用户名: 密码: 验证码:
骨髓间充质干细胞移植联合培哚普利对大鼠急性心梗后心室重塑的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管在过去的几十年医学技术有了飞跃发展,但急性心肌梗死(AMI)仍然是影响公众健康的主要问题。为降低AMI的死亡率,人们一直做着不懈的努力,CCU的建立、肺动脉球囊漂浮导管对血流动力学的监测、冠状动脉或静脉内溶栓治疗、经皮冠状动脉内介入等再灌注治疗的开展、药物治疗的应用使得近十年来的AMI死亡率有所下降,但仍有近1/3的病人不治而亡。上述治疗能够在一定程度上挽救尚未死亡的心肌,而对已经死亡的心肌是无能为力的。因此,如果损失的心肌数达到一定程度可以发生心室的重塑,或心室重构,包括心室的扩张、梗死区的变薄、非梗死区的心肌肥厚,心室重塑后心力衰竭、室壁瘤的发生率增加,影响预后。
     SAVE研究表明,血管紧张素转换酶抑制剂(ACEI)被认为是治疗AMI的良好药物,在改善AMI生存率。但基础研究发现,对已有心肌肥厚的大鼠,ACEI只能在一定程度上逆转心室重塑,略微减少肥厚心肌的质量。
     干细胞是一种具有自我更新和自我分化的细胞,在医学领域中日益受到重视。心肌坏死后不可逆,能否用干细胞修复损伤心肌?自Orlic首次对急性心梗小鼠进行骨髓干细胞移植后发现,新生的心肌组织占据了68%的病变心肌区,使有活性有功能的心肌代替了坏死心肌。干细胞通过旁分泌作用促进血管生成、抗细胞凋亡,还有直接分化成心肌样细胞的能力。
     基于干细胞的这种生物学特性,本研究探讨了骨髓间充质干细胞(MSC)移植对心梗后心室重塑的影响,尤其是心脏间质的影响,包括胶原、基质金属蛋白酶的变化,并对心室重塑相关的基因表达情况进行了研究。已有研究表明血管紧张素转换酶抑制剂(ACEI)对心室重塑有一定作用,MSC与ACEI在逆转心室重塑方面是否存在协同作用?有必要进一步研究。
     第一部分骨髓间充质干细胞移植联合培哚普利对大鼠急性心梗后基质重塑的影响
     急性心肌梗死后的心室重塑在形态学上发生的改变有心室扩大和非梗死区的延伸,在微观上表现为心肌细胞的凋亡,心肌细胞的肥大,间质胶原含量和基质金属蛋白酶的改变。这种重塑可以导致心功能减退,影响预后。因此,在治疗急性心梗时有必要逆转心室重塑。
     循环和组织局部肾素血管紧张素醛固酮系统的激活能引起心室重塑。用血管紧张素转化酶抑制剂治疗对逆转心室重塑有一定作用。Optimization研究说明血管紧张素转化酶抑制剂(ACEI)治疗急性心肌梗死有效。
     骨髓间充质干细胞(mesenchymal stem cells,MSC)是存在于骨髓微环境中的多能祖细胞,临床研究证明在急性心肌梗死的患者中通过冠脉内注射MSC能够明显改善左心室射血功能。然而,有关MSC移植治疗急性心梗的具体机制仍不是很清楚。本研究的目的在于:探讨MSC移植能否降低急性心梗后的胶原含量,能否减少MMP的表达,与ACEI治疗相比是否存在差异,两者是否存在协同效应?
     材料与方法
     1 MSC的准备
     取实验用的成年雄性SD大鼠,麻醉,消毒,无菌环境下切取大鼠股骨和髂骨,收集后折断,放入无菌离心管中,离心管内预先放置5ml的PBS磷酸盐缓冲溶液,内含7500U肝素钠针剂。将离心管放入超静台内,把含骨片的液体倒入无菌培养皿中,加入DMEM培养液。无菌镊及无菌眼科剪小心刮取骨髓,将混合物移入离心管中,900g,20分钟离心。将上清液缓慢加入淋巴细胞分离液中,900g,25分钟离心。小心吸取中部液体,加入另一管含DMEM的离心管中,900g,25分钟离心。细胞团块用培养液重悬后种植在培养瓶中,放入37℃,5%CO_2培养箱中培养,48小时后换液,洗去未贴壁细胞,贴壁细胞在含20%胎牛血清及青、链霉素双抗的DMEM培养液中培养。每5天换液一次,细胞长满后传代,取第三代细胞移植用。
     2 DAPI标记
     当MSC完全占满培养瓶底时,换用含DAPI(4′6-Diamidino-2-Phenylindole,50μg/ml)培养液培养24小时。
     3大鼠心梗模型的建立
     1.选成年雄性SD大鼠40个,体重200~260g,急性心肌梗死模型建立为左冠状动脉前降支结扎法。
     4 MSC的移植:
     建模成功的40个大鼠随机进入4个处理组:
     对照组(n=10):在心梗建模后1小时,在梗死周边区选3个点,包括心尖、梗死区的左侧和右侧。用微量注射器(针头为24G)将PBS溶液注入心肌内,每点50μl。术后第二天用生理盐水灌胃,每天一次。共6周。
     MSC组(n=10):在心梗建模后1小时,在梗死周边区选3个点,包括心尖、梗死区的左侧和右侧。用微量注射器(针头为24G)将含MSC的PBS溶液注入心肌内,每点50μl。术后第二天用生理盐水灌胃,每天一次。共6周。
     ACEI组(n=10):在心梗建模后1小时,在梗死周边区选3个点,包括心尖、梗死区的左侧和右侧。用微量注射器(针头为24G)将PBS溶液注入心肌内,每点50μl。术后第二天用培哚普利原药灌胃(2mg/kg体重),每天一次。共6周。
     MSC+ACEI组(n=10):在心梗建模后1小时,在梗死周边区选3个点,包括心尖、梗死区的左侧和右侧。用微量注射器(针头为24G)将含MSC的PBS溶液注入心肌内,每点50μl。术后第二天用培哚普利原药灌胃(2mg/kg体重),每天一次。共6周。
     5组织学处理
     组织标本用4%的PBS多聚甲醛固定后,用石蜡包埋,切成10μm厚的切片,做Masson’s三色染色。纤维组织染成蓝颜色。用液氮冷冻固定(组织学用)后,切成4μm厚的切片,直接在荧光显微镜下观察。
     6 Western Blotting
     测定MMP2,MMP9蛋白表达水平,一抗结合((用5%脱脂奶粉TBS-T溶液配,MMP2,MMP9滴度为1:200;β-actin滴度为1:1000)
     7 RT-PCR
     测定MMP2,MMP9、TIMP1mRNA表达水平。
     8统计分析
     计量资料用均数±标准差表示,四组间差异的总体比较采用单因素方差分析,组间两两比较采用LSD法。以P<0.05为显著差异。
     结果
     1心脏胶原含量的变化
     Masson’s三色染色显示在缺血心肌区域存在胶原,呈蓝色。MSC+ACEI组、ACEI组、MSC组梗死区胶原面积含量低于PBS组。
     2心肌梗死区MMP2和MMP9的蛋白表达水平改变(Western Blotting)
     PBS组MMP2和MMP9在梗死区组织高表达。在Western Blotting显示72kDa.和92 kDa条带的位置分别对应于MMP2和MMP9。MSC+ACEI组和ACEI组MMP2蛋白表达降低,两组间差异不明显。MSC组的MMP2表达有降低趋势,但未达到统计学差异。MSC+ACEI组、ACEI组、MSC组梗死区的MMP9蛋白表达降低。
     3 RT-PCR测定心肌梗死区MMP2,MMP9、TIMP1mRNA表达水平。
     统计分析表明3个治疗组的MMP2,MMP9的mRNA表达水平与对照组相比有差异。MSC+ACEI,ACEI,MSC和PBS组的灰度比值MMP2/β-actin分别为0.43±0.20,0.45±0.19,0.46±0.14,和0.78±0.22(P<0.05),MMP9/β-actin的灰度比值分别为0.40±0.13,0.51±0.10,0.48±0.09,and 0.70±0.20(P<0.05)。而各组TIMP1的mRNA水平无明显改变。MSC组和ACEI组都能降低MMP2和MMP9的表达。
     结论
     血管紧张素转换酶抑制剂培哚普利能减少心梗大鼠心脏基质的重塑,降低MMP2,MMP9表达。
     本研究发现,骨髓间充质干细胞可降低基质金属蛋白酶表达,有利于改善心室重塑。其机制有待进一步探讨。
     骨髓间充质干细胞移植联合血管紧张素转换酶抑制剂能进一步减少MMP9表达,对梗死后心室重塑的治疗有潜在的协同效应。
     第二部分骨髓间充质干细胞与培哚普利对晚期心梗后心室重塑相关基因表达的影响
     骨髓间充质干细胞移植除了对急性心肌梗死后胶原、基质金属蛋白酶有影响外,对心室重塑的其他方面是否有影响。急性心肌梗死后,如果梗死面积比较大,可使心室舒张末期的压力负荷和容量负荷增加,出现梗死区的变薄和非梗死区的肥厚,心室腔径扩大,还能启动再激活生长因子刺激的即时-早期基因反应,促使蛋白质合成加速,而出现胎儿肌肉特异性基因产物的表达,如c-myc。MSC移植能够使心室腔径发生明显改变吗?对胎儿肌肉特异性基因产物的表达又会产生何种影响?体外研究发现,骨髓来源的基质细胞可不通过与血管内皮整合,可直接通过旁分泌多种促血管生成的因子,如VEGF,从而有利于侧支循环的建立。在急性心梗的缺氧微环境中,骨髓来源的基质细胞分泌VEGF增多。那么,在陈旧性心梗中,MSC能否继续分泌VEGF?骨髓间充质干细胞移植对急性心肌梗死后胶原、基质金属蛋白酶有影响,对调控胶原及纤维化过程的TGFβ-Smad通路有无变化?
