用户名: 密码: 验证码:
心脏磁共振检查评价心脏结构、功能及心肌活性的初步实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分心脏磁共振成像评价临床患者心脏结构的实验研究
     目的研究心脏磁共振(cardiac magnetic imaging,CMR)电影成像评价左室室壁厚度,左室、左房和主动脉根部内径与超声心动检查结果的相关性,探讨CMR评价右室形态的作用。资料与方法应用快速稳态平衡进动序列(fastimaging employing steady-state acquisition,FIESTA)电影序列对36名健康志愿者进行CMR检查,图像经Report Card软件进行测量,与超声心动图(UCG)所测得的左室室壁厚度、左室、左房和主动脉根部内径进行相关性研究。结果CMR左室室间隔:9.2±2.1mm,左室后壁:8.0±2.1mm,左室舒张末内径:48.6±5.5mm,左室收缩末内径:30.3±5.3mm,左房内径:32.2±5.3mm,主动脉根部内径:28.5±3.5mm。CMR左室室间隔、左室后壁、左室舒张末内径、收缩末内径、左房内径及主动脉根部内径与UCG结果均呈正相关(r分别为0.843,0.784,0.686,0.730,0.675,0.557,p均<0.01),CMR测得右室长径:69.2±9.7mm,右室短径:30.6±6.6mm,右室长径指数:39.4±5.5mm/m~2,右室短径指数:18.1±3.4mm/m~2。结论CMR是无创心脏检查方法,其电影成像技术结合标准平面定位对左右心室形态结构评价准确,可以用于心脏疾病的诊断及疗效监测。
     第二部分心脏磁共振成像评价临床患者心脏功能的实验研究
     目的用屏气快速稳态平衡进动序列(FIESTA)心脏电影成像方法测量左心室及右心室的容量并计算射血分数(EF),分别探讨CMR评价心室功能与超声心动及冠脉CTA检查结果的相关性。资料与方法应用快速稳态平衡进动序列(fast imaging employing steady-state acquisition,FIESTA)电影序列对36名健康志愿者及22名陈旧性心肌梗死(OMI)患者进行CMR检查,图像经ReportCard软件测量左室舒张末容积(LVEDV)、左室收缩末容积(LVESV)、右室(RV)EDV、RVESV,并进一步计算LVEF及RVEF,分别研究36名健康志愿者22名OMI患者CMR的LVEF与超声心动(UCG)LVEF及22名OMI患者CMR的LVEF与冠脉CTA的LVEF结果的相关性。结果36名健康志愿者LVEDV:93.6±17.2ml,LVESV:39.5±13.0 ml,LVEF 58.5%±8.19%,RVEDV:108.6±28.2ml,RVESV:45.6±15.1ml,RVEF:58.2%±7.4%,健康志愿者LVEF(58.5%±8.19%)与UCG的LVEF(64.1%±6.8%)呈正相关(r=0.75,p<0.01)。22名OMI患者LVEDV:114.4±38.9ml,LVESV:64.5±35.9ml,LVEF:46.5%±12.3%,RVEDV:123.4±19.0ml,RVESV:50.6±12.6ml,RVEF:59.2%±5.9%;OMI患者LVEF(46.5%±12.3%)与超声心动LVEF(52.3%±10.4%)呈正相关(r=0.72,p<0.01),与冠脉CTA的LVEF(45.6%±10.2%)呈正相关(r=0.853,p<0.001)。结论CMR是无创心脏检查方法,其电影成像技术评价心功能与冠脉CTA结果相关性良好,可以用于心脏疾病的诊断及疗效监测。UCG左心功能测值较CMR偏高。
     第三部分心脏增强磁共振成像评价临床患者心肌活性的实验研究
     目的分析MRI对陈旧性心肌梗死患者心肌活性的诊断价值,并与SPECT、超声心动和冠状动脉造影TIMI分级结果对比。资料与方法分析22例陈旧性(OMI)患者的增强磁共振(ceMRI)延迟强化透壁率和超声心动节段性室壁运动异常结果,和其中13例患者的冠造TIMI分级结果和SPECT心肌存活情况,所有检查方法均按心脏17节段法分析。将13例OMI患者ceMRI透壁率、冠造TIMI分级和SPECT心肌存活情况进行ROC曲线分析,将22例OMI患者ceMRI透壁率和UCG节段性室壁运动异常评分进行诊断试验的一致性分析。结果ceMRI透壁率曲线下面积为0.953,冠造TIMI分级曲线下面积为0.935,ceMRI透壁率与金标准心肌双核素显像相比,透壁率在26%—50%诊断存活心肌的灵敏度为88.9%,特异度为82.7%;透壁率在51%—75%诊断存活心肌的灵敏度为74.1%,特异度为98.7%,与心肌双核素显像相比其诊断的准确性较高。ceMRI透壁率和UCG节段性室壁运动异常评分的一致性检验kappa值=0.769,p<0.01。结论增强MR清晰显示心肌梗死的位置、范围和程度。ceMRI透壁率诊断存活心肌的准确性较高。
     第四部分心脏增强磁共振成像评价猪急性心梗疗效的实验研究
     目的探讨增强磁共振检查(ceMRI)对急性心肌梗死动物模型检测心肌坏死的准确性及其疗效观察情况。资料与方法采用开胸结扎前降支的方法制备猪急性心肌梗死动物模型,14只猪随机分为两组,实验组在心梗后第1、3、5、10天予川芎嗪治疗,对照组予静脉注射生理盐水,心梗后第3天及第30天对14只实验动物行ceMRI扫描,于心梗后1个月行TTC病理染色,ceMRI图像及TTC大体图片均用Image-Pro PLUS 5.1图像处理软件计算延迟强化面积或梗死面积占同层左室壁面积的百分比。分析延迟强化面积百分比与TTC染色梗死面积百分比的相关性,用独立样本t检验比较实验组及对照组第30天及第3天延迟强化面积百分比的变化是否有差异。结果心脏电影序列14只猪中有6只出现梗死局部室壁运动减弱,5只出现不运动,2只出现反向运动,伴有室壁变薄,室壁瘤形成;首过灌注序列14只猪在心梗后第3天均出现灌注减低区,在第30天仅有5只仍可见首过灌注减低区,首过灌注减低区面积较前缩小。延迟扫描序列14只猪MDE图像均表现为透壁性延迟强化信号,第30天延迟强化信号占左室面积百分比(34.9%±3.3%)与TTC染色梗死面积百分比(35.2%±3.6%)相关性极高(r=0.977,p<0.01),实验组与对照组之间延迟强化面积占同层左室面积百分比的差进行独立样本成组t检验结果t=3.682,p<0.01。结论ceMRI多技术联合应用可以有效检查心肌缺血、坏死,并准确判断其程度和范围,ceMRI对评价心梗疗效有一定作用。
Objectives To study the correlationships between dimensions of left ventricle and atrium by CMR and by ultrasonic cardiography(UCG).To evaluate the role of assessing the right ventricle dimensions by CMR.Materials and Methods A total of 36 healthy volunteers were examined with fast imaging employing steady-state acquisition(FIESTA) cine MR sequence.And all the MR images were dealed on ReportCard software.UCG was also performed in all the volunteers.The correlationships were determined with the dimensions of left ventricle and atrium by CMR and by UCG.Results CMR results:interventricular septum:9.2±2.1mm,left ventricle posterior wall thickness:8.0±2.1mm,end diastolic dimension of left ventricle:48.6±5.5mm,end systolic dimension of left ventricle:30.3±5.3mm,left atrial dimension:32.2±5.3mm,aortic root dimension:28.5±3.5mm.Interventricular septum,left ventricle posterior wall thickness,end diastolic dimension of left ventricle, end systolic dimension of left ventricle,left atrial dimension and aortic root dimension by CMR all correlated with those by UCG(r=0.843,p<0.01,r=0.784,p<0.01; r=0.686,p<0.01;r=0.730,p<0.01;r=0.675,p<0.01;r=0.557,p<0.01).
     Major dimension of right ventricle:69.2±9.7mm;Minor dimension of right ventricle: 30.6±6.6mm;RV major axis index:39.4±5.5mm/m~(2;);RV minor axis index:18.1±3.4 mm/m~2.Conclusions The present study suggests that cine MR imaging is well applicable for left and right ventricle dimension evaluation.
