用户名: 密码: 验证码:
3.0T双源射频磁共振在心脏成像中的技术优势及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     本研究利用3.0T MR双源射频适形发射技术对心脏局部射频场匀场,并与传统单源射频MR成像比较,前瞻性评估其在B1射频场均匀性、图像对比度及图像质量(伪影)中的价值。
     研究背景
     3.0T高场MR能为心脏磁共振成像(cardiac MR imaging, CMR)带来较高的SNR、CNR及组织T1/T2比。然而,高场强CMR成像也面临着一些问题和挑战:B1射频场不均匀、局部较高的射频能量沉积(SAR)、条带伪影增多等,严重影响了图像质量和扫描速度。直到现在,许多非研究型放射科医生仍然坚信3.0T MR不是心脏成像的首选。最近有将双源射频激励技术用于CMR成像的大会报道,证实双源技术改善了B1场均匀性,图像质量。然而,以上研究有其局限性,且缺乏TR、FA值变化对图像质量影响的评估。
     材料与方法
     收集14例健康成人自愿者,并在行3.0T MR(装备双源射频发射系统)扫描前均签署知情同意书。每位自愿者在完成定位扫描后,随后分别应用双源射频适形发射技术与传统单源发射在心室短轴位区域对B1射频场匀场,分别得到31-map图,测量并比较B1-map图感兴趣区所达到的平均翻转角的百分比及翻转角变异系数CV,用以评估B1场的均匀性。分别应用双源射频发射技术与传统单源发射技术,Balanced-TFE序列行心室短轴位电影扫描,其中双源电影成像又根据不同TR时间和翻转角FA分别得到3组图像,两两比较四组图像(M0组,单源;M1、M2、M3组,双源)在左右室心腔血池-室间隔对比度(CR)及图像质量(伪影)之间的差异。图像质量评估分别由两位放射科医生独立进行1-4级评分。射频场B1的均匀性及图像CR组间比较分别采用配对t检验与单因素方差分析。伪影评级结果进行Kruskal-Wallis秩和检验,两位评价者之间的一致性分析采用Kappa检验。
     结果
     与传统单源射频技术比较,双源射频匀场技术明显提高了B1场心室短轴区域实际平均翻转角百分比(双源:85.38%,单源:76.74%,P=0.0152<0.05),显著改善了B1射频场的均匀性(CV:0.066vs0.103,P=0.0094<0.05)。双源射频适形发射技术组较单射频技术组提高了短轴位Balanced-TFE成像左右室心腔血池-室间隔CR,均具有明显统计学差异(P<0.05)。两位医生对两种发射技术Balanced-TFE成像心室短轴位图像质量(伪影)的评估具有较好的一致性(K>0.65),M3组一致性最好(K=0.85)。双源发射技术三组图像(M1、M2、M3)评分均高于单源发射技术组(M0),但只有M3组(双源技术、较短TR)与M0组之间具有明显统计学差异(A医生:3.57±0.51vs2.14±0.36,P=0.0002;B医生:3.64±0.49vs2.28±0.46,P=0.0001)。
     结论
     双源射频发射系统明显提高了3.0T CMR成像B1射频场均匀性,增加了B-TFE图像心肌-血池对比度CR,减少了图像伪影。B1场均匀性增加,优化并降低了平均SAR值,使B-TFE成像增加FA、缩短TR成为可能;这有利于改善图像质量(对比度、伪影),加快扫描速度。
     目的
     本研究应用3.0T MR,前瞻性评估双源射频发射技术b-SSFP电影成像在左心室功能参数测量及其重复性评估中的价值,以传统单射频技术测量值为参照比较。
     研究背景
     1.5T b-SSFP心脏磁共振成像已经被认为是测量左心室大小、功能分析的金标准;然而,3.0T b-SSFP功能电影成像由于容易受到B1场不均匀、局部SAR值增高及失谐共振伪影(条带伪影)的影响,在临床上的应用受到限制。直到最近,随着高场磁共振技术的发展,双(多)源射频激励系统被证实能够改善B1场均匀性、图像对比度及减少伪影。然而,双源射频发射技术在左室功能参数测量及重复性评估中的应用研究,国内外未见报道。
     材料与方法
     19例志愿者采用装备双源射频发射激励系统的3.0T MR行心脏成像。分别在双源射频和单射频技术下,应用b-SSFP序列电影成像,通过半自动分析软件分析所有图像,获得左心室各参数测量值:左心室舒张末容积(EDV)、收缩末容积(ESV)、每搏输出量(SV)、射血分数(EF)、左室质量(mass)、左室中间段舒张末下壁厚度(LVIW)及室间隔厚度(IVS)。两种技术下所有左室测量值的差异性比较采用配对t检验。两种技术下左室测量值的一致性评价通过线性回归分析和Bland-Altman分析检测。另外,左室测量值的重复性检验通过采用Bland-Altman法,测定组内和组间观察者的变异性(变异系数CV)以及组内相关系数(ICC)法来评估。
     结果
     以传统单射频测量值为参照比较,双源射频技术轻度高估了左室EDV、ESV和SV(平均差分别为,3.9mL±9.7,1.1mL±2.6和2.8mL±9.1;P>0.05),导致计算值EF略高于单射频,但具有明显统计学差异(平均差,1.5%±2.6;P=0.021<0.05)。双源射频下左室mass略小于传统单射频测量值,但两者间具有统计学差异(平均差,-4.0g±6.5,P=0.001<0.05)。相比单射频测量值,双源技术轻度低估了IVS(平均差,-0.29mm±0.6,P=0.067),但明显低估了LVIW(平均差,-0.55mm±0.4,P<0.0001)。尽管两种技术下左室各测量值均存在差异,但除LVIW的差异百分比为8.1%,其余左室测量值的差异百分比均小于4.0%。另外,双源技术下左室各测量值与传统单射频各测量值具有高度相关性(r2=0.81~0.96,P<0.0001)。双源射频下左室各参数测量值的组内及组间观察者变异均明显小于单射频值;两种技术下各测量值变异系数均小于15.0%。
     结论
     双源射频发射技术明显改善了3.0T CMR b-SSFP电影图像质量,相比传统单射频发射技术,能够提供准确性和重复性更高的左室参数测量值。双源射频技术测量左室参数具有较高的重复性,有利于该技术临床推广应用。
     目的
     本研究前瞻性的评估心脏磁共振成像(cardiac MR, CMR)在小儿临床疑似急性心肌炎(acute myocarditis, AMC)和慢性恢复期心肌炎(chronic myocarditis,CMC)中的诊断价值,并随访观察心肌炎受损心肌组织的病理变化情况。
     研究背景
     不少研究表明,CMR已经成为无创性评估诊断心肌炎的重要方法。CMR能够观察心肌炎症组织的病理学变化情况(心肌水肿、坏死和纤维化)。然而,大多数研究都集中在成人心肌炎(或包含少量年轻人)。据我们所知,国内外还没有系统的、较大样本的小儿心肌炎CMR评估研究,而我国心肌炎人群主要集中在儿童和青少年。心肌炎是造成小儿猝死或扩张型心肌病(DCM)的重要原因。目前,小儿心肌炎的诊断主要依据临床表现和常规检查,缺乏特异性,往往低估。因此,迫切需要一种无创性评估小儿心肌炎的方法,以提高诊断的准确率。
     材料与方法
     本研究是根据2009年国际心血管病专家共识“Lake Louise criteria'’设计,并通过了本院影像所伦理委员会的批准。共有73例小儿临床疑似心肌炎患者(9.3±3.3岁)入组,其中急性期组25例(出现症状≤14d)和慢性(恢复期)组48例(>14d)。我们将所有患儿CMR结果与正常对照组(17例,7.5±2.8岁)比较分析。所有受试者行CMR成像,包括心功能分析,T2WI成像评估心肌水肿(局部或全心肌与同层面骨骼肌T2信号强度比,T2ratio), T1WI增强评估心肌充血(全心肌早期强化程度与同层面骨骼肌强化程度比,EGEr),延迟强化成像(LGE)评估心肌活性(坏死或纤维化)。其中急性组,9例重症急性(爆发性)心肌炎患儿治疗>4周后,行CMR随访检查。根据'Lake Louise criteria", T2ratio>1.9, EGEr>4.0,或存在LGE即可诊断为心肌炎。
     结果
     急性期组(AMC),56%患儿T2ratio升高,68%患儿EGEr升高,52%患儿存在LGE;19例(76%)患儿任意2种MR组织参数(T2ratio、EGEr及LGE)为阳性。与正常对照组相比,疑似AMC患儿左室射血分数EF明显减低(51.2%vs.61.3%,P<0.001),左室质量nass明显增加(130.2±14.0vs.120.5±13.9g,P=0.035),平均T2ratio显著增加(1.96±0.2vs.1.69±0.13,P<0.001),EGEr明显升高(4.1±0.27vs.3.4±0.39,P<0.001)。慢性恢复期组(CMC),35.4%患儿T2ratio升高,43.7%患儿EGEr升高,31.3%患儿存在LGE;26例(54.1%)患儿任意2种MR组织参数为阳性。与对照组相比,疑似CMC患儿左室EF及质量mass无明显统计学差异(P>0.05);平均T2ratio略增加(1.88±0.18vs.1.69±0.13,P=0.005),EGEr略升高(3.93±0.22vs.3.4±0.39,P<0.001),但均存在明显统计学差异。然而,CMC患儿平均T2ratio(1.88)及EGEr(3.93)值均小于诊断阈值。9例重症急性患儿治疗后,随访CMR发现明显好转:左室EF明显增加(48.6%vs.59.7%,P<0.001),mass显著减低(132.0±15.9vs.124.9±14.5g,P=0.001),室间隔厚度减小(1.2±0.2vs.0.83±0.14cm,P<0.001);MR组织参数T2ratio(2.04±0.16vs.1.8±0.11,P<0.001)及EGEr(4.34±0.43vs.3.85±0.17,P=0.013)均明显减低;4例重症患儿LGE持续存在,但强化范围缩小。
     结论
     CMR能够动态观察小儿心肌炎受损心肌病理学变化,病程中炎症部位、范围及活动性。CMR诊断小儿急性心肌炎(AMC),评估其预后及指导临床治疗具有较高价值。CMR在小儿慢性恢复期心肌炎(CMC)中的诊断具有一定价值,但还不能令人满意。
Purpose
     To prospectively assess the performance of3.0T Cardiac MR imaging using dual-source parallel radiofrequency (RF) transmission with patient-adaptive B1shimming compared with single-source RF transmission in the RF homogeneity, image contrast and image quality.
