiovasc Thorac Surg,2007,6 (1):97-101.
    [3]Day RW, Etheridge SP, Veasy LG, et al. Single ventricle palliation: greater risk of complications with the Fontan procedure than with the bidirectional Glenn procedure alone [J]. Int J Cardiol,2006,106 (2):201-210.
    [4]曾嵘,庄建,岑坚正,等.70例小儿双向腔静脉-肺动脉分流手术后的临床处理[J].中华小儿外科杂志,2005,26(2):617-620.
    [5]许耀强,刘迎龙,吕小东,等.具有不同前向肺血流的肺血少型先天性心脏病患者在双向Glenn术后肺血管的发育[J].中国医学科学院学报,2008,30(6):717-722.
    [6]Grosse-Wortmann L, Al-Otay A, Yoo SJ. Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion: quantification with MRI [J]. Circ Cardiovasc Imaging,2009,2 (3):219-225.
    [7]Stern HJ. The argument for aggressive coiling of aortopulmonary collaterals in single ventricle patients [J]. Catheter Cardiovasc Interv,2009,74 (6):897-900.
    [8]Metras D, Chetaille P, Kreitmann B, et al. Pulmonary atresia with ventricular septal defect, extremely hypoplastic pulmonary arteries, major aorto-pulmonary collaterals [J]. Eur J Cardiothorac Surg,2001,20 (3):590-596; discussion 596-597.
    [9]McElhinney DB, Reddy VM, Tworetzky W, et al. Incidence and implications of systemic to pulmonary collaterals after bidirectional cavopulmonary anastomosis [J]. Ann Thorac Surg,2000,69 (4):1222-1228.
    [10]Inuzuka R, Aotsuka H, Nakajima H, et al. Quantification of collateral aortopulmonary flow in patients subsequent to construction of bidirectional cavopulmonary shunts [J]. Cardiol Young,2008,18 (5):485-493.
    [11]Powell AJ. Aortopulmonary collaterals in single-ventricle congenital heart disease:how much do they count? [J]. Circ Cardiovasc Imaging,2009,2 (3): 171-173.
    [12]Sharma R, Iyer KS, Airan B, et al. Univentricular repair. Early and midterm results [J]. J Thorac Cardiovasc Surg,1995,110 (6):1692-1700; discussion 1700-1691.
    [13]张石江.Glenn术、Fontan术及改良Fontan术[J].医学研究生学报,2000,13(5):335-343.
    [14]Arheden H, Saeed M, Tornqvist E, et al. Accuracy of segmented MR velocity mapping to measure small vessel pulsatile flow in a phantom simulating cardiac motion [J]. J Magn Reson Imaging,2001,13 (5):722-728.
    [15]Beerbaum P, Barth P, Kropf S, et al. Cardiac function by MRI in congenital heart disease: impact of consensus training on interinstitutional variance [J]. J Magn Reson Imaging,2009,30 (5):956-966.
    [16]Beerbaum P, Korperich H, Barth P, et al. Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry [J]. Circulation,2001,103 (20): 2476-2482.
    [17]Chai P, Mohiaddin R. How we perform cardiovascular magnetic resonance flow assessment using phase-contrast velocity mapping [J]. J Cardiovasc Magn Reson,2005,7 (4):705-716.
    [18]Evans AJ, Iwai F, Grist TA, et al. Magnetic resonance imaging of blood flow with a phase subtraction technique. In vitro and in vivo validation [J]. Invest Radiol,1993,28 (2):109-115.
    [19]Goo HW, Al-Otay A, Grosse-Wortmann L, et al. Phase-contrast magnetic resonance quantification of normal pulmonary venous return [J]. J Magn Reson Imaging,2009,29 (3):588-594.
    [20]Korperich H, Gieseke J, Barth P, et al. Flow volume and shunt quantification in pediatric congenital heart disease by real-time magnetic resonance velocity mapping:a validation study [J]. Circulation,2004,109 (16):1987-1993.
    [21]Debl K, Djavidani B, Buchner S, et al. Quantification of left-to-right shunting in adult congenital heart disease: phase-contrast cine MRI compared with invasive oximetry [J]. Br J Radiol,2009,82 (977):386-391.