     Objectives To study the correlationships between LVEF by CMR and other different methods.To evaluate the role of assessing the right ventricle dimensions and the ventricular function by CMR.Materials and Methods A total of 36 healthy volunteers and 22 old myocardial infarction(OMI) patients were examined with fast imaging employing steady-state acquisition(FIESTA) cine MR sequence. And all the MR images were dealed on Report Card software.UCG was performed in all the volunteers and OMI patients.Coronary CTA was also performed in OMI patients.Measure the LVEDV,LVESV,RVESV,RVEDV and calculate the LVEF and RVEF in all the volunteers and OMI patients.Analyze he correlationships between LVEF by CMR and by ultrasonic cardiography(UCG),LVEF by CMR and by coronary CTA.Results CMR results in volunteers:LVEDV:93.6±17.2ml,LVESV: 39.5±13.0 ml,LVEF:58.5%±8.19%,RVEDV:108.6±28.2ml,RVESV:45.6±15.1ml,RVEF:58.2%±7.4%.LVEF(58.5%±8.19%) in volunteers by CMR has correlation with LVEF(64.1%±6.8%) by UCG.CMR results in OMI patients: LVEDV:114.4±38.9ml,LVESV:64.5±35.9ml,LVEF:46.5%±12.3%,RVEDV: 123.4±19.0ml,RVESV:50.6±12.6ml,RVEF:59.2%±5.9%.LVEF(46.5%±12.3 %) in OMI patients by CMR correlated with LVEF(52.3%±10.4%) by UCG(r= 0.72,p<0.01) and LVEF(45.6%±10.2%)by coronary CTA(r=0.853,p<0.001).
     Objectives The aim of this study was to investigate the feasibility and accuracy of the ceMRI to detect the viable myocardium to detect viable myocardium. Materials and Methods Analyze the transmural ratio with ceMRI and UCG results of 22 OMI patients.Analyze the TIMI results and SPECT myocardial viability of 13 OMI patients.In all different methods the left ventricle was divided into 17 segments. Determining the accuracy of the ceMRI by receiver operating characteristic curve(ROC) analysis and kappa analysis.Results The area under the curve(AUC) of transmural ratio with ceMRI was 0.953 and AUC of TIMI was 0.935.The sensitivity and specificity of transmural ratio 26%-50%to detect viable myocardium were 88.9% and 82.7%respectively.The sensitivity and specificity of transmural ratio 51%-75% to detect viable myocardium were 74.1%and 98.7%respectively.The transmural ratio with ceMRI was consistent with ventricular wall motion abnormality with UCG (kappa=0.769,p<0.01).Conclusions Contrast-enhanced MRI can clearly display the location,dimension and extention of myocardial infarction.The accuracy of the ceMRI to detect viable myocardium was very high.
     Objectives To study the accuracy of ceMRI for identifying necrotic myocardium in acute myocardial infarction animal models and assessing the curative effect.Materials and Methods Acute myocardial infarction animal models were made by ligation of LAD in 14 pigs.14 pigs were divided into 2 groups at random. Experimental group was injected by ligustrazine at the 1~(st),3~(rd),5~(th),10~(th) d atter AMI. Control group was injected by sodium chloride at the same time.At the 3~(rd) and 30~(th) d, all pigs underwent ceMRI scan.After one month of AMI,TTC stain was done.ceMRI imgings and TTC pictures were analyzed by Image-Pro PLUS 5.1 software. Hyperenhanced area vs.left ventricle area and infarction area from TTC vs.left ventricle area were calculated.Analyze the correlationship between these two. Independent-samples T test was used to define the change of hperenhancement area. Results In all 14 pigs,FIESTA cine MRI showed ventricular wall motion abnormality. FGRET sequence on 14 pigs showed low signal area in perfusion at the 3~(rd) d.But this could be seen in only 5pigs at the 30~(th) d.And the low signal area decreased.MDE sequence all showed transmural hyperenhanced signal.Hperenhancement area vs.left ventricle area at the 30~(th) d(34.9%±3.3%) had a closed correlationship with infarction area from TTC vs.left ventricle area(r=0.97,p<0.01).The result of independent-samples T test between experimental group and control group was t= 3.682,p<0.01.Conclusions Contrast-enhanced MRI can be used to identify the existence and the size of necrotic myocardium.And it can also monitor the curative effect in myocardial infarction.
引文
1 Longmore DB,Klipstein RH,Underwood SR,et al.Dimensional accuracy of magnetic resonance in studies of the heart.Lancet,1985,1(8442):1360-1362.