     Background
     In recent years, higher-field strength MR systems (≥3.0T) have been more and more used in both clinical diagnosis and scientific researches by using the balanced steady-state free precession (b-SSFP) imaging, such as cardiac function, cardiac flow analysis and the other imaging techniques. However, high-field MR imaging at3.0T also comes with some technical issues, including radiofrequency (RF) field inhomogeneity, local specific energy absorption rate (SAR) peaks and susceptibility artifacts.
     Materials and Methods
     With institutional review board approval and written informed consent,14healthy volunteers were scanned at3.0T MR equipped with a dual-channel parallel RF transmission technology. B1calibrations (RF shimming) of the area of the whole heart were performed utilizing conventional and dual-source RF transmission respectively, and B1maps of short-axis plane across the left ventricle without and with dual-source were scaled as a percent of the prescribed flip angle (FA), which was used for quantitative assessment of RF homogeneity. Contras ratios (CRs) between ventricular blood pool and septum on short-axis balanced-turbo field echo (B-TFE) ventricular cine images were calculated to evaluate the effect of dual-source versus single-source RF transmission. The off-resonance artifacts were assessed by two radiologists according to a4-point grading scale. Statistical significance was calculated with the Kruskal-Wallis signed rank test. Inter-observer agreement was evaluated with Cohen's kappa test.
     Results
     Quantitative B1maps analysis revealed a significantly higher mean percentage of the achieved flip angle (85.38%with dual-source vs76.74%with single source, P=0.0152<0.05) and a significantly lower mean coefficients of variance (0.066with dual-source vs0.103with single-source, P=0.0094<0.05). The CRs of short-axis B-TFE ventricular cine images were significantly increased with the use of dual-source RF transmission, as compared with single-source RF excitation (both LV and RV, P<0.05). Overall inter-observer agreement for the off-resonance artifacts of the B-TFE ventricular cine images was good to excellent (K>0.65). Dual-source RF shimming significantly improved the quality of B-TFE cine images and reduced the off-resonance artifacts (reader A:3.57±0.51vs2.14±0.36, P=0.0002; reader B:3.64±0.49vs2.28±0.46, P=0.0001).
     Conclusions
     Dual-source parallel RF transmission with B1shimming significantly improves the homogeneity of RF field and increases image contrast of cardiac B-TFE cine images. An improved B1homogeneity leads to an improved SAR model (shorter TR), which significantly reduces image artifacts.
     Purpose
     To prospectively assess the effect of dual-source radiofrequency (RF) transmission technique on left ventricular (LV) measurements and the reproducibility of these measurements at3.0T magnetic resonance (MR) using balanced steady-state free precession (b-SSFP) cine imaging, compared with the conventional single-source RF transmission reference approach.
     Background
     The b-SSFP cardiac MR imaging has been considered as a preferred method for assessment of LV volume and size at1.5T but may experience B1field inhomogeneity, local SAR (specific absorption rate) peaks and susceptibility off-resonance artifacts at3.0T. Recently, dual-source RF transmission system has been proposed as a means for improving them.
     Materials and Methods
     Cardiac MR imaging was performed in19subjects by using a3.0T MR unit equipped with a dual-source RF transmission system. The effect of conventional versus dual-source RF transmission on b-SSFP cine sequences was evaluated. All images were analyzed to obtain LV end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), mass, LV end-diastolic inferior wall thickness (LVIW) and interventricular septal thickness (IVS) by using the semiautomated segmentation software. The difference of all LV measurements between the two imaging techniques was tested with the paired t test and the intertechnique agreement was tested through linear regression and Bland-Altman analyses. Additionally, repeated LV measurements were performed to determine intra-and inter-observer variability with the Bland-Altman method, the coefficient of variation (CV) and the intra-class correlation coefficient (ICC).
     Results
     Compared with conventional single-source reference, dual-source technique slightly overestimated EDV, ESV and SV volumes (mean differences,3.9mL±9.7,1.1mL±2.6and2.8mL±9.1, respectively; P>0.05), resulting in a small but significant positive bias in the calculated EF (1.5%±2.6; P=0.021). The calculated LV mass was significantly smaller with dual source than with conventional single-source (mean difference,-4.0g±6.5, P=0.001). Dual-source slightly underestimated IVS (-0.29mm±0.6, P=0.067) and significantly underestimated LVIW (-0.55mm±0.4, P<0.0001). However, the percentage difference of all LV measurements was within4.0%level with the exception of LVIW (8.1%) between the two imaging techniques and the two techniques correlated highly, as reflected by r2values (0.81to0.96, P<0.0001). Intra-and inter-observer variability in the dual-source measurements was much lower than that in single-source values, and all variability values were<14.0%.
     Conclusions
     Improved image quality of b-SSFP cine imaging performed by using dual-source RF transmission technique at3.0T MR may provide more reproducible and accurate measurements of LV compared with conventional single-source reference approach. The superior reproducibility of LV measurements with dual-source favors this technique for clinical use.
     Purpose
     The aim of this study was to prospectively evaluate the diagnostic performance of cardiac MR (CMR) in children with suspected acute myocarditis (AMC) and chronic myocarditis (CMC) after respiratory or gastrointestinal tract viral infection, as well as to follow the course of myocatditis.
     Background
     On the basis of published data, CMR has recently emerged as a noninvasive tool to diagnosis myocarditis. With this technique, it is possible to visualize the changes of myocardial inflammation (oedema, necrosis and fibrosis). However, the majority of these studies were focused on adult myocarditis. The need for accurate diagnosis of pediatric viral myocarditis arises from the low diagnostic accuracy of routine clinical tests.
     Materials and Methods
     Our study design was adapted from the "Lake Louise criteria" and approved by the local ethics committee. We examined73childhood and adolescent patients with clinically suspected AMC (defined by symptoms≤14days; n=25) and CMC (symptoms>14days; n=48). We compared these patients to17controls. All subjects underwent CMR, including function analyses, T2-weighted imaging for assessment of myocardial edema (regional or global T2ratio), T1-weighted imaging before and after contrast administration for evaluation of hyperemia (global early gadolinium enhancement ratio, EGEr), and assessment of late gadolinium enhancement (LGE).9patients with severe (fulminant) myocarditis out of AMC returned for the follow-up CMR>4weeks after presentation.
     Results
     In the acute phase (AMC), the T2ratio was elevated in56%, EGEr in68%, and LGE was present in52%of the patients. In group AMC,19patients (76%) were any2of3MR parameters (T2ration, EGEr and LGE) abnormal. We found a significant difference between patients with suspected AMC and controls in LVEF (51.2%vs.61.3, P<0.001), LV mass (130.2±14.0vs.120.5±13.9g, P=0.035), mean T2ratio (1.96±0.2vs.1.69±0.13, P<0.001), and mean EGEr (4.1±0.27vs.3.4±0.39, P<0.001). For group CMC, the T2ratio was elevated in35.4%, EGEr in43.7%, and LGE was present in31.3%of the patients. In group CMC,26patients (54.1%) were any2of3MR parameters abnormal. There was no statistically significant difference between CMC and controls in LVEF and mass (P>0.05), but mean T2ratio (1.88±0.18vs.1.69±0.13, P=0.005) and EGEr (3.93±0.22vs.3.4±0.39, P<0.001). However, the mean T2ratio and EGEr in CMC were less than the proposed cut-off values. At follow-up, there was an increase in LVEF (48.6%vs.59.7%, P<0.001) while both T2ratio (2.04±0.16vs.1.8±0.11, P<0.001) and EGEr (4.34±0.43vs.3.85±0.17, P=0.013) significantly decreased. The LGE persisted in4patients.