    [22]Whitehead KK, Gillespie MJ, Harris MA, et al. Noninvasive quantification of systemic-to-pulmonary collateral flow: a major source of inefficiency in patients with superior cavopulmonary connections [J]. Circ Cardiovasc Imaging,2009,2 (5):405-411.
    [23]曹鼎方,仇黎生,苏肇伉,等.双向分流术治疗儿童复杂紫绀型先天性心脏病[J].中华胸心血管外科杂志,2005,21(338-340).
    [24]Tanoue Y, Sese A, Imoto Y, et al. Ventricular mechanics in the bidirectional glenn procedure and total cavopulmonary connection [J]. Ann Thorac Surg, 2003,76 (2):562-566.
    [25]Tanoue Y, Sese A, Ueno Y, et al. Bidirectional Glenn procedure improves the mechanical efficiency of a total cavopulmonary connection in high-risk fontan candidates [J]. Circulation,2001,103 (17):2176-2180.
    [26]Nakata S, Imai Y, Takanashi Y, et al. A new method for the quantitative standardization of cross-sectional areas of the pulmonary arteries in congenital heart diseases with decreased pulmonary blood flow [J]. J Thorac Cardiovasc Surg,1984,88 (4):610-619.
    [27]Kawahira Y, Kishimoto H, Kawata H, et al. New indicator for the Fontan operation: diameters of the pulmonary veins in patients with univentricular heart [J]. J Card Surg,1999,14 (4):259-265.
    [28]Harris MA, Weinberg PM, Whitehead KK, et al. Usefulness of branch pulmonary artery regurgitant fraction to estimate the relative right and left pulmonary vascular resistances in congenital heart disease [J]. Am J Cardiol, 2005,95 (12):1514-1517.
    [29]Kang IS, Redington AN, Benson LN, et al. Differential regurgitation in branch pulmonary arteries after repair of tetralogy of Fallot: a phase-contrast cine magnetic resonance study [J]. Circulation,2003,107 (23):2938-2943.
    [30]万大伟,孙琦,刘应征,等.双侧双向Glenn手术的全三维血液动力学数 值分析[J].生物医学工程研究,2008,27(2):79-83.
    [31]Bell A, Beerbaum P, Greil G, et al. Noninvasive assessment of pulmonary artery flow and resistance by cardiac magnetic resonance in congenital heart diseases with unrestricted left-to-right shunt [J]. JACC Cardiovasc Imaging, 2009,2(11):1285-1291.
    [32]常时新,孔祥泉,冯敢生,等.MR相位速度图及心导管检查对肺动脉血液动力学的对比研究[J].中华放射学杂志,2001,35(6):426-429.
    [33]Baltes C, Hansen MS, Tsao J, et al. Determination of peak velocity in stenotic areas:echocardiography versus k-t SENSE accelerated MR Fourier velocity encoding [J]. Radiology,2008,246 (1):249-257.
    [1]张石江.Glenn术、Fontan术及改良Fontan术[J].医学研究生学报,2000,13(5):335-343.
    [2]AboulHosn JA, Shavelle DM, Castellon Y, et al. Fontan operation and the single ventricle [J]. Congenit Heart Dis,2007,2 (1):2-11.
    [3]Kreutzer G, Galindez E, Bono H, et al. An operation for the correction of tricuspid atresia [J]. J Thorac Cardiovasc Surg,1973,66 (4):613-621.
    [4]de Leval MR, Kilner P, Gewillig M, et al. Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience [J]. J Thorac Cardiovasc Surg,1988,96 (5):682-695.
    [5]Klimes K, Abdul-Khaliq H, Ovroutski S, et al. Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac Fontan: a magnetic resonance study [J]. Clin Res Cardiol,2007,96 (3):160-167.
    [6]Rebergen SA, Ottenkamp J, Doornbos J, et al. Postoperative pulmonary flow dynamics after Fontan surgery: assessment with nuclear magnetic resonance velocity mapping [J]. J Am Coll Cardiol,1993,21 (1):123-131.
    [7]Hager A, Fratz S, Schwaiger M, et al. Pulmonary blood flow patterns in patients with Fontan circulation [J]. Ann Thorac Surg,2008,85 (1):186-191.
    [8]Be'eri E, Maier SE, Landzberg MJ, et al. In vivo evaluation of Fontan pathway flow dynamics by multidimensional phase-velocity magnetic resonance imaging [J]. Circulation,1998,98 (25):2873-2882.