     材料与方法:
     1模型制备:同第一部分。
     2细胞准备:同第一部分。
     3细胞标记:同第一部分。
     4细胞回输:同第一部分。
     5药物组给药方法:同第一部分。
     6实验分组:同第一部分。
     7超声心动图检查:采用GE公司HDE5000超声诊断仪,经胸高频超声探头频率12MHz。
     图像采集:心梗后6周行超声心动图检查。大鼠称重,4%水合氯醛溶液按0.8ml/100g体重腹腔注射麻醉,大鼠仰卧,探头置心前区,M超测量左室舒张末期内径、收缩末期内径。
     8 Western Blotting
     总蛋白提取及定量基本同第一部分。
     一抗结合(用5%脱脂奶粉TBS-T溶液配,VEGF,TGFβ1滴度为1:200;β-actin滴度为1:1000)低温过夜。
     9 RT-PCR:
     组织总RNA提取,RNA定量,逆转录:同第一部分。PCR引物为c-myc、Smad2。
     结果
     各组大鼠心梗6周后超声心动图M超测得左室舒张末期容积(LVIDd),左室收缩末期容积(LVIDs),4组间LVIDd,LVIDs无明显差异,MSC+ACEI组LVIDd最小,但统计学差异不明显。
     大鼠心梗后6周后MSC+ACEI组、ACEI组及MSC组梗死区VEGF蛋白表达水平略高于PBS组,但未达统计学差异。
     非梗死区c-myc表达高低,与非梗死区心肌代偿性增生程度有关,MSC+ACEI组、ACEI组及MSC组非梗死区c-mycmRNA表达水平低于PBS组,但未达到统计学差异。
     TGFβ、Smads表达水平与纤维化程度有关,TGFβ、Smads表达水平增高,纤维化程度程度较重。大鼠心梗后6周后MSC+ACEI组、ACEI组及MSC组梗死区TGFβ蛋白表达水平略低于PBS组,各组Smad2的mRNA表达水平无明显差异。
     结论
     本研究的治疗组非梗死区心肌组织c-mycmRNA表达有降低趋势,可能有利于抑制心梗后非梗死区的肥厚,减小心梗厚心室重塑。心梗后移植骨髓间充质干细胞或于ACEI药物治疗,有可能部分减小了心梗后心室超负荷状态,从而降低了原癌基因的表达。
     大鼠心梗后6周后梗死区VEGF蛋白表达差异不明显。
     大鼠心梗6周后左心室腔大小,尤其是左室舒张末期内径与对照组相比有减小趋势,但未达统计学差异。
     细胞移植后可能通过降低炎症反应,减少了TGF-beta的表达,从而减少了梗死区的纤维化程度。
Despite enormous progress in the medical technology in the past decade, acute myocardial infarction(AMI) remains the major cardiovascular disease which affect public health.To reduce the mortality rate of AMI,people make afforts to study, with the establishment of CCU.the technique for placing pulmonary artery catheter to hemodynamic monitoring .thrombolytic therapy,percutaneous transluminal coronary angioplasty ,multidrug therapy,but there are still approximately one thirds patients died from AMI.Althrough those therapy might save the myocardical cell, but in vain for myocardical cell died.When the myocardical infarction occured ,the heart adapts through structural changes ,called remodeling ,which include ventricular dilation ,compensatory opposite ventricular wall hypertrophies,and myocardium would continue to deteriorate, and affect the prognosis .
    The Survival and Ventricular Enlargement trial(SAVE) show,angiotensin-converting enzyme(ACEI) could improve survival.But fundamental study display that ACEI only partial improve ventricular remodeling.
    Stem cell is a kind of cell that has self-renewal and/or differentiation properties.and become importance in regenerative medicine.Cardiiomyocyte injury is irreversible after infarction,does it possible to repalace myocardial scar with functional tissue?In vitro studies in animals show myoblasts merge into myotubes in the scar. Marrow stromal cells(MSCs) augment collateral and anti-apotosis through release of several cytokine.
    On the basis of the property of the stem cell,We study the affection of bone marrow mesenchymal stem cell transplantiation on infarction remodeling, especially for matrix remolding ,include collagen and matrix metalloproteinase,we also explore the expression of gene
    relate to arteriogensis and hypertrophy in myocardial infarction.In this study,we compare the effection on attenuate infarction remodeling between MSC and ACEI.
    Part one Bone marrow mesenchymal stem cell transplantiation combined with perindopril treatment attenuates infarction matrix remodelling in a rat model of acute myocardial infarction
    Ventricular remodeling after acute myocardial infarction include the topography change ,for example, ventricular enlargement and lengthening of the noncontractile region; in the view of microstructure , include myocardial apoptosis , myocardial hypertrophy .increasing content of collagen and expression of MMP . This remodelling can lead to decline of ventricular function and advesely affect the prognosis for survival. Thus ,reversing the procedure of ventricular remodelling would be desirable for the treatment of AMI.
    Activation of the circulating and tissure rennin-angiotensin-aldosterone system(RAAS) could lead to ventricular remodelling.The therapeutic use of ACEI is beneficial for reducing ventricular remodeling. Optimization studies demonstrated that angiotensin-converting enzyme inhibitors attenuate ventricular remodelling after acute myocardial infarction.
    MSCs are pluripotent stem cells within the marrow microenvironment. Clinical studies showed that MSC significantly improved left ventricular function after intracoronary injection of patient with AMI.However,little information is available about the infarction remodelling after bone marrow mesenchymal stem cell transplantiation .The purpose of this study was to investigate: (1) whether transplantation of MSC could reduce the fibrillar collagen content the expression of MMP as compared to treatment of ACEI; (2)whether transplantation of MSC could enhance the beneficial effect of ACEI in reducing ventricular remodelling.
    MATERIALS AND METHODS 1 Preparation of MSC
    The experimental rats were anesthetized with intraperitonneal injection of 4% chloral hydrate solution (1 ml/100g) .Tibia and thigh bone were collected and pulverized,then transferred to a sterile tube and mixed with 5 ml phosphate-buffered saline (PBS) solution containing 7500 U heparin ,then added into Dulbcco's Modifed Eagle Medium
    (DMEM). The tube was centrifuged at 900g for 20 min .The cell suspension was loaded on Percoll solution. The cells were centrifuged at 900g for 25 min. The middle one third of total volume were transferred into a tube containing DMEM, and centrifuged at 900g for 25 min.The cell pellet was then resuspended in culture medium and seeded in culture flasks,and maintained at 37℃ in 5% CO_2 humidified air..After washing off the unattached cells during the period of 48 hours ,the adherent cells were cultured in DMEM containing 20% fetal bovine serum and antibiotics .The medium was changed once every 5 d.
    2 DAPI labelling
    When MSCs completely occupied the flask bottom ,they were incubated in medium containing DAPI (4'6-Diamidino-2-Phenylindole, 50 μg/ml, Sigma, USA) for 24 h .
    3 AMI model were made by ligation of the left anterior descending coronary artery. Forty rats were divided into four groups: control group, MSC group, ACEI group, MSC+ACEI
    group.. PBS was injected into control group and ACEI group. Perindopril was administered( p.o. 2mg/kg body weight) to ACEI group ,and MSC+ACEI group.
    PBS medium containing MSC (total 10~7 cells, 3 sites×0.05 ml per site ) or medium alone was injected into the left anterior descending coronary artery risk area (ischemic border) with a 24-gauge needle. Six weeks after MSC implantation,the rats were killed and tissure from ischemic area were collected.
    4 Histology
    Tissure samples from the infraction area were collected at 6 weeks after transplantation and fixed in 4% PBS formaldehyde for histological study. The samples were embedded and cut to yield 10-μm thick sections and stained with meliorative Masson's trichome stain .Interstitial fibrosis was stained blue. Some samples were frozened and cut into 4-μm thick sections.then observed under the fluorescence microscopy.
    5 Western Blotting
    primary antibodies diluted in TBST (1:200 for MMP2,MMP9; 1:1000 for β-actin).
    6 RT-PCR
    Detection expression of MMP2,MMP9 and TIMP1 mRNA
    7 Statistical Analysis
    Numerical data presented as mean ± SD.Comparisons among groups were performed with one-way ANOVA and LSD comparison. Statistical significance was accepted while the null hypothesis was rejected at P value<0.05.
    RESULTS
    Masson's trichrome staining revealed that collagen(blue) existed in the ischemic area. The area of collagen was decreased in MSC+ACEI group ACEI group MSC group compared with PBS group.
    MMP2, MMP9 were highly expressed in the infraction area in the PBS group. The Western blot for MMP2, MMP9 showed the band of 72 kDa. and 92 kDa.The band of 72kDa was barely seen in the MSC +ACEI group.MMP2 Expression was also reduced by ACEI. MSC, ACEI and MSC +ACEI lowered MMP9 expression.
    The PCR products of MMP2.MMP9 and TIMP1 were observed at the expected locations on agarose gels. Statistical analysis indicated that the expression of MMP2,MMP9mRNA in 3 treatment groups was significant different from that in the control group.In the MSC+ACEI,ACEI,MSC and PBS groups,the densitometry ratio of MMP2/β-actin was 0.43 ± 0.20, 0.45 ±0.19,0.46 ±0.14 and 0.78 ± 0.22,respectively,P<0.05), the densitometry ratio of MMP9/β-actin was 0.40 ± 0.13,0.51 ± 0.10, 0.48 ± 0.09,and 0.70 ± 0.20 .respectively, P<0.05).However, no significant difference was detected in the expression of TIMP1mRNA among the 4 groups.