     Conclusions
     A comprehensive CMR is able to visualize the location and extent of inflammation over the course of paediatric myocarditis and may serve as a powerful noninvasive diagnostic tool in suspected AMC. In contrast, the diagnostic performance of CMR in children with suspected CMC may be valuable, but never satisfactory in clinical practice.
引文
1. Oshinski JN, Delfino JG, Sharma P, Gharib AM, Pettiqrew RI. Cardiovascular magnetic resonance at 3.0 T:current state of the art. J Cardiovasc Magn Reson. 2010;12:55.
    2. Ridgway JP. Cardiovascular magnetic resonance physics for clinicians:part I. J Cardiovasc Magn Reson.2010;12:71.
    3. Schar M, Kozerke S, Fischer SE, Boesiger P. Cardiac SSFP imaging at 3 Tesla. Magn Reson Med.2004;51:799-806.
    4. International Electrotechnical Commission. IEC 60601-2-33. Geneva, Switzerland: International Electrotechnical Commission,2011.
    5. Wieben O, Francois C, Reeder SB. Cardiac MRI of ischemic heart disease at 3 T: potential and challenges. Eur J Radiol.2008;65(1):15-28.
    6. Ferreira PF, Gatehouse PD, Mohiaddin RH, Firmin DN. Cardiovascular magnetic resonance artefacts. J Cardiovasc Magn Reson.2013; 15:41.
    7. Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol.2003;13(11):2409-2418.
    8. Franklin KM, Dale BM, Merkle EM. Improvement in B1-inhomogeneity artifacts in the abdomen at 3T MR imaging using a radiofrequency cushion. J Magn Reson imaging.2008;27:1443-1447.
    9. Childs AS, Malik SJ, O'Regan DP, Hajnal JV. Impact of number of channels on RF shimming at 3T. MAGMA.2013;26(4):401-410.
    10. Nelles M, Konig RS, Gieseke J, Guerand-van Battum MM, Kukuk GM, Schild HH, Willinek WA. Dual-source parallel RF transmission for clinical MR imaging of the spine at 3.0 T:intraindividual comparison with conventional single-source transmission. Radiology.2010;257(3):743-753.
    11. Willinek WA, Gieseke J, Kukuk GM, Nelles M, Konig R, Morakkabati-Spitz N, Traber F, Thomas D, Kuhl CK, Schild HH. Dual-source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0 T:initial clinical experience. Radiology.2010;256(3):966-975.
    12. Mueller A, Kouwenhoven M, Naehle CP, Gieseke J, Strach K, Willinek WA, Schild HH, Thomas D. Dual-source radiofrequency transmission with patient-adaptive local radiofrequency shimming for 3.0-T cardiac MR imaging:initial experience. Radiology.2012;263(1):77-85.
    13.Alfakih K, Thiele H, Plein S, Bainbridge GJ, Ridgway JP, Sivananthan MU. Comparison of right ventricular volume measurement between segmented k-space gradient-echo and steady-state free precession magnetic resonance imaging. J Magn Reson Imaging.2002;16(3):253-8.
    14. Nousiainen T, Vanninen E, Jantunen E, Puustinen J, Remes J, Rantala A, Hartikainen J. Comparison of echocardiography and radionuclide ventriculography in the follow-up of left ventricular systolic function in adult lymphoma patients during doxorubicin therapy. J Intern Med.2001;249(4):297-303.
    15. Kindermann I, Barth C, Mahfoud F, Ukena C, Lenski M, Yilmaz A, Klingel K, Kandolf R, Sechtem U, Cooper LT, Bohm M. Update on myocarditis. J Am Coll Cardiol.2012;59:779-792.
    16. Lurz P, Eitel I, Adam J, Steiner J, Grothoff M, Desch S, Fuernau G, de Waha S, Sareban M, Luecke C, Klingel K, Kandolf R, Schuler G, Gutberlet M, Thiele H. Diagnostic performance of CMR imaging compared with EMB in patients with suspected myocarditis. JACC Cardiovasc Imaging.2012;5:513-524.
    17. Dennert R, Crijns HJ, Heymans S. Acute viral myocarditis. Eur Heart J. 2008;29:2073-2082.
    18. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, White JA, Abdel-Aty H, Gutberlet M, Prasad S, Aletras A, Laissy JP, Paterson I, Filipchuk NG, Kumar A, Pauschinger M, Liu P. Cardiovascular magnetic resonance in myocarditis:A JACC White Paper. J Am Coll Cardiol.2009;53:1475-1487.
    19. Cooper LT Jr. Myocarditis. N Engl J MED.2009;360:1526-1538.
    1. Oshinski JN, Delfino JG, Sharma P, Gharib AM, Pettiqrew RI. Cardiovascular magnetic resonance at 3.0 T:current state of the art. J Cardiovasc Magn Reson.2010; 12:55.
    2. Wieben O, Francois C, Reeder SB. Cardiac MRI of ischemic heart disease at 3 T: potential and challenges. Eur J Radiol.2008;65(1):15-28.
    3. Ridgway JP. Cardiovascular magnetic resonance physics for clinicians:part Ⅰ. J Cardiovasc Magn Reson.2010;12:71.
    4. Schar M, Kozerke S, Fischer SE, Boesiger P. Cardiac SSFP imaging at 3 Tesla. Magn Reson Med.2004;51:799-806.
    5. Dietrich O, Reiser MF, Schoenberg SO. Artifacts in 3-T MRI:physical background and reduction strategies. Eur J Radiol.2008;65(1):29-35.
    6. Ferreira PF, Gatehouse PD, Mohiaddin RH, Firmin DN. Cardiovascular magnetic resonance artefacts. J Cardiovasc Magn Reson.2013;15:41.
    7. Childs AS, Malik SJ, O'Regan DP, Hajnal JV. Impact of number of channels on RF shimming at 3T. MAGMA.2013;26(4):401-410.
    8. El-Sharkawy A, Qian D, Bottomley P, Edelstein W. A multi-channel, high dynamic range, real time RF power deposition monitor [abstr]. In:Proceedings of the Nineteenth Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, Calif: International Society for Magnetic Resonance in Medicine,2011;496.
    9. Harvey RP, Cecilia P, Simons J. B1 shimming performance versus channel/Mode count. Proc Int Soc Magn Reson Med.2010. Abstract number:1486.
    10. Vernickel P, Roschmann P, Findeklee C, Ludeke KM, Leussler Ch, Overweg J, Katscher U, Grasslin I, Schunemann K. Eight-channel transmit/receive body MRI coil at 3T. Magn Reson Med.2007;58(2):381-389.
    11. Katscher U, Bornert P. Parallel RF transmission in MRI. NMR Biomed.2006; 19(3): 393-400.
    12. Willinek WA, Gieseke J, Kukuk GM, Nelles M, Konig R, Morakkabati-Spitz N, Traber F, Thomas D, Kuhl CK, Schild HH. Dual-source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0 T:initial clinical experience. Radiology.2010;256(3):966-975.
    13. Nelles M, Konig RS, Gieseke J, Guerand-van Battum MM, Kukuk GM, Schild HH, Willinek WA. Dual-source parallel RF transmission for clinical MR imaging of the spine at 3.0 T:intraindividual comparison with conventional single-source transmission. Radiology.2010;257(3):743-753.
    14. Hussain S, Chiribiri A, Ishida M, Morton G, Wiethoff A, Schuster A, Nagel E. A comparison of single-channel and multi-channel RF transmit coil for SSFP cine imaging at 3 Tesla. J Cardiovasc Magn Reson.2011;13(Suppl 1):O10.
    15. Mueller A, Weisser-Thomas J, Naehle CP, Nelles M, Giseke J, Kouwenhoven M, Schild H H, Thomas D. Clinical CMR at 3.0 Tesla using parallel RF transmission with patient-adaptive B1 shimming:initial experience. J Cardiovasc Magn Reson.2010;12(Suppl 1):072.
    16. Krishnamurthy R, Pednekar A, Kouwenhoven M, Harvey P, Arena C. Quantitative Evaluation of Regional RF shimming on a Wide Aperture Dual-Channel Multi-Transmit 3.0T:Implications for cardiac MRI. In:Proceedings of the 19th Annual Meeting of ISMRM, Montreal.2011. Abstract number:3353.