    [9]Lardo AC, Webber SA, Friehs I, et al. Fluid dynamic comparison of intra-atrial and extracardiac total cavopulmonary connections [J]. J Thorac Cardiovasc Surg,1999,117 (4):697-704.
    [10]Amodeo A, Grigioni M, Oppido G, et al. The beneficial vortex and best spatial arrangement in total extracardiac cavopulmonary connection [J]. J Thorac Cardiovasc Surg,2002,124 (3):471-478.
    [11]Lemler MS, Ramaciotti C, Stromberg D, et al. The extracardiac lateral tunnel Fontan, constructed with bovine pericardium: comparison with the extracardiac conduit Fontan [J]. Am Heart J,2006,151 (4):928-933.
    [12]Cazzaniga M, Fernandez Pineda L, Villagra F, et al. [Single-stage Fontan procedure: early and late outcome in 124 patients] [J]. Rev Esp Cardiol,2002, 55 (4):391-412.
    [13]Day RW, Etheridge SP, Veasy LG, et al. Single ventricle palliation: greater risk of complications with the Fontan procedure than with the bidirectional Glenn procedure alone [J]. Int J Cardiol,2006,106 (2):201-210.
    [14]Tanoue Y, Sese A, Ueno Y, et al. Bidirectional Glenn procedure improves the mechanical efficiency of a total cavopulmonary connection in high-risk fontan candidates [J]. Circulation,2001,103 (17):2176-2180.
    [15]Choussat A, Fontan F, Besse P, et al. Selection criteria for Fontan's procedure. In: A nderson RH, Shinebourne EA, eds. Paediatric Cardiology [M] [J]. Edinburgh: Churchill Livingstone,1978:559-566.
    [16]Fontan F, Kirklin JW, Fernandez G, et al. Outcome after a "perfect" Fontan operation [J]. Circulation,1990,81 (5):1520-1536.
    [17]Giannico S, Hammad F, Amodeo A, et al. Clinical outcome of 193 extracardiac Fontan patients: the first 15 years [J]. J Am Coll Cardiol,2006,47 (10):2065-2073.
    [18]蔡豪祺,郑景浩.改良Fontan手术的进展[J].中国胸心血管外科临床杂志,2009,16(2):137-140.
    [19]Sharma R, Iyer KS, Airan B, et al. Univentricular repair. Early and midterm results [J]. J Thorac Cardiovasc Surg,1995,110 (6):1692-1700; discussion 1700-1691.
    [20]Nakata S, Imai Y, Takanashi Y, et al. A new method for the quantitative standardization of cross-sectional areas of the pulmonary arteries in congenital heart diseases with decreased pulmonary blood flow [J]. J Thorac Cardiovasc Surg,1984,88 (4):610-619.
    [21]Girod DA, Rice MJ, Mair DD, et al. Relationship of pulmonary artery size to mortality in patients undergoing the Fontan operation [J]. Circulation,1985, 72 (3 Pt 2):1193-96.
    [22]Mair DD, Hagler DJ, Puga FJ, et al. Fontan operation in 176 patients with tricuspid atresia. Results and a proposed new index for patient selection [J]. Circulation,1990,82 (5 Suppl):Ⅳ164-169.
    [23]汪曾炜,刘维永,张宝仁主编.手术学全集2心血管外科卷[M].人民军医出版社,1995,北京:408.
    [24]Bell A, Beerbaum P, Greil G, et al. Noninvasive assessment of pulmonary artery flow and resistance by cardiac magnetic resonance in congenital heart diseases with unrestricted left-to-right shunt [J]. JACC Cardiovasc Imaging, 2009,2(11):1285-1291.
    [25]Harris MA, Weinberg PM, Whitehead KK, et al. Usefulness of branch pulmonary artery regurgitant fraction to estimate the relative right and left pulmonary vascular resistances in congenital heart disease [J]. Am J Cardiol, 2005,95 (12):1514-1517.
    [26]Grosse-Wortmann L, Al-Otay A, Yoo SJ. Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion: quantification with MRI [J]. Circ Cardiovasc Imaging,2009,2 (3):219-225.
    [27]Stern HJ. The argument for aggressive coiling of aortopulmonary collaterals in single ventricle patients [J]. Catheter Cardiovasc Interv,2009,74 (6):897-900.