    Conclusion
    Both ACEI and MSC could attenuates infarction matrix remodling in a rat model of AMI by reducing the expression of mRNA of MMP2 MMP9,ACEI could enhance the effect of MSC .
    Part Two
    The Effection of Bone Marrow Mesenchymal Stem Cell Transplantiation Combine Perindopril Treatment on Gene Expression Associate With Remodeling in a Rat Model of Acute Myocardial Infarction
    This study was performed to evalute the effection of bone marrow mesenchymal stem cell and ACEI on the expression of oncogenne in noninfaction tissure,arteriogenic cytokine genes in infaction tissure and TGFβ-smad pathway n infaction tissure during acute myocardial infarction.
    Methods
    As described at the first part of the paper, 40 rats were divided into four groups:group control,group MSC,group ACEI,group MSC+ACEI.Bone marrow stem cell derived rat were injected immediately into a zone made ischemic by coronary artery ligation in group MSC and group MSC+ACEI . Phosphate-buffered saline (PBS) were injected in Group control. Perindopril was administered p.o.in group ACEI and group MSC+ACEI. Six weeks after implantation,rat were killed and sample of heart were collected, and echo were performed to evaluate the left ventricular geometry before killed the rats.Western blot was employed to evaluated the protein expression of VEGF and TGFβ, the transcriptional level of c-myc and smad2 was detected by reverse transcriptase PCR(RT-PCR) analysis.
    Result
    The transcriptional level of c-myc mRNA in noninfarction zone increased in PBS group,but seems to no significance. The expression of TGFβ also increased in PBS group.While smad2 seems to no change.There were no significant difference of left ventricular geometry by echo examination and the expression of VEGF among 4 groups by western blot six months after acute myocardial infarction.
    Conclusion
    Both MSC and ACEI could reduce the expression of TGFβ,therefore,reduce the fibrosis in infarction area.
引文
1. American Heart Association:Heart and Stroke Facts:1996Statistical Supplement.Dallas,American Heart Association, 1996,pp. 1-23.
    2. Rentrop,K.P.:Restoration of anterograde flow in acute myocardial infarction :The first 15 years.J.Am.Coll.Cardiol.25:1S, 1995.
    3. Antman,E.,Lau,J.,Kupelttick,B., et al .:A comparison of results of recta-analysis of randomized eonbtrol trails and recommendations of clinical experts.JAMA 268:240, 1992.
    4. Yusuf, S.,Wittes,J.,and Friedman ,L.:Overview of results of randomized clinical trials in heart disease. Ⅰ. Treatments following myocardial infarction.JAMA 260:2088,1988.
    5.Braunwald主编,陈灏珠 主泽 心脏病学(第5版).北京:人民卫生出版社,2000,1073-1142.
    6. Pfeffer, M.A.,Braunwald, E.,Moye,L.A.,et al.:Effect of eaptopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction.N.Engl.J.Med.327: 669,1992.
    7. Vaughan,D.E.,and Pfeffer, M.A.:Ventricular remodeling following myocardial infarction and angiotensin-converting enzyme and ACE inhibitors.In Fuster, V.,Ross,R.,and Topol,E.J.(eds) :Atherosclerosis and Coronary Artery Disease .Philadelphia,Lippincott-Raven, 1996,pp. 1193-1205.
    8. Pfeffer, M.A.:Left ventricular remolding after acute myocardial infarction.Annu.Rev.Med.46:455,1995.
    9. Pfeffer, M.:ACE inhibition in acute myocardial infarction.N.Engl.J.Med.332:118,1995.
    10. Pfeffer, J.M., Pfeffer, M.A.,and Braunwald,E.:Influence of chronic captopril therapy on the infracted left ventricle of the rat.Circ.Res.57:84,1985.
    11. Kφber, L.,Torp-Pedersen,C.,Carlsen,J.E.,et al.:A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction .N.Engl.J.Med.333:1670,1995.
    12. Chinese Cardiac Study Collaborative Group:Oral captopril versus placebo among 13,634 patients with suspected myocardial infarction:Interim report from the Chinese Cardiac Study(CCS-1).Lancet 345:686,1995.
    13. Swedberg,K.,Held,P.,Kjekshus,J.,et al.:Effects of early administration of enalapril on mortality in patients with acute myocardial infarction :Results of the Cooperative North Scandinavian Enalapril Survival Study Ⅱ (CONSENSSUS Ⅱ). N. Eng. J. Med. 327: 678, 1992.
    14. Latini,R.,Maggioni,A.P.,Flather, M.,et al.:"ACE-inhibitor use in patients with myocardial infarction ":Summary of evidence from clinical trials.Circulation.32:3132,1995.
    15. Rutherford, J.D., Pfeffer, M.A.,Moye,L.A.,et al.:Effects of captopril on ischemic events after myocardial infarction:Results of the Survival and Ventricular Enlargement Trial.Circulation 90:1731,1994.
    16. Tetsutaro Tamura, Suleman Said, Jennifer Harris et al. Reverse Remodeling of Cardiac Myocyte Hypertrophy in Hypertension and Failure by Targeting of the Renin-Angiotensin System. Circulation. 2000; 102:253.
    17.Ruth Kirschstein等主编 陈英 原林待主泽 干细胞研究-进展与未来.北京:人民卫生出版社,2003,1,159.
    18. Orlic D,Kajstura J,Chimenti S,et al.Bone marrow cells regenerate infracted myocardium.Nature,2001,410:701-705.
    19.马爱群胡大一.心血管病学(供研究生用).北京:人民卫生出版社,2005,74-86
    20. Moiler ,J.E., Dahlstrom, U., Gotzsche ,O. , Lahiri ,A., Skagen ,K., Andersen, G.S., Egstrup ,K.,2004. OPTIMAAL Study Group Effects of losartan and captopril on left ventricular systolic and diastolic function after acute myocardial infarction: results of the Optimal Trial in Myocardial Infarction with Angiotensin Ⅱ Antagonist Losartan (OPTIMAAL) echocardiographic substudy. Am Heart J, 147(3):494-501.
    21. Pittenger, M.F.,Mackay, A.M.,Beck ,S.C., Jaiswal, R.K.,Dougls, R.,Mosca ,J.D.,Moorman MA,Simonetti DW, Craig S,Marshak DR. ,1999.Multilineage potential of adult human mesenchymal stem cells. Science,284:143-147.
    22. Strauer, B.E.,Brehm ,M.,Zeus, T.,Gattermann, N.,Hernandez, A.,Sorg ,R.V.,Kogler, G.,Wernet, P.,2001. Intracoronary, human autologus stem cell transplantation for myocardial regeneration following myocardial infarction. Dtseh Med Wochenschr ,24; 126(34-35):932-8(in German).
    23.杨跃进,唐熠达,张沛,等.不同剂量卡维地洛防止大鼠心肌梗死左室重构的研究[J].中华医学杂志,2001,81:927-930.
    24. Bodh I.Ventricular remodeling after infarction and the extracellular collagen matrix:When is enough enough [J].Circulation,2003,108:1395.
    25.李宾公,曾秋棠,晏凯利.粒细胞集落刺激因子、辛伐他汀合用治疗大鼠急性心肌梗死观察.中国现代医学杂志,2004,19:65-67.
    26.杨跃进,张沛,阮英茆,等.氯沙坦、依那普利及其合用防止大鼠急性心肌梗死左室重塑作用的对比研究.中华心血管病杂志,2001,29:361-363.
    27.温铭杰,刘冰,孙丽翠,祁雅惠.人VEGF_(165)和bFGF基因联合治疗大鼠急性心肌梗死.首都医科大学学报,2006,27:627-630.
    28.李朋,刘正湘.人参皂苷Rb1对急性心肌梗死大鼠心室重构的影响实用心脑肺血管病杂志,2006,14:118-121.
    29.牛丽丽,曹丰,郑敏,等.同种异体移植骨髓间充质干细胞治疗大鼠心肌梗死.中华内科杂志,2004,43:186-190.
    30.刘宏斌,边素艳,杨庭树,等.卡维地洛对大鼠急性心肌梗死后胶原网络重构的影响.中国危重病急救医学,2005:17:537-540.
    31.余锦华,石北源,杨维权编著.概率论与数理统计.广州:中山大学出版社,2000,3.471-472.
    32.王建生 朱俐冰.临床科研中随机方法的应用.Journal of gansu college of tradiyional Chinese medicine 2000,17:60-62.
    33.李甘地主编 组织病理技术(北京)人民卫生出版社2002年9月第一版 5-7
    34.吴秀山主编 信号调控与心脏发育 北京:化学工业出版社,2006,6 374-389
    35. Mujumdar ,V.S.,Tyagi,S.C., 1999.Temporal regulation of extracellular matrix components in transition from compensatory hypertrophy to decompensatory heart failure.J Hypertens, 17:261-270.
    36. Garcia , R.A., Brown, K.L., Pavelec,R.S., Go,K.V., Covell ,J.W., Villarreal, EJ., 2005.Abnormal cardiac wall motion and early matrix metalloproteinase activity. Am J Physiol Heart Circ Physiol, 288(3):H1080-7.
    37. Milicic D. ACE inhibitors and angiotensin Ⅱ receptor antagonists in acute coronary syndrome.Acta Med Croatica. 2004;58(2): 129-34.