    17. Mueller A, Kouwenhoven M, Naehle CP, Gieseke J, Strach K, Willinek WA, Schild HH, Thomas D. Dual-source radiofrequency transmission with patient-adaptive local radiofrequency shimming for 3.0-T cardiac MR imaging:initial experience. Radiology. 2012;263:77-85.
    18. Cunningham CH, Pauly JM, Nayak KS. Saturated double-angle method for rapid B1+ mapping. Magn Reson Med.2006; 55:1326-1333.
    19. Willinek WA1, Bayer T, Gieseke J, von Falkenhausen M, Sommer T, Hoogeveen R, Wilhelm K, Urbach H, Schild HH. High spatial resolution contrast-enhanced MR angiography of the supraaortic arteries using the quadrature body coil at 3.0T:a feasibility study. Eur Radiol.2007;17:618-625.
    20. Cheng AS, Pegg TJ, Karamitsos TD, Searle N, Jerosch-Herold M, Choudhury RP, Banning AP, Neubauer S, Robson MD, Selvanayagam JB. Cardiovascular magnetic resonance perfusion imaging at 3-tesla for the detection of coronary artery disease:a comparison with 1.5-tesla. J Am Coll Cardiol.2007;49(25):2440-2449.
    21. Parsai C, O'Hanlon R, Prasad SK, Mohiaddin RH. Diagnostic and prognostic value of cardiovascular magnetic resonance in non-ischaemic cardiomyopathies. J Cardiovasc Magn Reson.2012;14:54.
    22. Mahrholdt H, Wagner A, Deluigi CC, Kispert E, Hager S, Meinhardt G, Vogelsberg H, Fritz P, Dippon J, Bock CT, Klingel K, Kandolf R, Sechtem U. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation. 2006;114(15):1581-90.
    23. Ibrahim el-SH. Imaging sequences in cardiovascular magnetic resonance:current role, evolving applications, and technical challenges. Int J Cardiovasc Imaging. 2012;28(8):2027-47.
    24. Kuhl CK, Traber F, Schild HH. Whole-body high-field-strength (3.0-T) MR Imaging in Clinical Practice. Part I. Technical considerations and clinical applications. Radiology. 2008;246:675-696.
    25. Lee VS, Hecht EM, Taouli B, Chen Q, Prince K, Oesingmann N. Body and cardiovascular MR imaging at 3.0 T. Radiology.2007;244(3):692-705.
    26. Franklin KM, Dale BM, Merkle EM. Improvement in B1-inhomogeneity artifacts in the abdomen at 3T MR imaging using a radiofrequency cushion. J Magn Reson imaging. 2008;27:1443-1447.
    27. Guo L, Liu C, Chen W, Chan Q, Wang G. Dual-source parallel RF transmission for diffusion-weighted imaging of the abdomen using different b values:image quality and apparent diffusion coefficient comparison with conventional single-source transmission. J Magn Reson Imaging.2013;37(4):875-85.
    28. Krishnamurthy R, Pednekar A, Kouwenhoven M, Cheong B, Muthupillai R. Evaluation of a subject specific dual-transmit approach for improving B1 field homogeneity in cardiovascular magnetic resonance at 3T. J Cardiovasc Magn Reson.2013;15(1):68.
    29. Harvey PR, Possanzini C, Simons J. B1 shimming performance versus channel/mode count [abstr]. In:Proceedings of the Eighteenth Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, Calif:International Society for Magnetic Resonance in Medicine,2010; 1486.
    30. Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR evaluation of ventricular function:true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging—feasibility study. Radiology.2001; 219:264-269.
    31.Plein S, Bloomer TN, Ridgway JP, Jones TR, Bainbridge GJ, Sivananthan MU. Steady-state free precession magnetic resonance imaging of the heart:comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging.2001;14:230-236.
    32. Michaely HJ, Nael K, Schoenberg SO, Laub G, Reiser MF, Finn JP, Ruehm SG. Analysis of cardiac function-Comparison between 1.5 Tesla and 3.0 Tesla cardiac cine magnetic resonance imaging. Invest Radiol.2006;41:133-140.
    33. Kubach MR, Bornstedt A, Hombach V, Merkle N, Schar M, Spiess J, Nienhaus GU, Rasche V. Cardiac phase-specific shimming (CPSS) for SSFP MR cine imaging at 3 T. Phys Med Biol.2009;54(20):N467-78.
    34. Mihara H, Iriguchi N, Ueno S. A method of RF inhomogeneity correction in MR imaging. MAGMA.1998;7:115-120.
    35. Caudron J, Fares J, Vivier PH, Lefebvre V, Petitjean C, Dacher JN. Diagnostic accuracy and variability of three semi-quantitative methods for assessing right ventricular systolic function from cardiac MRI in patients with acquired heart disease. Eur Radiol. 2011;21(10):2111-2120.
    1. Biglands JD, Radjenovic A, Ridgway JP. Cardiovascular magnetic resonance physics for clinicians:part II. J Cardiovasc Magn Reson.2012; 14:66.
    2. Oshinski JN, Delfino JG, Sharma P, Gharib AM, Pettiqrew RI. Cardiovascular magnetic resonance at 3.0 T:current state of the art. J Cardiovasc Magn Reson. 2010;12:55.
    3. Parsai C, O'Hanlon R, Prasad SK, Mohiaddin RH. Diagnostic and prognostic value of cardiovascular magnetic resonance in non-ischaemic cardiomyopathies. J Cardiovasc Magn Reson 2012;14:54.
    4. Grothues F, Boenigk H, Graessner J, Kanowski M, Klein HU. Balanced steady-state free precession vs. segmented fast low-angle shot for the evaluation of ventricular volumes, mass, and function at 3 Tesla. J Magn Reson Imaging. 2007;26(2):392-400.
    5. Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S. Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson. 2005;7(5):775-82.
    6. Wintersperger BJ, Bauner K, Reeder SB, Friedrich D, Dietrich O, Sprung KC, Picciolo M, Nikolaou K, Reiser MF, Schoenberg SO. Cardiac steady-state free precession CINE magnetic resonance imaging at 3.0 tesla:impact of parallel imaging acceleration on volumetric accuracy and signal parameters. Invest Radiol. 2006;41(2):141-7.
    7. Schar M, Kozerke S, Fischer SE, Boesiger P. Cardiac SSFP imaging at 3 Tesla. Magn Reson Med.2004;51:799-806.
    8. Wieben O, Francois C, Reeder SB. Cardiac MRI of ischemic heart disease at 3 T: potential and challenges. Eur J Radiol.2008;65(1):15-28.
    9. Ferreira PF, Gatehouse PD, Mohiaddin RH, Firmin DN. Cardiovascular magnetic resonance artefacts. J Cardiovasc Magn Reson.2013; 15:41.
    10. Willinek WA, Gieseke J, Kukuk GM, Nelles M, Konig R, Morakkabati-Spitz N, Traber F, Thomas D, Kuhl CK, Schild HH. Dual-source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0 T:initial clinical experience. Radiology.2010;256(3):966-975.
    11. Krishnamurthy R, Pednekar A, Kouwenhoven M, Cheong B, Muthupillai R. Evaluation of a subject specific dual-transmit approach for improving B1 field homogeneity in cardiovascular magnetic resonance at 3T. J Cardiovasc Magn Reson.2013;15(1):68.
    12. Dietrich O, Reiser MF, Schoenberg SO. Artifacts in 3-T MRI:physical background and reduction strategies. Eur J Radiol.2008;65(1):29-35.
    13. International Electrotechnical Commission. IEC 60601-2-33. Geneva, Switzerland: International Electrotechnical Commission,2011.
    14. Kuhl CK, Traber F, Gieseke J, Drahanowsky W, Morakkabati-Spitz N, Willinek W, von Falkenhausen M, Manka C, Schild HH. Whole-body high-field-strength (3.0-T) MR imaging in clinical practice. Part II. Technical considerations and clinical applications. Radiology.2008;247(1):16-35.
    15. Harvey RP, Cecilia P, Simons J. B1 shimming performance versus channel/Mode count. Proc Int Soc Magn Reson Med.2010. Abstract number:1486.
    16. El-Sharkawy A, Qian D, Bottomley P, Edelstein W. A multi-channel, high dynamic range, real time RF power deposition monitor [abstr]. In:Proceedings of the Nineteenth Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, Calif:International Society for Magnetic Resonance in Medicine,2011;496.
    17. Kukuk GM, Gieseke J, Weber S, Hadizadeh DR, Nelles M, Traber F, Schild HH, Willinek WA. Focal liver lesions at 3.0 T:lesion detectability and image quality with T2-weighted imaging by using conventional and dual-source parallel radiofrequency transmission. Radiology.2011;259(2):421-428.