    [28]Metras D, Chetaille P, Kreitmann B, et al. Pulmonary atresia with ventricular septal defect, extremely hypoplastic pulmonary arteries, major aorto-pulmonary collaterals [J]. Eur J Cardiothorac Surg,2001,20 (3):590-596; discussion 596-597.
    [29]李渝芬,张旭.肺动脉及肺静脉指数在肺少血型先天性心脏病中的应用 [J].岭南心血管病杂志,2008,14(3):158-159.
    [30]Kawahira Y, Kishimoto H, Kawata H, et al. New indicator for the Fontan operation: diameters of the pulmonary veins in patients with univentricular heart [J]. J Card Surg,1999,14 (4):259-265.
    [31]Didier D, Ratib O, Lerch R, et al. Detection and quantification of valvular heart disease with dynamic cardiac MR imaging [J]. Radiographics,2000,20 (5):1279-1299; discussion 1299-1301.
    [32]Dall'Armellina E, Hamilton CA, Hundley WG. Assessment of blood flow and valvular heart disease using phase-contrast cardiovascular magnetic resonance [J]. Echocardiography,2007,24 (2):207-216.
    [33]Debl K, Djavidani B, Buchner S, et al. Quantification of left-to-right shunting in adult congenital heart disease:phase-contrast cine MRI compared with invasive oximetry [J]. Br J Radiol,2009,82 (977):386-391.
    [34]Beerbaum P, Korperich H, Barth P, et al. Noninvasive quantification of left-to-right shunt in pediatric patients:phase-contrast cine magnetic resonance imaging compared with invasive oximetry [J]. Circulation,2001,103 (20): 2476-2482.
    [35]Whitehead KK, Gillespie MJ, Harris MA, et al. Noninvasive quantification of systemic-to-pulmonary collateral flow: a major source of inefficiency in patients with superior cavopulmonary connections [J]. Circ Cardiovasc Imaging,2009,2 (5):405-411.
    [36]Sakuma H, Fujita N, Foo TK, et al. Evaluation of left ventricular volume and mass with breath-hold cine MR imaging [J]. Radiology,1993,188 (2): 377-380.
    [37]Schwerzmann M, Samman AM, Salehian O, et al. Comparison of echocardiographic and cardiac magnetic resonance imaging for assessing right ventricular function in adults with repaired tetralogy of fallot [J]. Am J Cardiol, 2007,99(11):1593-1597.
    [38]李江林,李渝芬,张智伟,等.多层螺旋CT和经胸二维超声心动图检查在先天性心脏病诊断中的意义[J].中国实用儿科杂志,2005,20(5):300-301.
    [39]Takuma S, Cabreriza SE, Sciacca R, et al. Determination of left ventricular mass by real-time three-dimensional echocardiography: in vitro validation [J]. Echocardiography,2000,17 (7):665-674.
    [40]高波,郭启勇,岳勇,等.64层螺旋CT与磁共振成像评价左心功能的比较研究[J].中国医学影像技术,2007,23(1):66-69.
    [41]赵希刚,李坤成,杜祥颖,等.64排增强螺旋CT法评价左室心功能与屏气MR电影法的比较研究[J].中华医学杂志,2006,86(38):2723-2725.
    [42]王诚,赵世华,蒋世良,等.婴幼儿先天性心脏病心导管术中呼吸系统严重并发症的X线诊断及处理[J].中华放射学杂志,2005,39(11):1024-1026.
    [43]Evans AJ, Iwai F, Grist TA, et al. Magnetic resonance imaging of blood flow with a phase subtraction technique. In vitro and in vivo validation [J]. Invest Radiol,1993,28 (2):109-115.
    [44]Prakash A, Torres AJ, Printz BF, et al. Usefulness of magnetic resonance angiography in the evaluation of complex congenital heart disease in newborns and infants [J]. Am J Cardiol,2007,100 (4):715-721.
    [45]朱铭,李玉华,钟玉敏.增强MR血管造影在儿童先天性心脏病诊断中的应用[J].中华放射学杂志,200236(2):123-126.
    [46]朱铭,李玉华,钟玉敏,等.复杂先天性心脏病手术后磁共振检查[J].临床放射学杂志,2002,21(2):121-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700