    38.余振球,马长生,赵连友,洪昭光主编.实用高血压学.(第二版)北京:科学出版社,2000.552-560
    39.高修仁,彭龙云,麦炜颐,郑振声,陈红,段大跃.高血压大鼠心肌中MMP-2的蛋白表 达及其RAS阻断后的变化.中山大学学报(医学科学版),2003,1
    40. Papadopoulos D.P, Economou E.V, Makris T.K, Kapetanios K.J, Moyssakis, I., Votteas V.E, Toutouzas P.K., 2004.Effect of angiotensin-converting enzyme inhibitor on collagenolytic enzyme activity in patients with acute myocardial infarction. Drugs Exp Clin Res,30(2):55-65.
    41. Reinhardt ,D., Sigusch, H.H., Hensse , J., Tyagi, S.C., Korfer, R., Figulla ,H.R., 2002. Cardiac remodelling in end stage heart failure: upregulation of matrix metalloproteinase (MMP) irrespective of the underlying disease, and evidence for a direct inhibitory effect of ACE inhibitors on MMP. Heart,88(5):525-30.
    42. Ikonomidis ,J.S., Hendrick ,J.W., Parkhurst ,A.M., Herron ,A.R., Escobar ,P.G., Dowdy ,K.B., Stroud ,R.E., Hapke ,E., Zile ,M.R., Spinale ,FG., 2005. Accelerated LV remodeling after myocardial infarction in TIMP-1-deficient mice: effects of exogenous MMP inhibition.Am J Physiol Heart Circ Physiol,288(1):H149-58.
    43. Roten ,L.,Nemoto, S.,Simsic, J., Coker ,M.L.,Rao, V.,Baicu, S.,Defreyte, G.,Soloway ,P.J.,Zile, M.R.,Spinale ,F.G.,2000.Effects of gene deletion of the tissue inhibitor of the matrix metalloprotemase-type 1(TIMP1) on left ventricular geometry and function in mice.J Mol Cell Cardiol, 32:109-120.
    44. Papadopoulos D.P, Moyssakis, I., Makris T.K. , Poulakou ,M., Stavroulakis ,G., Perrea ,D., Votteas ,V.E., 2005.Clinical significance of matrix metalloproteinases activity in acute myocardial infarction.Eur Cytokine Netw, 16(2):152-60.
    45.顾水明,吴宗贵,魏盟等.大鼠急性心肌梗死后心室重构进展中基质金属蛋白酶活性的变化.上海医学.2004,27:670-673.
    46. Yang ,L.X.,Zhu ,S.J.,Yang, Y.J.,Guo, C.M.,Qi, E,Wei, L.,Shi, Y.K.,Wang ,Y.,Ren, L.,2004.Tumor necrosis factor alpha and myocardial matrix metalloproteinases in left ventricular remodeling Zhonghua Nei Ke Za Zhi,43(11):828-31(in Chinese).
    47. Xie, Z., Singh, M., Singh, K., 2004 .Differential regulation of matrix metalloproteinase-2 and -9 expression and activity in adult rat cardiac fibroblasts in response to interleukin-1beta. J Biol Chem, 17;279(38):39513-9. Epub 2004 Jul 21.
    48. Xu ,X., Xu, Z., Xu, Y., Cui ,G., 2005 .Effects of mesenchymal stem cell transplantation on extracellular matrix after myocardial infarction in rats. Coron Artery Dis,16(4):245-55.
    49. Fedak, P.W., Szmitko ,P.E., Weisel, R.D., Altamentova ,S,M., Nili ,N., Ohno, N., Verma, S., Fazel, S., Strauss, B.H., Li, R.K.,2005. Cell transplantation preserves matrix homeostasis: a novel paracrine mechanism. Virchows Arch, 14:1-11
    1.Braunwald主编,陈灏珠 主译 心脏病学(第5版).北京:人民卫生出版社,2000,368.
    2. T.Kinnarird,E.Stabile,M.S.Burnett et al.Marrow-Derived Stabile Cells Express Genes Encoding a Broad Spectrum of Arteriogenic Cytikines and Promote In Vitro and In Vivo Arteriogenesis Through Paracrine Mechanisms.Circ Res.2004;94:678-685.
    3.马爱群 胡大一.心血管病学(供研究生用).北京:人民卫生出版社,2005,74-86
    4. Fishbein MC,Maclean D,Maroko PR:The histologic evolution of myocardial infarction.Chest 1978;73:843-849
    5. Weisman HF, Bush DE,Mannisi JA,Weisfeldt ML,Healy B:Cellular mechanisms of myocardial infarct expansion.Circulation 1988;78:186-201
    6. Vracko R,Thorning D,Frederickson RG:Connective tissue cells in healing rat myocardium.Am J Pathol 1989; 134:993-1006
    7. Weiss JL,Bulkley BH,Hutchins GR,Mason SJ:Two-dimensional echocardiographic recognition of myocardial injury in man:Comparison with postmortem studies.Circulation 1981;63:401-408
    8. Voller H,Dietz R. Left ventricular remodeling: pathophysiological mechanisms and therapeutic recommendations.Z Kardiol. 1999 Dec;88(12):982-90.
    9.郭乔楠 黑砚 陈意生 严重烧伤后大鼠心肌原癌基囚c-fos、c-myc的表达.中华烧伤杂志 2001;17:42-45.
    10. Dang CV. c-myc oncoproteins function. Biol Biophys Acta, 1991,1072:103-113.
    11.马爱群 胡大一 主编.心血管病学(供研究生用).北京:人民卫生出版社,2005.78.
    12.詹启敏 分子肿瘤学.北京:人民卫生出版社,2005,210-215
    13. Shinohara K. The expression and the role of vascular endothelial growth factor (VEGF) in human normal and myocardial infarcted heart.Hokkaido Igaku Zasshi. 1994 Jul;69(4):978-93.
    14. Chen Wei ,Fu Xiaobing,Sheng Zhiyong.Review of current progress in the structure and function of Smad proteins.Chinese Medical Journal 2002; 115(3):446-450.
    15. Thompson NL,Bazoberry F, Speir EH et al. Transforming growth factor beta-1 in acute myocardial infarction in rats.Growth Factors. 1988; 1 (1):91-9.
    16. Hao J,Ju H,Zhao S,et al.Elevation of expression of Smads2,3,4,decorin and TGF-beta in the chronic phase of myocardial infarction scar healing.J Mol Cell Cardiol 1999 Mar;31(3):667-78
    17. Nobuyuki T, Angelino C,Nicholas J,et al.Hypertrophic stimuli induce transforming growth factor-β_1 expression in rat ventricular myocytes.J Clin Invest. 1994,94;1470-1476
    18. Fisher, Steven A,Marlene A, et al.Norepinephrine and ANGⅡ stimulate secretion of TGF-beta by neonatal rat cardiac fibroblasts in vitro. Am J Physiol. 1995, 268:c910-c917
    19. Schluter KD, Zhou XJ, Piper HM. Induction of hypertrophic responsiveness to isoproterenol by TGF-beta in adult rat cardiomyocytes. Am J Physiol 1995 Nov;269(5Pt 1):C1311-6
    20.郭倩玉,王佩显,杜卫京,肖广辉.卡托普利和氯沙坦对白发性高血压大鼠TGF-β1表达的影响.天津医药.2005 Vol.33 No.10
    1. Limbourg FP, Ringes-Lichtenberg S,Schaefer A et al. Haematopoietic stem cells improve cardiac function after infarction without permanent cardiac engraftment.Eur J Heart Fail. 2005 Aug;7(5):722-9.
    2. Yoshioka T, Ageyama N,Shibata H et al. Repair of infarcted myocardium mediated by transplanted bone marrow-derived CD34+ stem ceils in a nonhuman primate model.Stem Cell. 2005 Mar;23(3):355-64.
    3. Xu HX,Li GS,Jiang H et al. Implantation of BM cells transfected with phVEGF165 enhances functional improvement of the infarcted heart.Cytotherapy. 2004;6(3):204-11.
    4. Kawamoto A,Murayama T, Kusano K et al. Synergistic effect of bone marrow mobilization and vascular endothelial growth factor-2 gene therapy in myocardial ischemia.Circulation. 2004 Sep 14;110(11): 1398-405.
    5.詹启敏 主编.分子肿瘤学.北京:人民卫生出版,2005,210-213.
    6. Hiasa K, Egashira K, Kitamoto S et al. Bone marrow mononuclear cell therapy limits myocardial infarct size through vascular endothelial growth factor.Basic Res Cardiol. 2004 May;99(3): 165-72.
    7. Liu Y, Guo J,Zhang P et al. Bone marrow mononuclear cell transplantation into heart elevates the expression of angiogenic factors.Microvasc Res. 2004 Nov;68(3): 156-60.
    8. Tang YL,Tang Y, Zhang YC et al. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector.J Am Coll Cardiol. 2005 Oct 4;46(7):1339-50.
    9.吴秀山.心脏发育概论.北京:科学出版社,2006,240-241.
    10. Li TS,Hayashi M,I to H et al. Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-beta-preprogrammed bone marrow stem cells.Circulation. 2005 May 17;111(19):2438-45.
    11. Hayashi M,Li TS,Ito H et al. Comparison of intramyocardial and intravenous routes of delivering bone marrow cells for the treatment of ischemic heart disease: an experimental study.Cell Transplant. 2004;13(6):639-47.
    12. Nagaya N,Fujii T, Iwase T et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis.Am J Physiol Heart Circ Physiol. 2004 Dec;287(6):H2670-6.
    13.张瑞宏,李为民,井玲等.骨髓干细胞不同移植途径对急性心肌梗死大鼠心功能的影响.中国临床康复.2006,6;10(21):34-36.
    14. Strauer BE,Brehm M,Zeus T, Gattermann N,Hernandez A,Sorg RV,Kogler G, Wernet P. Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction.Dtsch Med Wochenschr. 2001 Aug 24;126(34-35):932-8.