    2 Barkhausen J,Ruehm SG,Goyen M,et al.MR evaluation of ventricular function:true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging:feasibility study.Radiology,2001,219:264-269.
    3 Maim S,Frigstad S,Sagberg E,et al.Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography:a comparison with magnetic resonance imaging.J Am Coll Cardiol,2004,44(5):1030-1035.
    4 张蔚,刘义成,刘海滨.黑白血技术磁共振成像对健康成年人左心室形态和功能的研究.中国CT和MRI杂志,2005,3(2)35-38.
    5 Grothues F,Moon JC,Bellenger NG,et al.Interstudy reproducibility of right ventricular volumes,function,and mass with cardiovascular magnetic resonance.Am HeartJ,2004,147:218-223.
    6 Gutierrez-Chico JL,Zamorano JL,Perez de Isla L,et al.Comparison of left ventricular volumes and ejection fractions measured by three-dimensional echocardiography versus by two-dimensional echocardiography and cardiac magnetic resonance in patients with various cardiomyopathies.Am J Cardiol,2005,95(6):809-813.
    7 刘剑,邱建星,赵峰,等.心肌致密化不全的MSCT诊断1例.中国医学影像技术,2007:23(1):155-156.
    1 Kunz RP,Oellig F,Krummenauer F,et al.Assessment of left ventricular function by breath-hold cine MR imaging:comparison of different steady-state free precession sequences.J Magn Reson Imaging,2005,21:140-148.
    2 Barkhausen J,Ruehm SG,Goyen M,et al.MR evaluation of ventricular function." true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging:feasibility study.Radiology,2001,219:264-269.
    3 Li W,Stem JS,Mai VM,et al.MR assessment of left ventricular function:quantitative comparison of fast imaging employing steady-state acquisition(FIESTA)with fast gradient echo cine technique.J Magn Reson Imaging,2002,16:559-564.
    4 Plein S,Bloomer TN,Ridgway JP,et al.Steady-state free precession magnetic resonance imaging of the heart:comparision with segmented k-space gradient-echo imaging.J Magn Reson Imaging,2001,14:230-236.
    5 Alfakih K,Thiele H,Plein S,et al.Comparision of right ventricular volume measurement between segmented k-space gradient-echo and steady-state free precession magnetic resonance imaging.J Magn Reson Imaging,2002,16:253-258.
    6 Grothues F,Moon JC,Bellenger NG,et al.Interstudy reproducibility of right ventricular volumes,function,and mass with cardiovascular magnetic resonance.Am Heart J,2004,147:218-223.
    7 Hoeper MM,Tongers J,Leppert A,et al.Evaluation of right ventricular performance with a right ventricular ejection fraction thermodilution catheter and MRI in patient with pulmonary hypertention.Chest,2001,120:502-507.
    8 Danilouchkine MG,Westenberg J J,de Roos A,et al.Operator induced variability in cardiovascular MR:left ventricular measurements and their reproducibility.J Cardiovasc Magn Reson,2005,7:447-457.
    9 杜立新,傅加平,梁碧玲,等.电影磁共振四腔室多层面多相位序列对左心功能的测定和评价.中华放射学杂志.1998,1:51-52.
    10 Hundley WG,Morgan TM,Neagle CM,et al.Magneic resonace imaging determination of cardiac prognosis.Circulation.2002,29(18):2328-2333.
    11 Levy D,Garrison RJ,Savage DD,et al.Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study.N Engl J Med,1990,322:1561-1566.
    12 Muiesan ML,Salvetti M,Rizzon D,et al.Association of change in left ventricular mass with prognosis during long-term antihypertensive treatment.J Hypertens,1995,13:1091-1095.
    13 Pacileo G,Calabro P,Limongelli G,et al.Left ventricular remodeling,mechanics,and tissue characterization in congenital aortic stenosis.J Am Soc Echocardiogr,2003,16:214-220.
    14 Saul GM,Hugh EM,Michael JW,et al.Left ventricular mass reliability of m-mode and 2-dimensional echocardiographic formulas.Hypertension,2002,40:673-678.
    15 蔡琳.2007 ESC心力衰竭和超声协会对诊断左室射血分数正常心里衰竭的共识.心血管病学进展,2008,29(1):17-20.
    1 王新房,张青萍 主编.中华影像医学超声诊断学卷[M].北京人民卫生出版社,2002.235-241.
    2 Kim RJ,Fieno DS,Parrish TB,et al.Relationship of MRI delayed contrast enhancement to irreversible injury,infarct age,and contractile function.Circulation,1999,100:1992-2002.
    3 Oshinski JN,Yang Z,Jones JR,et al.Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging.Circulation,2001,104:2838-2842
    4 Baruthio J,Jahn C.Myocardial flow reserve,parametric map,assessed by first-pass MRI compartmental analysis at the chronic stage of infarction.Journal of Magnetic Resonance Imaging,2001,13(3):352-360.