    18. Childs AS, Malik SJ, O'Regan DP, Hajnal JV. Impact of number of channels on RF shimming at 3T. MAGMA.2013;26(4):401-410.
    19. Nelles M, Konig RS, Gieseke J, Guerand-van Battum MM, Kukuk GM, Schild HH, Willinek WA. Dual-source parallel RF transmission for clinical MR imaging of the spine at 3.0 T:intraindividual comparison with conventional single-source transmission. Radiology.2010;257(3):743-753.
    20. Mueller A, Kouwenhoven M, Naehle CP, Gieseke J, Strach K, Willinek WA, Schild HH, Thomas D. Dual-source radiofrequency transmission with patient-adaptive local radiofrequency shimming for 3.0-T cardiac MR imaging: initial experience. Radiology.2012,263:77-85.
    21. Jia H, Wang C, Wang G, Qu L, Chen W, Chan Q, Zhao B. Impact of 3.0 T Cardiac MR Imaging Using Dual-Source Parallel Radiofrequency Transmission with Patient-Adaptive B1 Shimming. PLoS One.2013;8(6):e66946.
    22. Moon JC, Lorenz CH, Francis JM, Smith GC, Pennell DJ. Breath-hold FLASH and FISP cardiovascular MR imaging:left ventricular volume differences and reproducibility. Radiology.2002;223(3):789-97.
    23. Bland JM, Altman DG Statistical methods for assessing agreement between two methods of clinical measurement. Lancet.1986;1(8476):307-310.
    24. Bland JM, Altman DG. Comparing methods of measurement:why plotting difference against standard method is misleading. Lancet.1995; 346(8982):1085-1087.
    25. Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, Ho VB, Jerosch-Herold M, Kramer CM, Manning WJ, Patel M, Pohost GM, Stillman AE, White RD, Woodard PK. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance:a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol.2010;55(23):2614-62.
    26. Clarke CJ, Gurka MJ, Norton PT, Kramer CM, Hoyer AW. Assessment of the accuracy and reproducibility of RV volume measurements by CMR in congenital heart disease. JACC Cardiovasc Imaging.2012;5(1):28-37.
    27. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, White JA, Abdel-Aty H, Gutberlet M, Prasad S, Aletras A, Laissy JP, Paterson I, Filipchuk NG, Kumar A, Pauschinger M, Liu P. Cardiovascular magnetic resonance in myocarditis:A JACC White Paper. J Am Coll Cardiol. 2009;53:1475-1487.
    28. Chuang ML, Gona P, Hautvast GL, Salton CJ, Blease SJ, Yeon SB, Breeuwer M, O'Donnell CJ, Manning WJ. Correlation of trabeculae and papillary muscles with clinical and cardiac characteristics and impact on CMR measures of LV anatomy and function. JACC Cardiovasc Imaging.2012;5(11):1115-23.
    29. Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU. Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging. 2003;17(3):323-9.
    30. Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer-Mascherbauer R, Schmidt F, Galuschky C, Schummers G, Lang RM, Nesser HJ. Quantitative assessment of left ventricular size and function:side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation.2006;114(7):654-61.
    31. Soliman OI, Kirschbaum SW, van Dalen BM, van der Zwaan HB, Mahdavian Delavary B, Vletter WB, van Geuns RJ, Ten Cate FJ, Geleijnse ML. Accuracy and reproducibility of quantitation of left ventricular function by real-time three-dimensional echocardiography versus cardiac magnetic resonance. Am J Cardiol.2008;102(6):778-83.
    32. Plein S, Bloomer TN, Ridgway JP, Jones TR, Bainbridge GJ, Sivananthan MU. Steady-state free precession magnetic resonance imaging of the heart:comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging. 2001;14(3):230-6.
    33.Atalay MK, Poncelet BP, Kantor HL, Brady TJ, Weisskoff RM. Cardiac susceptibility artifacts arising from the heart-lung interface. Magn Reson Med. 2001;45(2):341-5.
    34. Anderson DJ, Dendy JM, Paschal CB. Simulation study of susceptibility gradients leading to focal myocardial signal loss. J Magn Reson Imaging. 2008;28(6):1402-8.
    35. Ridgway JP. Cardiovascular magnetic resonance physics for clinicians:part Ⅰ. J Cardiovasc Magn Reson.2010;12:71.
    36. Papavassiliu T, Kuhl HP, Schroder M, Suselbeck T, Bondarenko O, Bohm CK, Beek A, Hofman MM, van Rossum AC. Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging. Radiology.2005;236(1):57-64.
    37. Chuang ML, Gona P, Hautvast GL, Salton CJ, Blease SJ, Yeon SB, Breeuwer M, O'Donnell CJ, Manning WJ. Correlation of trabeculae and papillary muscles with clinical and cardiac characteristics and impact on CMR measures of LV anatomy and function. JACC Cardiovasc Imaging.2012;5(11):1115-23.
    38. Luijnenburg SE, Robbers-Visser D, Moelker A, Vliegen HW, Mulder BJ, Helbing WA. Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. Int J Cardiovasc Imaging.2010;26(1):57-64.
    39. Nousiainen T, Vanninen E, Jantunen E, Puustinen J, Remes J, Rantala A, Hartikainen J. Comparison of echocardiography and radionuclide ventriculography in the follow-up of left ventricular systolic function in adult lymphoma patients during doxorubicin therapy. J Intern Med. 2001;249(4):297-303.
    40. Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer-Mascherbauer R, Bartolles R, Baumann R, Schummers G, Lang RM, Nesser HJ. Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc Imaging.2010;3(1):10-8.
    1. Kindermann I, Barth C, Mahfoud F, Ukena C, Lenski M, Yilmaz A, Klingel K, Kandolf R, Sechtem U, Cooper LT, Bohm M. Update on myocarditis. J Am Coll Cardiol.2012;59(9):779-92.
    2. Sagar S, Liu PP, Cooper LT Jr. Myocarditis. Lancet.2012;379(9817):738-47.
    3. D'Ambrosio A, Patti G, Manzoli A, Sinagra G, Di Lenarda A, Silvestri F, Di Sciascio G The fate of acute myocarditis between spontaneous improvement and evolution to dilated cardiomyopathy:a review. Heart.2001;85(5):499-504.
    4. Kawai C. From myocarditis to cardiomyopathy:mechanisms of inflammation and cell death:learning from the past for the future. Circulation 1999;99:1091-100.
    5. Fabre A, Sheppard MN. Sudden adult death syndrome and other non-ischaemic causes of sudden cardiac death. Heart.2006;92(3):316-20.
    6. Felker GM, Hu W, Hare JM, Hruban RH, Baughman KL, Kasper EK. The spectrum of dilated cardiomyopathy. The Johns Hopkins experience with 1,278 patients. Medicine (Baltimore).1999;78(4):270-83.
    7. Cooper LT Jr. Myocarditis. N Engl J Med.2009;360(15):1526-38.
    8. Soongswang J, Durongpisitkul K, Nana A, Laohaprasittiporn D, Kangkagate C, Punlee K, Limpimwong N. Cardiac troponin T:a marker in the diagnosis of acute myocarditis in children. Pediatr Cardiol.2005;26(1):45-9.
    9. Morgera T, Di Lenarda A, Dreas L, Pinamonti B, Humar F, Bussani R, Silvestri F, Chersevani D, Camerini F. Electrocardiography of myocarditis revisited:clinical and prognostic significance of electrocardiographic changes. Am Heart J. 1992;124(2):455-67.
    10. Jeserich M, Konstantinides S, Pavlik G, Bode C, Geibel A. Non-invasive imaging in the diagnosis of acute viral myocarditis. Clin Res Cardiol.2009;98(12):753-63.
    11. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O'Connell J, Olsen E, Thiene G, Goodwin J, Gyarfas I, Martin I, Nordet P. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation. 1996;93(5):841-2.
    12. Hauck AJ, Kearney DL, Edwards WD. Evaluation of postmortem endomyocardial biopsy specimens from 38 patients with lymphocytic myocarditis:implications for role of sampling error. Mayo Clin Proc.1989;64:1235-1245.
    13. Feldman AM, McNamara D. Medical progress:myocarditis. N Engl J Med 2000;343:1388-98.
    14. Elliott P, Arbustini E. The role of endomyocardial biopsy in the management of cardiovascular disease:a commentary on joint AHA/ACC/ESC guidelines. Heart. 2009;95(9):759-60.
    15. Parrillo JE. Inflammatory cardiomyopathy (myocarditis):which patients should be treated with anti-inflammatory therapy? Circulation.2001;104:4-6.
    16. Anderson L, Pennell D. The role of endomyocardial biopsy in the management of cardiovascular disease:a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Eur Heart J.2008;29(13):1696; author reply 1696-7.