    15. Zeus T,Brehm M,Strauer BE. Potentials and limitations of stem cell therapy in myocardial disease. Z Kardiol. 2005;94 Suppl 4:IV/100-01.
    16. Wollert KC,Mever GP,Lotz J et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial.Lancet. 2004 Jul 10-16;364(9429): 141-8.
    17. Dobert N,Britten M,Assmus B,Berner U,Menzel C et al. Transplantation of progenitor cells after reperfused acute myocardial infarction: evaluation of perfusion and myocardial viability with FDG-PET and thallium SPECT.Eur J Nucl Med Mol Imaging.2004 Aug:31(8): 1146-51.
    18. Chen SL,Fang WW, Ye F et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction.Am J Cardiol. 2004 Jul l;94(1):92-5.
    19. Bartunek J, Vanderheyden M,Vandekerckhove B et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety.Circulation.2005 Aug 30; 112(9 Suppl):I178-83.
    20. Schaefer A,Meyer GP,Fuchs M et al. Impact of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: results from the BOOST trial Eur Heart J. 2006 Apr;27(8):929-35. Epub 2006 Mar
    21. Janssens S,Dubois C,Bogaert J et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial.Lancet. 2006 Jan 14;367(9505):113-21.
    22. Tendera M, Wojakowski W. Clinical trials using autologous bone marrow and peripheral blood-derived progenitor cells in patients with acute myocardial infarction.Folia Histochem Cytobiol. 2005;43(4):233-5.
    23. Beltrami CA,Finato N, Rocco M,et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans.Circulation 1994;89:151-63.
    24. Steen R,Morkrid L, Tjonfjord GE, Egeland T.c-kit Ligand combined with GM-CSF and/or IL-3 can expand CD34+ hematopoietic progenitor subsets for several weeks in vitro.Stem Cells 1994;12:214-24.
    25. Alison MR, Poulsom R,Forbes S.Wright NA. An introduction to stem cells. J Pathol 2002;197:419-23.
    26. Penicka M,Widimsky P.Kobylka P,Kozak T, Lang O.Early tissue distribution of bone marrow mononuclear cells after transcoronary transplantation in a patient with acute myocardial infarction.Circulation 2005; 112:e63-e65.
    27. Geng YJ.Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure.Ann N Y Acad Sci2003;1010:687-97.
    28. Nygren JM, Jovinge S,Breitbach M,et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation.Nat Med 2004; 10:494-501.
    29. Murry CE, Soonpaa MH, Reinecke H,et al.Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts.Nature 2004;428:664-8.
    30. Ketil Lunde,Svein Solheim, Svend Aakhus,et al.intracoronary injection of mononuclear bone marrow ceils in acute myocardial infarction.The new England journal of medicine.2006;355 1199-1209.
    31. Meyer GP, Wollert KC,Lotz J et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial.Circulation. 2006 Mar 14;113(10):1287-94.
    32.孟玲,刘国树,高艳红,李艳华,裴雪涛.骨髓间充质干细胞的体外趋化与单核细胞趋化蛋白1的作用.中国临床康复,2005 Vol 9.No 19.68-70.
    33. Britten MB,Abolmaali ND, Assmus B et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging.Circulation. 2003 Nov 4; 108(18):2212-8.
    34.胡大一 马长生 主编 心脏病学实践2005 北京:人民卫生出版社,2005,102-107
    35. Ohtsuka M,Takano H,Zou Y et al. Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization.FASEB J. 2004 May;18(7):851-3. Epub 2004 Mar 4.
    36. Zohlnhofer D,Ott I,Mehilli J et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial.JAMA. 2006 Mar 1 ;295(9): 1003-10.
    37. Ripa RS,Jorgensen E,Wang Y et al. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial.Circulation. 2006 Apr 25;113(16): 1983-92.
    38. Steinwender C,Hofmannn R,Kammler J et al. Effects of peripheral blood stem cell mobilization with granulocyte-colony stimulating factor and their transcoronary transplantation after primary stent implantation for acute myocardial infarction.Am Heart J. 2006 Jan; 151 (6): 1296.e7-13.
    39. Kuethe F, Richartz BM,Sayer HG et al. Lack of regeneration of myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans with large anterior myocardial infarctions.Int J Cardiol. 2004 Oct;97(1): 123-7.
    40. Hendrikx M, Hensen K, Clijsters C et al. Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial.Circulation. 2006 Jul 4; 114(1 Suppl):I101-7.
    41. Hofrnann M,Wollert KC,Meyer GP et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005 May 3; 111 (17):2198-202.
    42. Volker Schachinger, Sandra Erbs,Albrecht Elsasser et al.Intracoronary Bone Marrow-Derived Progenitor Cells in Acute Myocardial Infarction. The new England journal of medicine.2006;355 1210-1221.
    43. Aviles FF, San Roman JA,Garcia Frade J et al. Intracoronary stem cell transplantation in acute myocardial infarction.Rev Esp Cardiol.2004 Mar;57(3): 191-3.
    44. Birgit Assmus,Jorg Honold,Volker Schachinger et al.Transcoronary Transplantation of Progenitor Cells after Myocardial Infarction. The new England journal of medicine.2006;355 1222-1232.
    45. Brehm M, Strauer BE. Stem cell therapy in postinfarction chronic coronary heart disease.Nat Clin Pract Cardiovasc Med. 2006 Mar;3 Suppl 1:S101-4.
    46. Obradovic S, Rusovic S,Balint B et al. Autologous bone marrow-derived progenitor cell transplantation for myocardial regeneration after acute infarction.Vojnosanit Pregl. 2004 Sep-Oct;61(5): 519-29.
    47. Lunde K,Solheim S, Aakhus S et al. Autologous stem cell transplantation in acute myocardial infarction: The ASTAMI randomized controlled trial. Intracoronary transplantation of autologous mononuclear bone marrow cells, study design and safety aspects. Scand Cardiovasc J. 2005 Jul;39(3): 150-8.
    48. Birgit Assmus.Volker Schachinger, Claudius et al.Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction(TOPCARE AMI).Circulation 2002: 106;3009-3017.
    49. Schachinger V,Assmus B,Britten MB et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial.J Am Coll Cardiol. 2004 Oct 19;44(8):1690-9.
    1. Derrick J.Rossi,Irving L.Weisssman.Pten,Tumorrigenesis,and Stem Cell Self-Renewal.Cell 125; April 21,2006.229-231.
    2. Orlic D,Kajstura J,Chimenti S,et al.Bone marrow cells regenerate infracted myocardium.Nature,2001,410:701-705.
    3. Uher F, Hajdu M,Vas V.Self-renewal and differentiation of hematopoetic stem cells;a molecular approach(a review).Acta Microbio Immunol Hung. 2003;50(1):3-21.
    4. Psenak O. Stromal cell-derived factor 1 (SDF-1). Its structure and function.Cas Lek Cesk. 2001 Jun 21;140(12):355-63.5
    5. Murdoch C. CXCR4: chemokine receptor extraordinaire.Immunol Rev. 2000 Oct; 177:175-84.
    6. Burger JA,Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their micmenvironment.Blood. 2006 Mar 1; 107(5): 1761-7, Epub 2005 Nov 3.
    7. David Roodman G. Role of stromal-derived cytokines and growth factors in bone metastasis.Cancer. 2003 Feb 1;97(3 Suppl):733-8.
    8. Lataillade JJ,Domenech J,Le Bousse-Keriles MC. Stromal cell-derived factor-1 (SDF-1)\CXCR4 couple plays multiple roles on haematopoietic progenitors at the border between the old cytokine and new chemokine worlds: survival, cell cycling and trafficking.Eur Cytokine Netw. 2004 Jul-Sep; 15(3): 177-88.
    9. Misao Y, Takemura G, Arai M,Ohno T, Onogi H,Takahashi T, Minatoguehi S,Fujiwara T, Fujiwara H. Importance of recruitment of bone marrow-derived CXCR4(+) cells in post-infarct cardiac repair mediated by G-CSF.Cardiovasc Res. 2006 May 9; Epub ahead of print
    10.[美]本杰明.卢因编著.余龙 江松明 赵寿元主泽 基因Ⅷ 北京:科学出版社,2005年.
    11. Yang G, Rosen DG, Mercado-Uribe I,Colacino JA,Mills GB,Bast RC Jr, Zhou C,Liu J. Knockdown of p53 combined with expression of the catalytic subunit of telomerase is sufficient to immortalize primary human ovarian surface epithelial cells.Carcinogenesis.2006 Jul 8;[Epub ahead of print]
    12. Shay JW, Wright WE. Use of telomerase to create bioengineered tissues.Ann N Y Acad Sci.2005 Dec;1057: 479-91.
    13. Wright WE,Shay JW. Telomere biology in aging and cancer.J Am Geriatr Soc. 2005 Sep;53(9 Suppl):S292-4.
    14. Bock O,Serinsoz E,Schlue J,Kreipe H. Different expression levels of the telomerase catalytic subunit hTERT in myeloproliferative and myelodysplastic diseases.Leu Res. 2004 May;28(5):457-60.
    15. Derubeis AR,Cancedda R. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances.Ann Biomed Eng. 2004 Jan;32(1): 160-5.
    16. Hahn WC,Meyerson M. Telomerase activation, cellular immortalization and cancer.Ann Med. 2001 Mar;33(2): 123-9.
    17. Hao LY, Armanios M,Strong MA,Karim B,Feldser DM,Huso D,Greider CW. Short telomeres, even in the presence of telomerase, limit tissue renewal capacity.Cell. 2005 Dec 16;123(6):1121-31.