    5 Klein C,Nekolla SG,Bengel FM,et al.Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging:comparison with positron emission tomography.Circulation,2002,105(2):162-167.
    6 Kuhl HP,Beek AM,van der Weerdt AP,et al.Myocardial viability in chronic ischemic heart disease:comparison of contrast-enhanced magnetic resonance imaging with(18) F-fluorodeoxyglucose positron emission tomography.J Am Coll Cardiol,2003,41:1341-1348.
    7 赵世华,闫朝武,杨敏福,等.磁共振心肌灌注延迟增强与核素心肌灌注/代谢显像识别存活心肌对比研究.中华心血管杂志,2006,34(12):1072-1076.
    8 Pennell DJ,Sechtem UP,Higgins CB,et al.Clinical indications for cardiovascular magnetic resonance(CMR):consensus panel report.Eur Heart J.2004,25(21):1940-1965.
    9 Eichhorn EJ,Grayburn PA,Mayer SA,etal.Myocardial contractile reserve by dobutamine stress echocardiography predicts improvement in ejection fraction with beta-blockade in patients with heart failure:the beta-blocker evaluation of survival trial(BEST).Circulation,2003,108(19):2336-2341.
    10 Yetkin E,Senen K,Ileri M,et al.Identification of viable myocardium in patients with chronic coronary artery disease and myocardial dysfunction:comparison of low-dose dobutamine stress echocardiography and echocardiography during glucose-insulin-potassium infusion.Angiology,2002,53(6):671-676.
    11 朱海云,田建明,王莉,等.磁共振多技术扫描与超声心动图检测心肌活性的比较.第二军医大学学报,2005,26(7):739-742.
    12 贾志新,王全师,陈伟华,等~(13)N-NH_3、~(18)F-FDG PET显像在对心肌存活状况中的临床应用.中华心血管病杂志,2004,32:9-12.
    13 Chen EQ,MacIntyre WJ,Go RT,et al.Myocardial viability studies using fluorine-18-FDG SPECT:a comparison with fluorine-18-FDG PET.J Nucl Med,1997,38:582-586.
    14 Ghesani M,Depuey EG,Rozanski A.Role of F-18 FDG positron emission tomography(PET) in the assessment of myocardial viability.Echocardiography,2005,22:165-177.
    15 Klocke FJ,Baird MG,Lorell BH,et al.ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines(ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging).Circulation,2003,108:1404-1418.
    16 Tandri H, Saranathan M, Rodriguez ER, et al. Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J Am CollCardiol, 2005,45:98-103.
    1 Kato T,Yasue T,Shoji Y,et al.Angiographic difference in coronary artery of man,dog,pig and monkey.Acta Pathol Jpn,1987,37:361-373.
    2 Ninomiya M,Koyama H,Miyata T,et al.Ex vivo gene transfer of basic fibroblast growth factor improves cardiac function and blood flow in a swine chronic myocardial ischemia model.Gene Ther,2003,10:1152-1160.
    3 Xiaohong Z,Xiaorui C,Jun H,et al.The contrast of immunohistochemical studies of myocardial fibrinogen and myoglobin in early myocardial ischemia in rats.Leg Med(Tokyo),2002,4:47-51.
    4 Khan TA,Ruel M,Bianchi C,et al.Poly(ADP-ribose) polymerase inhibition improves postischemic myocardial function after cardioplegiacardiopulmonary bypass.J Am Coil Surg,2003,197:270-277.
    5 Song JM,Kim JH,Kim YH,et al.Temporal changes and histologic relation of postsystolic thickening in an animal model of acute ischemia and reperfusion.J Am Soc Echocardiogr,2003,16:409-414.
    6 Folts JD,Gallagher K,Rowe GG.Hemodynamic effects of controlled degrees of coronary artery stenosis in short-term and long-term studies in dogs.The Journal of Thoracic and Cardiovascular Surgery,1977,73:722-727.
    7 Oshinski JN,Yang Z,Jones JR,et al.Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging.Circulation,2001,104:2838-2842
    8 Joseph Baruthio,Christine Jahn.Myocardial flow reserve,parametric map,assessed by first-pass MRI compartmental analysis at the chronic stage of infarction.Journal of Magnetic Resonance Imaging,2001,13(3):352-360.
    9 Hillenbrand HB,Kim RJ,Parker MA,et al.Early assessment of myocardial salvage by contrast-enhanced magnetic resonance imaging.Circulation,2000,102:1678.
    10 方五旺,陈绍良,叶飞,等.骨髓间充质干细胞移植对小型猪急性心肌梗死模型治疗作用的初步研究.江苏医药杂志,2004,30(4)252-253.
    11 方五旺,林丙来,张升霞,等.骨髓间充质干细胞治疗小型猪急性心肌梗死 的实验研究.中国临床药理学与治疗学,2007,12(7):767-771
    [1]Haase A,Frahm J,Mathaei D.Rapid three-dimensional MR imaging using the FLASH technique J Comput Assist Tomogr 1986;67:256-66.
    [2]Balaban R.The physics of image generation by magnetic resonance.In:Manning WJ, Pennell DJ, editors. Cardiovascular magnetic resonance. 1~(st) edition. Philadelphia:Churchill Livingstone; 2002. p. 3-17.
    