    17. Baughman KL:Diagnosis of myocarditis:death of Dallas criteria. Circulation 2006;113:593-595.
    18. Yilmaz A, Ferreira V, Klingel K, Kandolf R, Neubauer S, Sechtem U. Role of cardiovascular magnetic resonance imaging (CMR) in the diagnosis of acute and chronic myocarditis. Heart Fail Rev.2013;18(6):747-60.
    19. Schumm J, Greulich S, Wagner A, Grun S, Ong P, Bentz K, Klingel K, Kandolf R, Bruder O, Schneider S, Sechtem U, Mahrholdt H. Cardiovascular magnetic resonance risk stratification in patients with clinically suspected myocarditis. J Cardiovasc Magn Reson.2014;16(1):14.
    20. Mahrholdt H, Wagner A, Deluigi CC, Kispert E, Hager S, Meinhardt G, Vogelsberg H, Fritz P, Dippon J, Bock CT, Klingel K, Kandolf R, Sechtem U. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation. 2006; 114(15):1581-90.
    21.Gutberlet M, Spors B, Thoma T, Bertram H, Denecke T, Felix R, Noutsias M, Schultheiss HP, Kiihl U. Suspected chronic myocarditis at cardiac MR:diagnostic accuracy and association with immunohistologically detected inflammation and viral persistence. Radiology.2008;246(2):401-9.
    22. Abdel-Aty H, Boye P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, Bock P, Dietz R, Friedrich MG, Schulz-Menger J. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis:comparison of different approaches. J Am Coll Cardiol.2005;45(11):1815-22.
    23. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, White JA, Abdel-Aty H, Gutberlet M, Prasad S, Aletras A, Laissy JP, Paterson Ⅰ, Filipchuk NG, Kumar A, Pauschinger M, Liu P. Cardiovascular magnetic resonance in myocarditis:A JACC White Paper. J Am Coll Cardiol.2009;53(17):1475-87.
    24. Lurz P, Eitel I, Adam J, Steiner J, Grothoff M, Desch S, Fuernau G, de Waha S, Sareban M, Luecke C, Klingel K, Kandolf R, Schuler G, Gutberlet M, Thiele H. Diagnostic performance of CMR imaging compared with EMB in patients with suspected myocarditis. JACC Cardiovasc Imaging.2012;5(5):513-24.
    25. Amabile N, Fraisse A, Bouvenot J, Chetaille P, Ovaert C. Outcome of acute fulminant myocarditis in children. Heart.2006;92(9):1269-73.
    26. Jeserich M, Konstantinides S, Olschewski M, Pavlik G, Bode C, Geibel A. Diagnosis of early myocarditis after respiratory or gastrointestinal tract viral infection:insights from cardiovascular magnetic resonance. Clin Res Cardiol. 2010;99(11):707-14.
    27. Freedman SB, Haladyn JK, Floh A, Kirsh JA, Taylor G, Thull-Freedman J. Pediatric myocarditis:emergency department clinical findings and diagnostic evaluation. Pediatrics.2007;120(6):1278-85.
    28. Alexander PM, Daubeney PE, Nugent AW, Lee KJ, Turner C, Colan SD, Robertson T, Davis AM, Ramsay J, Justo R, Sholler GF, King I, Weintraub RG. Long-term outcomes of dilated cardiomyopathy diagnosed during childhood:results from a national population-based study of childhood cardiomyopathy. Circulation. 2013;128(18):2039-46.
    29. Korkusuz H, Esters P, Huebner F, Bug R, Ackermann H, Vogl TJ. Accuracy of cardiovascular magnetic resonance in myocarditis:comparison of MR and histological findings in an animal model. J Cardiovasc Magn Reson.2010;12:49.
    30. Shah R, Heydari B, Coelho-Filho O, Murthy VL, Abbasi S, Feng JH, Pencina M, Neilan TG, Meadows JL, Francis S, Blankstein R, Steigner M, di Carli M, Jerosch-Herold M, Kwong RY. Stress cardiac magnetic resonance imaging provides effective cardiac risk reclassification in patients with known or suspected stable coronary artery disease. Circulation.2013;128(6):605-14.
    31. Heydari B, Y Kwong R. Cardiac magnetic resonance imaging for ischemic heart disease:update on diagnosis and prognosis. Top Magn Reson Imaging. 2014;23(1):21-31.
    32. Gagliardi MG, Bevilacqua M, Di Renzi P, Picardo S, Passariello R, Marcelletti C. Usefulness of magnetic resonance imaging for diagnosis of acute myocarditis in infants and children, and comparison with endomyocardial biopsy. Am J Cardiol 1991;68:1089-1091.
    33. Friedrich MG, Strohm O, Schulz-Menger J, Marciniak H, Luft FC, Dietz R. Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation 1998;97:1802-1809.
    34. Laissy JP, Messin B, Varenne O, lung B, Karila-Cohen D, Schouman-Claeys E, Steg PG. MRI of acute myocarditis:a comprehensive approach based on various imaging sequences. Chest.2002;122(5):1638-48.
    35. Yelgec NS, Dymarkowski S, Ganame J, Bogaert J. Value of MRI in patients with a clinical suspicion of acute myocarditis. Eur Radiol.2007;17(9):2211-2217.
    36. Oshinski JN, Delfino JG, Sharma P, Gharib AM, Pettigrew RI. Cardiovascular magnetic resonance at 3.0 T:current state of the art. J Cardiovasc Magn Reson. 2010;12:55.
    37. Caforio AL, Calabrese F, Angelini A, Tona F, Vinci A, Bottaro S, Ramondo A, Carturan E, Iliceto S, Thiene G, Daliento L. A prospective study of biopsy-proven myocarditis:prognostic relevance of clinical and aetiopathogenetic features at diagnosis. Eur Heart J.2007;28(11):1326-1333.
    38. Zagrosek A, Wassmuth R, Abdel-Aty H, Rudolph A, Dietz R, Schulz-Menger J. Relation between myocardial edema and myocardial mass during the acute and convalescent phase of myocarditis--a CMR study. J Cardiovasc Magn Reson. 2008;10:19.
    39. Zagrosek A, Abdel-Aty H, Boye P, Wassmuth R, Messroghli D, Utz W, Rudolph A, Bohl S, Dietz R, Schulz-Menger J. Cardiac magnetic resonance monitors reversible and irreversible myocardial injury in myocarditis. JACC Cardiovasc Imaging 2009;2:131-138.
    40. Paajanen H, Brasch RC, Schmiedl U, Ogan M. Magnetic resonance imaging of local soft tissue inflammation using gadolinium-DTPA. Acta Radiol 1987;28:79-83.
    41. Stensaeth KH, Hoffmann P, Fossum E, Mangschau A, Sandvik L, Klow NE. Cardiac magnetic resonance visualizes acute and chronic myocardial injuries in myocarditis. Int J Cardiovasc Imaging.2012;28(2):327-35.
    42. Rottgen R, Christiani R, Freyhardt P, Gutberlet M, Schultheiss HP, Hamm B, Kuh1 U. Magnetic resonance imaging findings in acute myocarditis and correlation with immunohistological parameters. Eur Radiol.2011;21(6):1259-66.
    43. Hiramitsu S, Morimoto S, Kato S, Uemura A, Kubo N, Kimura K, Sugiura A, Itoh T, Hishida H. Transient ventricular wall thickening in acute myocarditis:a serial echocardiographic and histopathologic study. Jpn Circ J.2001;65(10):863-6.
    44. Mahrholdt H, Goedecke C, Wagner A, Meinhardt G, Athanasiadis A, Vogelsberg H, Fritz P, Klingel K, Kandolf R, Sechtem U. Cardiovascular magnetic resonance assessment of human myocarditis:a comparison to histology and molecular pathology. Circulation 2004;109:1250-1258.
    1. Cooper LT Jr. Myocarditis. N Engl J MED.2009;360:1526-1538.
    2. Kindermann I, Barth C, Mahfoud F, Ukena C, Lenski M, Yilmaz A, Klingel K, Kandolf R, Sechtem U, Cooper LT, Bohm M. Update on myocarditis. J Am Coll Cardiol.2012;59:779-792.
    3. Friedrich MG1, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, White JA, Abdel-Aty H, Gutberlet M, Prasad S, Aletras A, Laissy JP, Paterson I, Filipchuk NG, Kumar A, Pauschinger M, Liu P. Cardiovascular magnetic resonance in myocarditis:A JACC White Paper. J Am Coll Cardiol.2009;53:1475-1487.
    4. Lurz P, Eitel I, Adam J, Steiner J, Grothoff M, Desch S, Fuernau G, de Waha S, Sareban M, Luecke C, Klingel K, Kandolf R, Schuler G, Gutberlet M, Thiele H. Diagnostic performance of CMR imaging compared with EMB in patients with suspected myocarditis. JACC Cardiovasc Imaging.2012;5:513-524.