    18. Goldschmidt-Clermont PJ. Loss of bone marrow-derived vascular progenitor cells leads to inflammation and atherosclerosis.Am Heart J. 2003 Oct; 146(4 Suppl):S5-12.
    19. Silvia Di Donna,Kamel Mamchaoui,Racquel N.Cooper, Sophie Seigneurin-Venin, Jacques Tremblay.Gillian S.Butler-Browne.and Vincent Mouly.Telomerase Can Extend the Proliferative Capacity of Human Myoblasts,but Does Not Lead to Their Immortalization.Molecular Cancer Research. Vol. 1,643-653,July 2003.
    20. Mandana Mohyeddin Bonab,Kamran Alimoghaddam,Fatemeh Talebian,Syed Hamid Ghaffari, Ardeshir Ghaffari,Ardeshir Ghavamzadeg and Behrouz Nikbin. Aging of mesenchymal stem cell in vitro.BMC Cell Biology.2006,7:14.
    21. Melissa A.Baxter,Robert F.Wynn,Simon N.Jowitt, J.Ed Wraith,Leslie J.Fairbairn,Ilaria Bellantuono. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells. 2004;22(5):675-82.
    22. By Jane Yui,Choy-Pik Chiu,and Peter M.Lansdorp.Telomerase Activity in Candidate Stem Cells From Fetal Liver and Adult Bone Marrow.Blood,Vol91,No(May l),1998:pp3255-3262.
    23. Soo Kyung Kang,Lorna Putnam, Jason Dufour,Joni Ylostalo, Jin Sup Jung and Bruce A.Bunnell. Expression of Telomerase Extends the Lifespan and Enhances Osteogenic Differentiation of Adipose Tissue-Derived Stromal Cells.Stem Cells .2004;22;1356-1372.
    24. Kobune M,Kato J, Chiba H,Kawano Y.Tanaka M,Takimoto R,Hamada H,Niitsu Y. Telomerized human bone marrow-derived cell clones maintain the phenotype of hematopoietic-supporting osteoblastic and myofibroblastic stromal cells after long-term culture.Exp Hematol. 2005 Dec;33(12):1544-53.
    25. Lee J,Kook H,Chung I,Kim H,Park M,Kim C,Nah J,Hwang T. Telomere length changes in patients undergoing hematopoietic stem cell transplantation.Bone Marrow Transplant. 1999 Aug;24(4):411-5.
    26. Robertson JD.Testa NG, Russell NH,Jackson G, Parker AN,Milligan DW.Stainer C, Chakrabarti S,Dougal M, Chopra R. Accelerated telomere shortening following allogeneic transplantation is independent of the cell source and occurs within the first year post transplant. Bone Marrow Transplant. 2001 Jun;27(12): 1283-6.
    27. De Paum ES, Otto SA,Wi Jnen JT, Vossen JM, van Weel MH, Tanke HJ,Miedema F,Willemze R,Roelofs H,Fibbe WE. Long-term follow-up of recipients of allogeneic bone marrow grafts reveals no progressive telomere shortening and provides no evidence for haematopoietic stem cell exhaustion.Br J Haematol. 2002 Feb;116(2):491-6.
    28. Lahav M.Uziel O,Kestenbaum M,Fraser A.Shapiro H,Radnay J.Szyper-Kravitz M,Avihai S,Hardan I,Shem-Tov N,Nagler A. Nonmyeloablative conditioning does not prevent telomere shortening after allogeneic stem cell transplantation. Transplantation. 2005 Oct 15;80(7):969-76.
    29. Lincz LF.Scorgie FE.Sakoff JA,Fagan KA,Ackland SP,Enno A. Telomere length predicts neutrophil recovery in the absence of G-CSF after autologous peripheral blood stem cell transplantation.Bone Marrow Transplant. 2004 Sep;34(5):439-45.
    30. Szyper-Kravitz M.Uziel O.Shapiro H.Radnay J,Katz T,Rowe JM,Lishner M,Lahav M. Granulocyte colony-stimulating factor administration upregulates telomerase activity in CD34+ haematopoietic cells and may prevent telomere attrition after chemotherapy.Br J Haematol. 2003 Jan;120(2):329-36.
    31. Multani AS,Worth LL,Jeha S,Chan KW, Pathak S. Human bone marrow transplant rejection is associated with telomere cleavage.Int J Mol Med. 2001 Dec;8(6):607-10.
    32.曾益新 主编 肿瘤学(第2版)北京:人民卫生出版社2003年 111
    33. Jiwang Zhang,Justin C.Grindley, Tong Yin, Sachintha Jayasinghe,Xi C.He,Jason T.Ross,Jeffrey S.Haug,Dawn Rupp,Kimberly S.Porter-Westpfahl,Leanne M.Wiadamann,Hong Wu&Linheng Li. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention.Nature.. 2006 May; (441):518-522.
    34. Matthias Groszer, Rebecca Erickson,Deirdre D. Scripture-Adams,Joseph D.Dougherty, Janel Le Belle,Jerome A.Zack,Daniel H.Geschwind,Xin Liu,Harley I.Kornblum, and Hong Wu PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry.PNAS.(103);2006,January. 111-116.
    35. Pazianos G, Uqoezwa M,Reya T. The elements of stem cell self-renewal: a genetic perspective.Biotechniques. 2003 Dec;35(6): 1240-7.
    36.詹启敏 主编.分子肿瘤学.北京:人民卫生出版,2005,87.
    37. Liu F, van den Broek O,Destree O,Hoppler S. Distinct roles for Xenopus Tcf/Lef genes in mediating specific responses to Wnt/{beta}-catenin signalling in mesoderm development.Development. 2005 Dec;132(24):5375-85. Epub 2005 Nov 16.
    38. Sotgia F, Williams TM,Cohen AW, Minetti C,Pestell RG, Lisanti MP. Caveolin-1-deficient mice have an increased mammary stem cell population with upregulation of Wnt/beta-catenin signaling.Cell Cycle. 2005 Dec;4(12): 1808-16. Epub 2005 Dec 22.
    39. Baba Y, Yokota T, Spits H,Garrett KP, Hayashi S,Kincade PW. Constitutively Active beta-Catenin Promotes Expansion of Multipotent Hematopoietic Progenitors in Culture.J Immunol. 2006 Aug 15;177(4):2294-303.
    40. Mimeault M,Batra SK. Recent Advances on the Significance of Stem Cells in Tissue Regeneration and Cancer Therapies.Stem Cells. 2006 Jun 22; [Epub ahead of print].
    41. Niemann C. Controlling the stem cell niche: right time, right place, right strength.Bioessays. 2006 Jan;28(1): 1-5.
    42. Li J,Hassan GS,Williams TM,Minetti C,Pestell RG, Tanowitz HB,Frank PG,Sotgia F, Lisanti MP. Loss of caveolin-1 causes the hyper-proliferation of intestinal crypt stem cells, with increased sensitivity to whole body gamma-radiation.Cell Cycle. 2005 Dec;4(12):1817-25. Epub 2005 Dec 22.
    43. Lie DC,Colamarino SA,Song HJ,Desire L,Mira H,Consiglio A,Lein ES,Jessberger S,Lansford H,Dearie AR,Gage FH. Wnt signalling regulates adult hippocampal neurogenesis.Nature. 2005 Oct 27;437(7063): 1370-5.
    44. Dravid G, Ye Z,Hammond H,Chen G, Pyle A,Donovan P, Yu X,Cheng L. Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells.Stem Cells. 2005 Nov-Dec;23(10):1489-501. Epub 2005 Jul 7.
    45. He XC,Zhang J,Li L. Cellular and molecular regulation of hematopoietic and intestinal stem cell behavior.Ann N Y Acad Sci. 2005 May; 1049:28-38.
    46. Pinto D,Clevers H. Wnt, stem cells and cancer in the intestine.Biol Cell. 2005 Mar;97(3): 185-96.
    47. Foley AC,Mercola M. Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex.Genes Dev. 2005 Feb 1;19(3):387-96.
    48. Feng Z,Srivastava AS,Mishra R, Carrier E. A regulatory role of Wnt signaling pathway in the hematopoietic differentiation of murine embryonic stem cells.Biochem Biophys Res Commun. 2004 Nov 26;324(4): 1333-9.
    49. Lee HY, Kleber M,Hari L,Brault V, Suter U,Taketo MM,Kemler R, Sommer L. Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells.Science. 2004 Feb 13;303(5660):1020-3. Epub 2004 Jan 8.
    50. Plescia C,Rogler C,Rogler L. Genomic expression analysis implicates Wnt signaling pathway and extracellular matrix alterations in hepatic specification and differentiation of murine hepatic stem cells.Differentiation. 2001 Oct;68(4-5):254-69.
    51. Tiedemann H,Asashima M,Grunz H,Knochel W. Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis.Dev Growth Differ. 2001 Oct;43(5):469-502.
    52. Fukuda K, Yuasa S. Stem cells as a source of regenerative cardiomyocytes.Circ Res. 2006 Apr 28;98(8):1002-13.
    53.吴秀山.心脏发育概论.北京:科学出版社,2006,240-241.
    54. Olson, E.N. and Schneider, M.D. 2003. Sizing up the heart: Development redux in disease. Genes & Dev. 17: 1937-1956.
    55. Pandur, P., Lasche, M., Eisenberg, L.M., and Kuhl, M. 2002. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418: 636-641.
    56. Zaffran, S. and Frasch, M. 2002. Early signals in cardiac development. Circ. Res. 91: 457-469.
    57. Manja Schulze,Fikru Belema-Bedada,Antje Technau and Thomas Braun. Mesenchymal stem cells are recruited to striated muscle by NFAT/IL-4-mediated cell fusion. GENES & DEVELOPMENT 19:1787-1798, 2005.