    [3] Mirowitz S, Eilenberg S, White R. Cardiac MR imaging techniques and strategies.In: Gutierrez F, Brown J, Mirowitz S, editors. Cardiovascular magnetic resonance imaging. Chicago: Mosby; 1992. p. 17-22.
    
    [4] Masood S, Yang GZ, Pennell DJ, et al. Investigating intrinsic myocardial mechanics: the role of MR tagging, velocity phase mapping, and diffusion imaging. J Magn Reson Imaging 2000;12:873-83.
    
    [5] Longmore DB, Klipstein RH, Underwood SR, et al. Dimensional accuracy of magnetic resonance in studies of the heart. Lancet 1985;1 (8442): 1360—2.
    
    [6] Semelka RC, Tomei E, Wagner S, et al. Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging.Radiology 1990; 174(3 Pt 1):763-8.
    
    [7] Debatin JF, Nadel SN, Paolini JF, et al. Cardiac ejection fraction: phantom study comparing cine MR imaging, radionuclide blood pool imaging, and ventriculography.J Magn Reson Imaging 1992;2(2):135-42.
    
    [8] Germain P, Roul G, Kastler B, et al. Interstudy variability in left ventricular mass measurement. Comparison between M-mode echography and MRI. Eur Heart J 1992;13(8):1011-9.
    
    [9] Sandstede J, Lipke C, Beer M, et al. Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging. Eur Radiol 2000; 10(3): 438-42.
    
    [10] Salehian O, Schwerzmann M, Merchant N, et al. Assessment of systemic right ventricular function in patients with transposition of the great arteries using the myocardial performance index: comparison with cardiac magnetic resonance imaging.Circulation 2004; 110(20):3229-33.
    
    [11] Nitz W. Fast and ultrafast nonecho-planar MR imaging techniques. Eur Radiol 2002; 12(12): 2866-82
    
    [12] Oppelt A, Graumann R, Barfuss A, et al. FISP: a new fast MRI sequence. Electromedica 1986;3: 15-8.
    
    [13] Zur Y, Wood ML, Neuringer LJ . Motion-insensitive, steady-state free precession imaging. Magn Reson Med 1990;16:444-59.
    
    [14 ]Duerk JL, Lewin JS , Wendt M , et al. Remember true FISP? A high SNR , near 1-second imaging method for T2-like contrast in interventional MRI at.2T. J Magn Reson Imaging 1998;8:203-8.
    
    [15] Chung YC, Merkle EM, Lewin JS, et al. Fast T(2)-weighted imaging by PSIF at 0.2T for interventional MRI. Magn Reson Med 1999;42:335-44.
    
    [16] Wendt M, Wacker F, Wolf KJ, et al. [Keyhole-true FISP: fast T2-weighted imaging for interventional MRT at 0.2T]. Rofo 1999; 170:391-3 [inGerman]
    
    [17] Barkhausen J, Ruehm SG, Goyen M, et al. MR evaluation of ventricular function:true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study Radiology 2001;219:264-9.
    
    [18] Fischer H, Ladebeck R. Echo-planar imaging image artifacts. In: Schmitt F,Stehling MK, Turner R, editors. Echo-planar imaging: theory, technique, and application. New York: Springer; 1998.p.179-210.
    
    [19] Huang J, Abendschein D, Davila-Roman VG, et al. Spatio-temporal tracking of myocardial deformations with a 4-D B-spline model from tagged MRI. IEEE Trans Med Imaging 1999;18:957-72.
    
    [20] Fischer SE, McKinnon GC, Maier SE, et al. Improved myocardial tagging contrast. Magn Reson Med 1993;30:191-200
    
    [21] Fischer SE, Stuber M, Dam J, et al Late diastolic tag persistence with slice followed echo planar imaging. In Proceedings of the 4~(th) Scientific Meeting, New York:International Society of Magnetic Resonance 1; 1996:297.
    
    [23] Kim D, Gilson WD, Kramer CM, et al. Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: development and initial evaluation. Radiology 2004;230(3):862-71.
    
    [24] Rumancik W, Naidich D, Chandra R, et al. Cardiovascular disease: evaluation with MR phase imaging. Radiology 1988; 166:63-8.
    
    [25] Pelc LR, Sayre J, Yun K, et al. Evaluation of myocardial motion tracking with cine-phase contrast magnetic resonance imaging. Invest Radiol 1994; 29:1038-42.
    
    [26] Jung B, Zaitsev M, Hennig J , et al. Navigator gated high temporal resolution tissue phase mapping of myocardial motion. Magn Reson Med 2006;55:937-42.
    
    [27] Markl M, Schneider B, Hennig J. Fast phase contrast cardiac magnetic resonance imaging: improved assessment and analysis of left ventricular wall motion. J Magn Reson Imaging 2002;15:642-53.
    