    5. Dennert R, Crijns HJ, Heymans S. Acute viral myocarditis. Eur Heart J. 2008;29:2073-2082.
    6. Lie JT. Myocarditis and endomyocardial biopsy in unexplained heart failure:a diagnosis in search of a disease. Ann Intern Med.1988;109:525-528.
    7. Gutberlet M, Spors B, Thoma T, Bertram H, Denecke T, Felix R, Noutsias M, Schultheiss HP, Kiihl U. Suspected chronic myocarditis at cardiac MR:diagnostic accuracy and association with immunohistologically detected inflammation and viral persistence. Radiology.2008;246:401-409.
    8. Mahrholdt H, Wagner A, Deluigi CC, Kispert E, Hager S, Meinhardt G, Vogelsberg H, Fritz P, Dippon J, Bock CT, Klingel K, Kandolf R, Sechtem U. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation. 2006; 114:1581-1590.
    9. Sagar S, Liu PP, Cooper LT Jr. Myocarditis. Lancet.2012;379:738-747.
    10. Caforio AL, Iliceto S. Genetically determined myocarditis:clinical presentation and immunological characteristics. Curr Opin Cardiol.2008;23:219-226.
    11.Magnani JW, Dec GW. Myocarditis:current trends in diagnosis and treatment. Circulation.2006;113:876-890.
    12. Ukena C, Mahfoud F, Kindermann I, Kandolf R, Kindermann M, Bohm M. Prognostic electrocardiographic parameters in patients with suspected myocarditis. Eur J Heart Fail.2011;13:398-405.
    13. Baughman KL. Diagnosis of myocarditis:death of Dallas criteria. Circulation. 2006;113:593-595.
    14. Cooper LT, Baughman KL, Feldman AM, Frustaci A, Jessup M, Kuhl U, Levine GN, Narula J, Starling RC, Towbin J, Virmani R. The role of endomyocardial biopsy in the management of cardiovascular disease:a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. J Am Coll Cardiol 2007;50:1914-1931.
    15. Kindermann I, Kindermann M, Kandolf R, Klingel K, Bultmann B, Muller T, Lindinger A, Bohm M. Predictors of outcome in patients with suspected myocarditis. Circulation.2008; 118:639-648.
    16. Skouri HN, Dec GW, Friedrich MG, Cooper LT. Noninvasive imaging in myocarditis. J Am Coll Cardiol.2006;48:2085-2093.
    17. Felker GM, Boehmer JP, Hruban RH, Hutchins GM, Kasper EK, Baughman KL, Hare JM. Echocardiographic findings in fulminant and acute myocarditis. J Am Coll Cardiol.2000;36:227-232.
    18. Mendes LA, Dec GW, Picard MH, Palacios IF, Newell J, Davidoff R. Right ventricular dysfunction:an independent predictor of adverse outcome in patients with myocarditis. Am Heart J.1994;128:301-307
    19. Dec GW, Palacios I, Yasuda T, Fallon JT, Khaw BA, Strauss HW, Haber E. Antimyosin antibody cardiac imaging:its role in the diagnosis of myocarditis. J Am Coll Cardiol.1990; 16:97-104.
    20. Parsai C, O'Hanlon R, Prasad SK, Mohiaddin RH. Diagnostic and prognostic value of cardiovascular magnetic resonance in non-ischaemic cardiomyopathies. J Cardiovasc Magn Reson.2012;14:54.
    21. Childs H, Friedrich MG. Cardiovascular magnetic resonance imaging in myocarditis. Prog Cardiovasc Dis.2011;54:266-275.
    22. Laissy JP, Hyafil F, Feldman LJ, Juliard JM, Schouman-Claeys E, Steg PG, Faraggi M. Differentiating acute myocardial infarction from myocarditis:diagnostic value of early- and delayed-perfusion cardiac MR imaging. Radiology.2005;237:75-82.
    23. Jeserich M, Konstantinides S, Pavlik G, Bode C, Geibel A. Non-invasive imaging in the diagnosis of acute viral myocarditis. Clin Res Cardiol.2009;8:753-763.
    24. Zagrosek A, Wassmuth R, Abdel-Aty H, Rudolph A, Dietz R, Schulz-Menger J. Relation between myocardial edema and myocardial mass during the acute and convalescent phase of myocarditis-a CMR study. J Cardiovasc Magn Reson. 2008;10:19.
    25. Eitel I, Friedrich MG T2-weighted cardiovascular magnetic resonance in acute cardiac disease. J Cardiovasc Magn Reson.2011;13:13.
    26. Rehwald WG, Fieno DS, Chen EL, Kim RJ, Judd RM. Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation.2002; 105:224-9.
    27. Friedrich MG, Strohm O, Schulz-Menger J, Marciniak H, Luft FC, Dietz R. Noninvasive diagnosis of acute myocarditis by contrastenhanced magnetic resonance imaging—response to the author. Circulation.1999;99:459-460.
    28. von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA, Wassmuth R, Greiser A, Schwenke C, Niendorf T, Schulz-Menger J. Myocardial Tl and T2 mapping at 3 T:reference values, influencing factors and implications. J Cardiovasc Magn Reson.2013;15(1):53.
    29. Ferreira VM, Piechnik SK, Dall'Armellina E, Karamitsos TD, Francis JM, Ntusi N, Holloway C, Choudhury RP, Kardos A, Robson MD, Friedrich MG, Neubauer S. T(1) mapping for the diagnosis of acute myocarditis using CMR:comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging. 2013;6(10):1048-58.
    1. Oshinski JN, Delfino JG, Sharma P, Gharib AM, Pettiqrew RI (2010) Cardiovascular magnetic resonance at 3.0 T:current state of the art. J Cardiovasc Magn Reson 12:55.
    2. Wong KKL, Sun Z, Tu J, Worthley SG, Mazumdar J, et al. (2012) Medical image diagnostics based on computer-aided flow analysis using magnetic resonance images. Comput Med Imaging Graph 36:527-541.
    3. Wong KKL, Tu J, Sun Z, Dissanayake DW (2013) Methods in Research and Development of Biomedical Devices. World Scientific Publishing Co., Singapore.196 p.
    4. Ridgway JP (2010) Cardiovascular magnetic resonance physics for clinicians:part I. J Cardiovasc Magn Reson 12:71.
    5. Nelles M, Konig RS, Gieseke J, Guerand-van Battum MM, Kukuk GM, et al. (2010) Dual-source parallel RF transmission for clinical MR imaging of the spine at 3.0 T: intraindividual comparison with conventional single-source transmission. Radiology 257: 743-753.
    6. Schar M, Kozerke S, Fischer SE, Boesiger P (2004) Cardiac SSFP imaging at 3 Tesla. Magn Reson Med 51:799-806.
    7. Kuhl CK, Traber F, Schild HH (2008) Whole-body high-field-strength (3.0-T) MR Imaging in Clinical Practice. Part I. Technical considerations and clinical applications. Radiology 246:675-696.
    8. Wieben O, Francois C, Reeder SB (2008) Cardiac MRI of ischemic heart disease at 3 T: potential and challenges. Eur J Radiol 65:15-28.
    9. Katscher U, Bornert P (2006) Parallel RF transmission in MRI. NMR Biomed 19: 393-400.
    10.Vernickel P, Roschmann P, Findeklee C, Ludeke KM, Leussler Ch, et al. (2007) Eight-channel transmit/receive body MRI coil at 3T. Magn Reson Med 58:381-389.
    11. Setsompop K, Wald LL, Alagappan V, Gagoski B, Hebrank F, et al. (2006) Parallel RF transmission with eight channels at 3 Tesla. Magn Reson Med 56:1163-1171.
    12. Childs AS, Malik SJ, O'Regan DP, Hajnal JV (2013) Impact of number of channels on RF shimming at 3T. MAGMA.doi:10.1007/s10334-012-0360-5.
    13. Willinek WA, Gieseke J, Kukuk GM, Nelles M, Konig R, et al. (2010) Dual-source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0 T:initial clinical experience. Radiology 256:966-975.
    14. Hussain S, Chiribiri A, Ishida M, Morton G, Wiethoff A, et al. (2011) A comparison of single-channel and multi-channel RF transmit coil for SSFP cine imaging at 3 Tesla. J Cardiovasc Magn Reson 13(Suppl 1):O10.
    15. Mueller A, Weisser-Thomas J, Naehle CP, Nelles1 M, Gisekel J, et al. (2010) Clinical CMR at 3.0 Tesla using parallel RF transmission with patient-adaptive B1 shimming: initial experience. J Cardiovasc Magn Reson 12(Suppl 1):O72.