    58. Fikru Belema Bedada,Antje Technau,Henning Ebelt,Manja Schulze,and Thomas Braun. Activation of Myogenic Differentiation Pathways in Adult Bone Marrow-Derived Stem Cells. Molecular and Cellular Biology, November 2005, p. 9509-9519, Vol. 25, No. 21.
    59. Laurent Barandon, Pascale Dufourcq, Pierre Costet, Catherine Moreau, Cecile Allieres, Daniele Daret, Pierre Dos Santos, Jean-Marie Daniel Lamaziere, Thierry Couffinhal, Cecile Duplaa. Involvement of FrzA/sFRP-1 and the Wnt/Frizzled Pathway in Ischemic Preconditioning. Circulation Research. 2005;96:1299.
    60. Laurent Barandon,Thierry Couffinhal,Jerome Ezan,Pascale Dufourcq, Pierre Costet, Philippe Alzieu, Lionel Leroux, Catherine Moreau, Daniele Dare,Cecile Duplaa.Reduction of Infarct Size and Prevention of Cardiac Rupture in Transgenic Mice Overexpressing FrzA. Circulation. 2003; 108:2282.
    61.吴秀山 主编.信号调控与心脏发育.北京:化学工业出版社,2006,308,342-348.
    62.胡火珍主编.干细胞生物学.四川:四川大学出版社,2005.
    63. Hrabe de Angelis M, Mclntyre J II, Gossler A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 1997;386:717-21.
    64. Xue Y, Gao X, Lindsell CE, et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jaggedl. Hum Mol Genet 1999;8:723-30.
    65. Oda T, Elkahloun AG, Pike BL, et al. Mutations in the human Jaggedl gene are responsible for Alagille syndrome. Nat Genet 1997;16:235-42.
    66. Li L, Krantz ID, Deng Y, et al. Alagille syndrome is caused by mutations in human
    ?Jaggedl, which encodes a ligand for Notchl. Nat Genet 1997; 16:243-51.
    67. Allenspach EJ,Maillard I,Aster JC,Pear WS. Notch signaling in cancer.Cancer Biol Ther. 2002 Sep-Oct;1(5):466-76.
    68. Wang XD,Leow CC,Zha J, Tang Z, Modrusan Z,Radtke F,Aguet M,de Sauvaga FJ, Gao WQ. Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation.Dev Biol. 2006 Feb 1;290(1):66-80. Epub 2005 Dec 15.
    69. Wang Z,Zhang Y,Banerjee S,Li Y, Sarkar FH. Inhibition of nuclear factor kappab activity by genistein is mediated via Notch-1 signaling pathway in pancreatic cancer cells.Int J Cancer. 2006 Apr 15;118(8):1930-6.
    70. Hopfer O,Zwahlen D,Fey MF,Aebi S. The Notch pathway in ovarian carcinomas and adenomas.Br J Cancer. 2005 Sep 19;93(6):709-18.
    71. Callahan R,Egan SE. Notch signaling in mammary development and oncogenesis. J Mammary Gland Biol Neoplasia. 2004 Apr;9(2): 145-63.
    72. Harper JA, Yuan JS, Tan JB,Visan I,Guidos CJ. Notch signaling in development and disease.Clin Genet. 2003 Dec;64(6):461-72.
    73. Benjamin W. Purow, Raqeeb M. Haque, Martha W. Noel, Qin Su, Michael J. Burdick, Jeongwu Lee, Tilak Sundaresan, Sandra Pastorino, John K. Park, Irina Mikolaenko, Dragan Maric, Charles G Eberhart and Howard A. Fine. Expression of Notch-1 and Its Ligands, Delta-Like-1 and Jagged-1, Is Critical for Glioma Cell Survival and Proliferation. Cancer Research 65, 2353-2363, March 15,2005.
    74. Kimble J, Simpson P. The LIN-12/Notch signaling pathway and its regulation. Annu Rev Cell Dev Biol 1997;13:333-61.
    75. LaVoie MJ, Selkoe DJ. The notch ligands, Jagged and Delta, are sequentially processed by α-secretase and presenilin/T-secretase and release signaling fragments. J Biol Chem 2003;278:34427-37.
    76. Chu J, Jeffries S, Norton JE, Capobianco AJ, Bresnick EH. Repression of activator protein-1-mediated transcriptional activation by the Notch-1 intracellular domain. J Biol Chem 2002;277:7587-97.
    77. Yu Y, Khan J, Khanna C, Helman L, Meltzer PS, Merlino G Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med 2004; 10:175-81.
    78. Akisawa N, Nishimori I, Iwamura T, Onishi S, Hollingsworth MA. High levels of ezrin expressed by human pancreatic adenocarcinoma cell lines with high metastatic potential. Biochem Biophys Res Commun 1999;258:395-400.
    79. John GR, Shankar SL, Shafit-Zagardo B, et al. Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 2002;8:1115-21.
    80. Stapleton G, Malliri A, Ozanne BW. Downregulated AP-1 activity is associated with inhibition of protein-kinase-C-dependent CD44 and ezrin localisation and upregulation of PKCθ in A431 cells. J Cell Sci 2002; 115:2713-24.
    81. Maillard I., He Y, Warren S. Pear From the yolk sac to the spleen: new roles for notch in regulating hematopoiesis. Immunity, 18: 587-589, 2003.
    82. Yanagawa S., Lee J. S., Kakimi K., Matsuda Y, Honjo T., Ishimoto A. Identification of Notchl as a frequent target for provirus insertional mutagenesis in T-cell lymphomas induced by leukemogenic mutants of mouse mammary tumor virus. J. Virol, 74: 9786-9791,2000.
    83. Joutel A., Tournier-Lasserve E. Notch signalling pathway and human diseases. Semin. Cell Dev. Biol, 9: 619-625,1998.
    84. Shou J., Ross S., Koeppen H., de Sauvage F. J., Gao W. Q. Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer Res., 61: 7291-7297,2001.
    85. Sriuranpong V., Borges M. W., Ravi R. K., Arnold D. R., Nelkin B. D., Baylin S. B., Ball D. W. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res., 61:3200-3205,2001.
    86. Shou J., Ross S., Koeppen H., de Sauvage F. J., Gao W. Q. Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer Res., 61: 7291-7297,2001.
    87. Talora C, Sgroi D. C, Crum C. P., Dotto G. P. Specific down-modulation of Notchl signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev., 16: 2252-2263, 2002.
    88. Nicolas M., Wolfer A., Raj K., Kummer J. A., Mill P., van Noort M, Hui C. C, Clevers H., Dotto G P., Radtke F. Notchl functions as a tumor suppressor in mouse skin. Nat. Genet., 33:416-421, 2003.
    89. Runzi Qi, Huazhang An, Yizhi Yu, Minghui Zhang, Shuxun Liu, Hongmei Xu, Zhenghong Guo, Tao Cheng and Xuetao Cao. Notchl Signaling Inhibits Growth of Human Hepatocellular Carcinoma through Induction of Cell Cycle Arrest and Apoptosis . Cancer Research 63, 8323-8329, December 1,2003
    90. Ellisen, L. W., J. Bird, D. C. West, A. L. Soreng, T. C. Reynolds, S. D. Smith, and J. Sklar. 1991. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66:649-661.
    91. Weng, A. P., A. A. Ferrando, W. Lee, J. P. T. Morris, L. B. Silverman, C. Sanchez-Irizarry, S. C. Blacklow, A. T. Look, and J. C. Aster. 2004. Activating mutations of NOTCH 1 in human T cell acute lymphoblastic leukemia. Science 306:269-271.
    92. Chiaramonte, R., A. Basile, E. Tassi, E. Calzavara, V. Cecchinato, V. Rossi, A. Biondi, and P. Comi. 2005. A wide role for NOTCH 1 signaling in acute leukemia. Cancer Lett. 219:113-120.
    93. Maillard, I., S. H. Adler, and W. S. Pear. 2003. Notch and the immune system. Immunity 19:781-791.
    94. Radtke, F., A. Wilson, S. J. Mancini, and H. R. MacDonald. 2004. Notch regulation of lymphocyte development and function. Nat. Immunol. 5:247-253.
    95. Zweidler-McKay, P. A., and W. S. Pear. 2004. Notch and T cell malignancy. Semin. Cancer Biol. 14:329-340.
    96. Deftos, M. L., E. Huang, E. W. Ojala, K. A. Forbush, and M. J. Bevan. 2000. Notchl signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity 13:73-84.
    97. Huang, Y. H., D. Li, A. Winoto, and E. A. Robey. 2004. Distinct transcriptional programs in thymocytes responding to T cell receptor, Notch, and positive selection signals. Proc. Natl. Acad. Sci. USA 101:4936-4941.
    98. Jarriault, S., C. Brou, F. Logeat, E. H. Schroeter, R. Kopan, and A. Israel. 1995. Signalling downstream of activated mammalian Notch. Nature 377:355-358.
    99. Reizis, B., and P. Leder. 2002. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev. 16:295-300.
    100. Nakase, K., F. Ishimaru, N. Avitahl, H. Dansako, K. Matsuo, K. Fujii, N. Sezaki, H. Nakayama, T. Yano, S. Fukuda, K. Imajoh, M. Takeuchi, A. Miyata, M. Hara, M. Yasukawa, I. Takahashi, H. Taguchi, K. Matsue, S. Nakao, Y. Niho, K. Takenaka, K. Shinagawa, K. Ikeda, K. Niiya, and M. Harada. 2000. Dominant negative isoform of the Ikaros gene in patients with adult B-cell acute lymphoblastic leukemia. Cancer Res. 60:4062-4065
    101. Nishii, K., N. Katayama, H. Miwa, M. Shikami, E. Usui, M. Masuya, H. Araki, F. Lorenzo, T. Ogawa, T. Kyo, K. Nasu, H. Shiku, and K. Kita. 2002. Non-DNA-binding Ikaros isoform gene expressed in adult B-precursor acute lymphoblastic leukemia. Leukemia 16:1285-1292.