    [28] Jung B, Foll D, Bottler P, et al. Detailed analysis of myocardial motion in volunteers and patients using high temporal resolution MR tissue phase mapping. J Magn Reson Imaging 2006;24:1033-9.
    
    [29] van Dijk P. Direct cardiac NMR imaging of heart wall and blood flow velocity. J Comput Assist Tomogr 1984;8:429-36.
    
    [30] Wedeen VJ. Magnetic resonance imaging of myocardial kinematics. Technique to detect, localize, and quantify the strain rates of the active human myocardium. Magn Reson Med 1992;27:52-67.
    
    [31] Nayler GL, Firmin DN, Longmore DB. Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 1986;10:715-22.
    
    [32] Petersen SE, Jung BA, Wiesmann F, et al. Myocardial tissue phase mapping with cine phase-contrast MR imaging: regional wall motion analysis in healthy volunteers.Radiology 2006;238:816-26.
    
    [33] Van der Geest RJ, Reiber JH. Quantification in cardiac, MRI. J Magn Reson Imaging 1999; 10:602-8.
    
    [34] Wedeen VJ, Weisskoff RM, Reese TG, et al. Motionless movies of myocardial strain-rates using stimulated echoes. Magn Reson Med 1995;33:401-8.
    
    [35] Rehr RB, Malloy CR, Filipchuk NG, et al. Left ventricular volumes measured by MR imaging. Radiology 1985;156:717-9.
    
    [36] Chuang ML, Hibberd MG, Salton CJ, et al. Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: assessment by two- and three-dimensional echo cardiography and magnetic resonance imaging. J Am Coll Cardiol 2000;35:477-84.
    
    [37] Cranney GB, Lotan CS, Dean L, et al. Left ventricular volume measurement using cardiac axis nuclear magnetic resonance imaging. Validation by calibrated ventricular angiography. Circulation 1990;82:154-63.
    
    [38] Lawson MA, Blackwell GG, Davis ND, et al. Accuracy of biplane long-axis left ventricular volume determined by cine magnetic resonance imaging in patients with regional and global dysfunction. Am J Cardiol 1996;77:1098-104.
    
    [39] Martin ET, Fuisz AR, Pohost GM. Imaging cardiac structure and pump function.Cardiol Clin 1998; 16:135-60.
    
    [40] Keller AM, Peshock RM, Malloy CR, et al. In vivo measurement of myocardial mass using nuclear magnetic resonance imaging. J Am Coll Cardiol 1986;8(1):113-7.
    
    [41] Koch JA, Poll LW, Godehardt E, et al. Right and left ventricular volume measurements in an animal heart model in vitro: first experiences with cardiac MRI at 1.0T. Eur Radiol 2000;10(3):455-8.
    
    [42] Nahrendorf M, Hiller KH, Hu K, et al. Cardiac magnetic resonance imaging in small animal models of human heart failure. Med Image Anal 2003;7(3):369-75.
    
    [43] Caputo G, Tscholakoff D, Sechtem U, et al. Measurement of canine left ventricular mass by using MR imaging. AJR Am J Roentgenol 1987;148:33-8.
    
    [44] Holman ER, Vliegen HW, van der Geest RJ, et al. Quantitative analysis of regional left ventricular function after myocardial infarction in the pig assessed with cine magnetic resonance imaging. Magn Reson Med 1995;34:161-9.
    
    [45 ]Rudin M, Pedersen B, Umemura K, et al. Determination of rat heart morphology and function in vivo in two models of cardiac hypertrophy by means of magnetic resonance imaging. Basic Res Cardiol 1991;86(2):165-74.
    
    [46] Pattynama PM, Lamb HJ, van der Velde EA, et al. Left ventricular measurements with cine and spin echo MR imaging: a study of reproducibility with variance component analysis. Radiology 1993;187:261-8.
    
    [47] Semelka RC, Tomei E, Wagner S, et al. Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J 1990; 119:1367-73.
    
    [48] Stratemeier EJ, Thompson R, Brady TJ, et al. Ejection fraction determination by MR imaging: comparison with left ventricular angiography. Radiology 1986;158:775-7.
    
    [49] Shapiro EP, Rogers WJ, Beyar R, et al. Determination of left ventricular mass by MRI in hearts deformed by acute infarction. Circulation 1989;79:706-l 1.
    
    [50] Meyer S, Curry G, Donsky M, et al. Influence of dobutamine on hemodynamics and coronary blood flow in patients with and without coronary artery disease. Am J Cardiol 1976;38:103-8.
    
    [51] Lee VS, Resnick D, Bundy JM, et al. Cardiac function: MR evaluation in one breath hold with real-time true fast imaging with steady-state precession. Radiology 2002;222:835-42.
    
    [52] Boxt LM, Katz J. Magnetic resonance imaging for quantitation of right ventricular volume in patients with pulmonary hypertension. J Thorac Imaging 1993;8:92-7.
    
    [53] Doherty NE III, Fujita N, Caputo GR, et al. Measurement of right ventricular mass in normal and dilated cardiomyopathic ventricles using cine magnetic resonance imaging. Am J Cardiol 1992;69:1223-8.
    
    [54] Katz J, Whang J, Boxt LM, et al. Estimation of right ventricular mass in normal subjects and in patients with primary pulmonary hypertension by nuclear magnetic resonance imaging. J Am Coll Cardiol 1993;21:1475-81.
    