    16. Krishnamurthy R, Pednekar A, Kouwenhoven M, Harvey P, Arena C, et al. (2011) Quantitative Evaluation of Regional RF shimming on a Wide Aperture Dual-Channel Multi-Transmit 3.0T:Implications for cardiac MRI. In:Proceedings of the 19th Annual Meeting of ISMRM, Montreal. (abstract 3353).
    17. Mueller A, Kouwenhoven M, Naehle CP, Gieseke J, Strach K, et al. (2012) Dual-source radiofrequency transmission with patient-adaptive local radiofrequency shimming for 3.0-T cardiac MR imaging:initial experience. Radiology 263:77-85.
    18. Cunningham CH, Pauly JM, Nayak KS (2006) Saturated double-angle method for rapid B1+mapping. Magn Reson Med 55:1326-1333.
    19. Willinek WA, Bayer T, Gieseke J, von Falkenhausen M, Sommer T, et al. (2007) High spatial resolution contrast-enhanced MR angiography of the supraaortic arteries using the quadrature body coil at 3.0T:a feasibility study. Eur Radiol 17:618-625.
    20. Mihara H, Iriguchi N, Ueno S (1998) A method of RF inhomogeneity correction in MR imaging. MAGMA 7:115-120.
    21. Franklin KM, Dale BM, Merkle EM (2008) Improvement in B1-inhomogeneity artifacts in the abdomen at 3T MR imaging using a radiofrequency cushion. J Magn Reson imaging 27:1443-1447.
    22. Zhai Z, De Meester GD, Morich MA, Harvey PR (2007) MR involving high speed coil mode switching between I-channel linear, Q-channel linear, quadrature and anti-quadrature modes. Patent WO2007/124246.
    23. Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, et al. (2001) MR evaluation of ventricular function:true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging—feasibility study. Radiology 219:264-269.
    24. Plein S, Bloomer TN, Ridgway JP, Jones TR, Bainbridge GJ, et al. (2001) Steady-state free precession magnetic resonance imaging of the heart:comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging 14:230-236.
    25. Wong KKL, Kelso RM, Worthley SG, Sanders P, Mazumdar J, et al. (2009) Noninvasive cardiac flow assessment using high speed magnetic resonance fluid motion tracking. PLoS One 4:e5688.
    26. Saremi F, Grizzard JD, Kim RJ (2008) Optimizing cardiac MR imaging:practical remedies for artifacts. Radiographics 28:1161-1187.
    27. Lee VS, Hecht EM, Taouli B, Chen Q, Prince K, et al. (2007) Body and cardiovascular MR imaging at 3.0 T. Radiology 244:692-705.
    28. Kubach MR, Bornstedt A, HombachV, Merkle N, Schar M, et al. (2009) Cardiac phase-specific shimming (CPSS) for SSFP MR cine imaging at 3 T. Phys Med Biol 54: N467-N478.
    29. Wong KKL, Kelso RM, Worthley SG, Sanders P, Mazumdar J, et al. (2009) Medical imaging and processing methods for cardiac flow reconstruction. J Mech Med Biol 9: 1-20.
    30. Caudron J, Fares J, Vivier PH, Lefebvre V, Petitjean C, et al. (2011) Diagnostic accuracy and variability of three semi-quantitative methods for assessing right ventricular systolic function from cardiac MRI in patients with acquired heart disease. Eur Radiol 21: 2111-2120.
    1. Wintersperger BJ, Bauner K, Reeder SB, et al. Cardiac steady-state free precession CINE magnetic resonance imaging at 3.0 tesla:impact of parallel imaging acceleration on volumetric accuracy and signal parameters. Invest Radiol.2006;41(2):141-147.
    2. Plein S, Bloomer TN, Ridgway JP, et al. Steady-state free precession magnetic resonance imaging of the heart:comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging.2001;14(3):230-236.
    3. Michaely HJ, Nael K, Schoenberg SO, et al. Analysis of cardiac function--comparison between 1.5 Tesla and 3.0 Tesla cardiac cine magnetic resonance imaging:preliminary experience. Invest Radiol.2006;41(2):133-140.
    4. Maceira AM, Prasad SK, Khan M, et al. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson.2006;8(3):417-426.
    5. Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol.2003;13(11):2409-2418.
    6. Wieben O, Francois C, Reeder SB. Cardiac MRI of ischemic heart disease at 3 T: potential and challenges. Eur J Radiol.2008;65(1):15-28.
    7. Oshinski JN, Delfino JG, Sharma P, et al. Cardiovascular magnetic resonance at 3.0 T: current state of the art. J Cardiovasc Magn Reson.2010;12:55.
    8. Tang YW, Huang TY, Wu WC. Fast and fully automatic calibration of frequency offset for balanced steady-state free precession cardiovascular magnetic resonance at 3.0 Tesla. J Cardiovasc Magn Reson.2013;15(1):32.
    9. Krishnamurthy R, Pednekar A, Kouwenhoven M,et al. Evaluation of a Subject specific dual-transmit approach for improving B1 field homogeneity in cardiovascular magnetic resonance at 3T. J Cardiovasc Magn Reson.2013;15(1):68.
    10. Nelles M, Konig RS, Gieseke J, et al. Dual-source parallel RF transmission for clinical MR imaging of the spine at 3.0 T:intraindividual comparison with conventional single-source transmission. Radiology.2010;257(3):743-753.
    11. Mueller A, Kouwenhoven M, Naehle CP, et al. Dual-source radiofrequency transmission with patient-adaptive local radiofrequency shimming for 3.0-T cardiac MR imaging: initial experience. Radiology.2012;263(1):77-85.
    12. Vernickel P, Roschmann P, Findeklee C, et al. Eight-channel transmit/receive body MRI coil at 3T. Magn Reson Med.2007;58(2):381-389.
    13. Setsompop K, Wald LL, Alagappan V, et al. Parallel RF transmission with eight channels at 3 Tesla. Magn Reson Med.2006;56(5):1163-1171.
    14. Childs AS, Malik SJ, O'Regan DP, et al. Impact of number of channels on RF shimming at 3T. MAGMA.2013;26(4):401-410.
    15. Hussain S, Chiribiri A, Ishida M, et al. A comparison of single-channel and multi-channel RF transmit coil for SSFP cine imaging at 3 Tesla. J Cardiovasc Magn Reson. 2011;13(Suppl 1):O10.
    16. Jia H, Wang C, Wang G, et al. Impact of 3.0 T Cardiac MR Imaging Using Dual-Source Parallel Radiofrequency Transmission with Patient-Adaptive B1 Shimming. PLoS One. 2013;8(6):e66946.
    17. Weinsaft JW, Cham MD, Janik M, et al. Left ventricular papillary muscles and trabeculae are significant determinants of cardiac MRI volumetric measurements:effects on clinical standards in patients with advanced systolic dysfunction. Int J Cardiol. 2008;126(3):359-365.
    18. Papavassiliu T, Kuhl HP, Schroder M, et al. Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging. Radiology.2005;236(1):57-64.
    19. Bland JM, Altman DG Statistical methods for assessing agreement between two methods of clinical measurement. Lancet.1986;1(8476):307-310.
    20. Bland JM, Altman DG. Comparing methods of measurement:why plotting difference against standard method is misleading. Lancet.1995;346(8982):1085-1087.
    21. Friedrich MG, Sechtem U, Schulz-Menger J, et al. Cardiovascular magnetic resonance in myocarditis:A JACC White Paper. J Am Coll Cardiol.2009;53(17):1475-1487.
    22. Luijnenburg SE, Robbers-Visser D, Moelker A, et al. Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. Int J Cardiovasc Imaging.2010;26(1):57-64.
    23. Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance:a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Circulation.2010;121(22):2462-2508.
    24. Sugeng L, Mor-Avi V, Weinert L, et al. Quantitative assessment of left ventricular size and function:side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation. 2006;114(7):654-661.
    25. Sugeng L, Mor-Avi V, Weinert L, et al. Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc Imaging.2010;3(1):10-18.
    26. Ridgway JP. Cardiovascular magnetic resonance physics for clinicians:part I. J Cardiovasc Magn Reson.2010;12:71.
    27. Ferreira PF, Gatehouse PD, Mohiaddin RH, et al. Cardiovascular magnetic resonance artefacts. J Cardiovasc Magn Reson.2013;15:41.
    28. Nousiainen T, Vanninen E, Jantunen E, et al. Comparison of echocardiography and radionuclide ventriculography in the follow-up of left ventricular systolic function in adult lymphoma patients during doxorubicin therapy. J Intern Med.2001;249(4):297-303.
    29. Moon JC, Lorenz CH, Francis JM, et al. Breath-hold FLASH and FISP cardiovascular MR imaging:left ventricular volume differences and reproducibility. Radiology. 2002;223(3):789-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700