    102. Sun, L., M. L. Crotty, M. Sensel, H. Sather, C. Navara, J. Nachman, P. G. Steinherz, P. S. Gaynon, N. Seibel, C. Mao, A. Vassilev, G. H. Reaman, and F. M. Uekun. 1999. Expression of dominant-negative Ikaros isoforms in T-cell acute lymphoblastic leukemia. Clin. Cancer Res. 5:2112-2120.
    103. Sun, L., P. A. Goodman, C. M. Wood, M. L. Crotty, M. Sensel, H. Sather, C. Navara, J. Nachman, P. G. Steinherz, P. S. Gaynon, N. Seibel, A. Vassilev, B. D. Juran, G. H. Reaman, and F. M. Uckun. 1999. Expression of aberrantly spliced oncogenic ikaros isoforms in childhood acute lymphoblastic leukemia. J. Clin. Oncol. 17:3753-3766.
    104. Sun, L., N. Heerema, L. Crotty, X. Wu, C. Navara, A. Vassilev, M. Sensel, G. H. Reaman, and E M. Uckun. 1999. Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 96:680-685.
    105. Takanashi, M., T. Yagi, T. Imamura, Y. Tabata, A. Morimoto, S. Hibi, E. Ishii, and S. Imashuku. 2002. Expression of the Ikaros gene family in childhood acute lymphoblastic leukaemia. Br. J. Haematol. 117:525-530.
    106. Papathanasiou, P., A. C. Perkins, B. S. Cobb, R. Ferrini, R. Sridharan, G. F. Hoyne, K. A. Nelms, S. T. Smale, and C. C. Goodnow. 2003. Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity 19:131-144.
    107. Winandy, S., P. Wu, and K. Georgopoulos. 1995. A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 83:289-299.
    108. Kakinuma, S., M. Nishimura, A. Kubo, J. Y. Nagai, Y. Amasaki, H. J. Majima, T. Sado, and Y. Shimada. 2005. Frequent retention of heterozygosity for point mutations in p53 and Ikaros in N-ethyl-N-nitrosourea-induced mouse thymic lymphomas. Mutat. Res. 572:132-141.
    109. Karlsson, A., P. Soderkvist, and S. M. Zhuang. 2002. Point mutations and deletions in the znfnlal/ikaros gene in chemically induced murine lymphomas. Cancer Res. 62:2650-2653.
    110. Lopez-Nieva, P., J. Santos, and J. Femandez-Piqueras. 2004. Defective expression of Notch1 and Notch2 in connection to alterations of c-Myc and Ikaros in gamma-radiation-induced mouse thymic lymphomas. Carcinogenesis 25:1299-1304.
    111. Okano, H., Y. Saito, T. Miyazawa, T. Shinbo, D. Chou, S. Kosugi, Y. Takahashi, S. Odani, O. Niwa, and R. Kominami. 1999. Homozygous deletions and point mutations of the Ikaros gene in gamma-ray-induced mouse thymic lymphomas. Oncogene 18:6677-6683.
    112. Shimada, Y., M. Nishimura, S. Kakinuma, M. Okumoto, T. Shiroishi, K. H. Clifton, and S. Wakana. 2000. Radiation-associated loss of heterozygosity at the Znfn1a1 (Ikaros) locus on chromosome 11 in murine thymic lymphomas. Radiat. Res. 154:293-300.
    113. Alexis Dumortier, Robin Jeannet, Peggy Kirstetter, Eva Kleinmann, MacLean Sellars, Nuno R. dos Santos, Christelle Thibault, Jochen Barths, Jacques Ghysdael, Jennifer A. Punt,Philippe Kastner, and Susan Chan. Notch Activation Is an Early and Critical Event during T-Cell Leukemogenesis in Ikaros-Deficient Mice. Mol Cell Biol. 2006 January; 26(1): 209-220.
    114. Ramain P, Khechumian K, Seugnet L, Arbogast N, Ackermann C, Heitzler P 2001 Novel Notch alleles reveal a Deltex-dependent pathway repressing neural fate. Curr Biol 11:1729-1738
    115. Arias AM 2002 New alleles of Notch draw a blueprint for multifunctionality. Trends Genet 18:168-170
    116. Gaiano N, Fishell G 2002 The role of notch in promoting glial and neural stem cell fates. Annu Rev Neurosci 25:471-490
    117. Wang S, Barres BA 2000 Up a notch: instructing gliogenesis. Neuron 27:197-200
    118. Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T 1994 Notchl is essential for postimplantation development in mice. Genes Dev 8:707-719
    119. de la Pompa JL, Wakeham A, Correia K, Samper E, Brown S, Aguilera R, Nakano T, Honjo T, Mak T, Rossant J, Conlon R 1997 Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124:1139-1148
    120. Handler M, Yang X, Shen J 2000 Presenilin-1 regulates neuronal differentiation during neurogenesis. Development 127:2593-2606
    121. Gaiano N, Fishell G 2002 The role of notch in promoting glial and neural stem cell fates. Annu Rev Neurosci 25:471—490
    122. Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R 2004 Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131:5539-5550
    123. Hitoshi S, Alexson T, Tropepe V, Donoviel D, Elia AJ, Nye JS, Conlon RA, Mak TW, Bernstein A, van der Kooy D 2002 Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 16:846-858
    124. Hitoshi S, Seaberg RM, Koscik C, Alexson T, Kusunoki S, Kanazawa I, Tsuji S, van der Kooy D 2004 Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev 18:1806-1811
    125. Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D 1999 Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208:166-188
    126. Guentchev M,McKay RD. Notch controls proliferation and differentiation of stem cells in a dose-dependent manner.Eur J Neurosci. 2006 May;23(9):2289-96.
    127. Rehman AQ,Wang CY. Notch signaling in the regulation of tumor angiogenesis.Trends Cell Biol. 2006 Jun;16(6):293-300. Epub 2006 May 12.
    128. Otto WR,Rao J. Tomorrow's skeleton staff: mesenchymal stem cells and the repair of bone and cartilage.Cell Prolif. 2004 Feb;37(1):97-110.
    129. Mary D.L.Chau,Richard Tuft,Kevin Fogarty,Zheng-Zheng Bao.Notch signaling plays a key role in cardiac cell differentiation.Mech Dev.2006 August; 123(8):626-640.
    130. Angel Raya,Christopher M. Koth,Dirk Buscher et al. Activation of Notch signaling pathway precedes heart regeneration in zebrafish . PNAS .2003 September 30;100( Suppl) 1:11889-11895.
    131. Bonnet,D.,and Dick,J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.1997.Nat.Med.3,730-737.
    132. AI-Hajj,M.,Wicha,M.S.,Benito-Hemandez,A,Morrison,S.J.,and Clarke,M.F. Prospective identification of tumorigenic breast cancer cells.2003.Proc.Natl.Acad.Sci.USA 100,3983-3988.
    133. Singh,S.K.,Hawkins,C.,Clarke, I.D.,Squire,J.A.,Bayani,J.,Hide,T.,Henkehnan,R.M., Cusimano,M.D.,and Dirks,P.B. Identification of human brain tumour initiating cells.2004.Nature 432,396-401.
    134. Yihnaz, O.H.,Valdez,R.,Thelsen,B.K.,Guo,W.,Ferguson,D.O.,Wu,H.,and Morrison,S.J. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells.2006.Nature.Published online April 5,2006.10.1038/nature04703.
    135. Reya,T.,Morrison,S.J.,Clarke,M.F.,and Weissman,I.L. Stem cells, cancer, and cancer stem cells.2001. Nature 414,105-111.
    136. Weissman,I. Stem cell research: paths to cancer therapies and regenerative medicine.2005.JAMA294,1359-1366.
    137. Rossi,D.J.,Bryder, D.,Zahn,J.M.,Ahlenius, H.,Sonu,R.,Wagers,A.J.,and Weissman,I.L. Cell intrinsic alterations underlie hematopoietic stem cell aging.2005.Natl.Acad.Sci.USA102,9194-9199.
    138. Zhou,S.,Schuetz,J.D.,Bunting,K.D.,Colapietro,A.M.,Sampath,J.,Morris,J.J.,Lagutin a,I.,Grosveld,GC.,Osawa,M.,Nakauchi,H.,and Sorrentino,B.P. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype.2001.Nat.Med.7,1028-1034.
    139. Wulf,G.G.,Wang,R.Y.,Kuehnle,I.,Weidner,D.,Marini,F.,Brenner,M.K.,Andreeff,M.,a nd Goodell,M.A. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia.2001.Blood 98,1166-1173.
    140. Wright,D.E.,Wagers,A.J.,Gulati.A.P.,Johnson,F.L.,and Weissman,I.L. Physiological migration of hematopoietic stem and progenitor cells.2001. Science 294,1933-1936.
    141. Reya,T.,Morrison,S.J.,Clarke,M.F.,and Weissman,I.L. Stem cells, cancer, and cancer stem cells.2001 .Nature414,105-111.
    142. Molofsky,A.V.,He,S.,Bydon,M.,Morrison,S.J.,and Pardal,R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. 2005.Genes Dev.19,1432-1437.
    143. Lessard,J., and Sauvageau,G Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. 2003.Nature 423,255-260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700