    [55] Pattynama PM, Lamb HJ, van der Velde EA, et al. Reproducibility of MRI-derived measurements of right ventricular volumes and myocardial mass. Magn Reson Imaging 1995;13:53-63.
    
    [56] Rominger MB ,Bachmann GF, Pabst W, et al. Right ventricular volumes and ejection fraction with fast cine MR imaging in breath-hold technique: applicability,normal values from 52 volunteers, and evaluation of 325 adult cardiac patients. J Magn Reson Imaging 1999;10:908-18.
    
    [57] Lorenz CH, Walker ES, Morgan VL, et al. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1999; 1:7-21.
    
    [58] Azhari H, Sideman S, Weiss JL, et al. Three-dimensional mapping of acute ischemic regions using MRI: wall thickening versus motion analysis. Am J Physiol 1990;259:1492-503.
    
    [59] Henschke CI, Risser TA, Sandor T, et al. Quantitative computer-assisted analysis of left ventricular wall thickening and motion by two-dimensional echocardiography in acute myocardial infarction. Am J Cardiol 1983;52:960-4.
    
    [60] Lieberman AN, Weiss JL, Jugdutt BI, et al. Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 1981;63:739-46.
    
    [61] Holman ER, van Jonbergen HP, van Dijkman PR, et al. Comparison of magnetic resonance imaging studies with enzymatic indexes of myocardial necrosis for quantification of myocardial infarct size. Am J Cardiol 1993;71:1036-40.
    
    [62] van Rugge FP, Holman ER, van der Wall EE, et al. Quantitation of global and regional left ventricular function by cine magnetic resonance imaging during dobutamine stress invnormal human subjects. Eur Heart J 1993; 14:456-63.
    
    [63] Reichek N. MRI myocardial tagging. J Magn Reson Imaging 1999;10:609-16.
    
    [64] Wang J, Urheim S, Korinek J, et al. Analysis of postsystolic myocardial thickening work in selective myocardial layers during progressive myocardial ischemia. J Am Soc Echocardiogr 2006; 19(9): 1102-11.
    
    [65] Edvardsen T, Rosen BD, Pan L, et al. Regional diastolic dysfunction inindividuals with left ventricular hypertrophy measured by tagged magnetic resonance imaging-the Multi-Ethnic Study of Atherosclerosis(MESA). Am Heart J 2006;151(1):109-14.
    
    [66] Yeon SB, Reichek N, Tallant BA , et al. Validation of in vivo myocardial strain measurement by magnetic resonance tagging with sonomicrometry J Am Coll Cardiol 2001;38:555-61.
    
    [67] Fonseca CG, Dissanayake AM, Doughty RN, et al. Three-dimensional assessment of left ventricular systolic strain in patients with type 2 diabetes mellitus, diastolic dysfunction, and normal ejection fraction. Am J Cardiol 2004;94(11):1391-5.
    
    [68] Palmon LC, Reichek N, Yeon SB, et al. Intramural myocardial shortening in hypertensive left ventricular hypertrophy with normal pump function. Circulation 1994;89:122-31.
    [69] Bogaert J, Bosnians H, Maes A, et al. Remote myocardial dysfunction after acute anterior myocardial infarction: impact of left ventricular shape on regional function: a magnetic resonance myocardial tagging study.J Am Coll Cardiol 2000;35:1525-34.
    
    [70] Marcus JT, Gotte MJ, Van Rossum AC, et al. Myocardial function in infracted and remote regions early after infarction in man: assessment by magnetic resonance tagging and strain analysis. Magn Reson Med 1997;38:803-10.
    
    [71] Paetsch I, Foll D, Kaluza A, et al. Magnetic resonance stress tagging in ischemic heart disease. Am J Physiol Heart Circ Physiol 2005;288:H2708-14.
    
    [72] Rebergen SA, Ottenkamp J, Doornbos J, et al. Postoperative pulmonary flow dynamics after Fontan surgery: assessment with nuclear magnetic resonance velocity mapping. J Am Coll Cardiol 1993;21:123-31.
    
    [73] Holmqvist C, Oskarsson G, Stahlberg F, et al. Functional evaluation of extracardiac ventriculo-pulmonary conduits and of the right ventricle with magnetic resonance imaging and velocity mapping. Am J Cardiol 1999;83:926-32.
    
    [74] Fogel MA. Assessment of cardiac function by magnetic resonance imaging.Pediatr Cardiol 2000;21:59-69.
    
    [75] Saito H, Dambara T, Aiba M, et al. Evaluation of cor pulmonale on a modified short-axis section of the heart by magnetic resonance imaging. Am Rev Respir Dis 1992; 146:1576-81.
    
    [76] Pattynama PM, Willems LN, Smit AH, et al. Early diagnosis of cor pulmonale with MR imaging of the right ventricle. Radiology 1992;182:375-9.
    
    [77] Boxt LM. MR imaging of pulmonary hypertension and right ventricular dysfunction. Magn Reson Imaging Clin N Am 1996;4:307-25.
    
    [78] Casolo GC, Poggesi L, Boddi M, et al. ECG-gated magnetic resonance imaging in right ventricular dysplasia. Am Heart J 1987; 113:1245-8.
    
    [79] Blake LM, Scheinman MM, Higgins CB. MR features of arrhythmogenic right ventricular dysplasia. Am J Roentgenol 1994; 162:809-12.
    
    [80] McKenna WJ, Thiene G, Nava A, et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br Heart J 1994;71:215-8.
    
    [81] Keller D, Osswald S, Bremerich J, et al. Arrhythmogenic right ventricular dysplasia: diagnostic and prognostic value of cardiac MRI in relation to arrhythmia-free survival. Int J Card Imaging 2003;19:537-43.
    
    [82] Hundley WG, Hamilton CA, Thomas MS, et al. Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well-suited for second harmonic stress echocardiography. Circulation 1999; 100:1697-702.
    
    [83] Pennell DJ, Underwood SR, Manzara CC, et al. Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 1992;70(1):34-40.
    
    [84] Baer FM, Theissen P, Smolarz K, et al. Dobutamine versus dipyridamole magnetic resonance tomography: safety and sensitivity in the detection of coronary stenosis. Z Kardiol 1993;82:494-503.
    
    [85] van Rugge FP, van der Wall EE, de Roos A, et al. Dobutamine stress magnetic resonance imaging for detection of coronary artery disease. J Am Coll Cardiol 1993;22:431-9.
    
    [86] van Rugge FP, van der Wall EE, Spanjersberg SJ, et al. Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the center line method. Circulation 1994;90:127-38.
    
    [87] Nagel E, Lehmkuhl HB, Bocksch W, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress magnetic resonance imaging: comparison with dobutamine stress echocardiography. Circulation 1999;99:763-70.
    
    [88] Wahl A, Roethemeyer S, Paetsch I, et al. High-dose dobutamine stress MRI for follow-up after coronary revascularization procedures in patients with wall motion abnormalities at rest. J Cardiovasc Magn Reson 2002;4:22-3.
    
    [89] Wahl A, Roethemeyer S, Paetsch I, et al. Simultaneous assessment of wall motion and myocardial perfusion during high-dose dobutamine stress MRI improves diagnosis of ischemia in patients with known coronary artery disease. J Cardiovasc Magn Reson 2002;4:136-7.
    
    [90] Sensky PR, Jivan A, Hudson N, et al. Coronary artery disease: combined stress MR imaging protocol—one-stop evaluation of myocardial perfusion and function.Radiology 2000;215:608-14.
    
    [91] Paetsch I, Jahnke C, Wahl A, et al. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 2004; 110:835-42.
    
    [92] Zoghbi WA, Barasch E, Dobutamine MRI. A serious contender in pharmacological stress imaging? Circulation 1999;99(6):730-2.
    
    [93] Wahl A, Paetsch I, Roethemeyer S, et al. High-dose dobutamine-atropine stress cardiovascular MR imaging after coronary revascularization in patients with wall motion abnormalities at rest. Radiology 2004;233:210-6.
    
    [94] Kuijpers D, Ho KY, van Dijkman PR, et al. Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging.Circulation 2003; 107(12): 1592-7.
    
    [95] Bogaert J, Maes A, Rademakers FE. Functional recovery of subepicardial myocardial tissue in transmural myocardial infarction after successful reperfusion: an important contribution to the improvement of regional and global left ventricular function. Circulation 1999;99(1):36-43.
    
    [96] Geskin G, Kramer CM, Rogers WJ, et al. Quantitative assessment of myocardial viability after infarction by dobutamine magnetic resonance tagging. Circulation 1998;98(3):217-23.
    
    [97] Sayad DE, Willett DL, Hundley WG, et al. Dobutamine magnetic resonance imaging with myocardial tagging quantitatively predicts improvement in regional function after revascularization. Am J Cardiol 1998;82(9):1149-51,A10.
    
    [98] Dendale PA, Franken PR, Waldman GJ, et al. Low-dosage dobutamine magnetic resonance imaging as an alternative to echocardiography in the detection of viable myocardium after acute infarction. Am Heart J 1995; 130(1): 134-40.
    
    [99] Saito I, Watanabe S, Masuda Y. Detection of viable myocardium by dobutamine stress tagging magnetic resonance imaging with three-dimensional analysis by automatic trace method. Jpn Circ J 2000;64(7):487-94.
    
    [100] Motoyasu M, Sakuma H, Ichikawa Y, et al. Prediction of regional functional recovery after acute myocardial infarction with low-dose dobutamine stress cine MR imaging and contrast-enhanced MR imaging. J Cardiovasc Magn Reson 2003;5(4):563-74.
    
    [101] Kaandorp TA, Bax JJ, Schuijf JD, et al. Head-to-head comparison between contrast-enhanced magnetic resonance imaging and dobutamine magnetic resonance imaging in men with ischemic cardiomyopathy. Am J Cardiol 2004;93(12):1461-4.
    
    [102] Rerkpattanapipat P, Little WC, Clark HP, et al. Effect of the transmural extent of myocardialscar on left ventricular systolic wall thickening during intravenous dobutamine administration. Am J Cardiol 2005;95(4):495-8.
    
    [103] Wellnhofer E, Olariu A, Nagel E, et al. Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 2004;109(18):2172-4.
    
    [104] Rerkpattanapipat P, Darty SN, Hundley WG, et al. Feasibility to detect severe coronary artery stenoses with upright treadmill exercise magnetic resonance imaging.Am J Cardiol 2003;92(5):603-6.
    
    [105] Hundley WG, Morgan TM, Neagle CM, et al. Magnetic resonance imaging determination of cardiac prognosis. Circulation 2002;106(18):2328-33.
    
    [106] Rerkpattanapipat P, Morgan TM, Neagle CM, et al. Assessment of preoperative cardiac risk with magnetic resonance imaging. Am J Cardiol 2002;90(4):416-9.
    
    [107] Roest AA, Kunz P, Lamb HJ, et al. Biventricular response to supine physical exercise in young adults assessed with ultrafast magnetic resonance imaging. Am J Cardiol 2001;87:601-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700