用户名: 密码: 验证码:
蚊子浮水与针刺力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物世界中的昆虫微系统实际上是一个由大自然创造的具有高度可靠性的微机械系统。昆虫相关器官工作的力学原理从宏观、微观直至纳观常常出现多尺度的近乎完美的协调与统一,使得它们具有许多令人惊奇的特殊绝技。研究与这些特殊绝技相关的生物材料或微纳米结构的力学行为及其科学原理,对于仿生设计和制造高级微纳机械系统具有重要意义。蚊子是一种极为常见的小型昆虫,拥有许多特殊绝技:第一,蚊子具有超强的“浮水”功能,它能够在水面上浮立、行走、产卵,并能自由起飞和降落;第二,蚊子具有“无痛吸血”功能,它依靠一个大长径比的高弹性、高强度的天然“微针”系统——口针无痛刺入人体皮肤并吸食血液,且刺入过程中从未发生过任何强度问题;第三,蚊子具有粘附功能,它能够在墙壁、玻璃等固体表面上自由粘附停留;第四,蚊子具有许多特殊的飞行绝技,它不但能够在空中自由飞行,而且能够实现急停甚至倒飞等;第五,蚊子具有优异的侦探和导航功能,它能够在夜间准确侦探和锁定目标,并实施攻击(叮咬);蚊子还具有其它许多无法一一列举的特殊生物功能。本文主要围绕蚊子的前两大特殊技能,采用微纳米测试与观察技术,并结合理论分析和数值模拟技术对蚊子腿部的表面湿润性、超强水面承载力以及口针刺入皮肤的力学机理等方面展开了一系列的研究工作。
     对蚊子腿部的表面润湿性进行了实验研究,发现蚊子腿是一种天然的超疏水表面。利用傅里叶红外光谱仪对蚊子腿部成分进行了分析,发现蚊子腿部的主要成分对腿部表面的湿润性虽然有一定影响,但不足以导致其腿表面具有超疏水性能。用扫描电子显微镜对蚊子腿部表面的微纳观结构进行观察,发现其腿部是由尺度在十微米级的鳞片、亚微米级的纵肋和纳米级的横筋的三级特殊结构巧妙构成的天然超疏水表面。根据蚊子腿部的这种特殊的微纳观结构,结合经典表面润湿理论,构建了一种“具有多级复合结构”的理论模型,对蚊子腿部的超疏水性能进行了理论分析,结果表明蚊子腿表面的超疏水性是表面多级微纳结构共同作用的结果。
     对蚊子腿的水面承载力进行了实验测量,发现蚊子腿在水面上具有超强的承载能力。单根蚊子后腿在水面上的承载力平均为600微牛,约为蚊子平均体重的23倍。对蚊子腿压向水面过程进行了理论分析,求得了蚊子腿水面承载力的理论值,并与实验结果进行了对比。利用此理论模型结合实验,分析了产生蚊子腿水面超强承载力的几种物理机制:包括腿的长度、表面的多级微纳米结构、特殊的横截面结构等。
     对蚊子口针的微纳观结构及刺入皮肤的力学行为进行了实验观察。发现口针的两大刺入部件——上唇和下颚的尖端尺寸均在微纳米量级,上颚端部轴向上具有明显的加筋结构,下颚端部两侧分布有精致的微纳锯齿。蚊子口针刺入皮肤的过程不是简单的直接刺入,而是先用上唇端部刺破皮肤表面,将口针锚定在皮肤里面以后,紧接着用带有微纳锯齿的下颚按一定的频率振动锯入皮肤内部。本文对口针的振动刺入规律进行了定量统计分析,发现振动频率随着刺入时间(刺入深度)的增加而降低;振幅大小约为40~80μm,并随着刺入时间(刺入深度)的增加而增加。
     先后设计两种高精度微力测量系统对蚊子口针刺入皮肤的刺入力进行了测量,发现蚊子口针的刺入力非常小,平均值约为十几微牛,比目前报道的人造微针的最小刺入力小三个数量级。并且发现,蚊子在刺破皮肤表面以后的进一步刺入过程中,口针对皮肤的作用力并不像人造微针那样随着刺入深度的增加而持续增加,而是显著下降并保持在一个极小的值(甚至几乎为零)上下波动。通过对蚊子口针的刺入机制分析,发现蚊子口针的微纳观结构及其特殊的刺入方式是导致刺入皮肤超级省力的根本原因。根据蚊子口针振动刺入皮肤超级省力的力学原理,设计了一套新型的微纳锯齿振动手术刀,实验证实该手术刀具有很好的省力效果。
     利用非线性有限元软件ABAQUS,考虑了不同皮肤层的力学性能及材料的失效和破坏,对人造微针及天然“微针”(蚊子口针)刺入皮肤的过程进行了数值模拟。首先,通过对人造微针刺入皮肤过程的有限元模拟分析,揭示了人造微针刺入皮肤过程中微针与皮肤的相互作用机理,讨论了刺入过程中皮肤的变形和破坏及微针受力随刺入位移的变化关系,得到了刺入力的大小,并详细分析了皮肤力学性能及微针各个形状参数对刺入力的影响。数值模拟结果同实验观察基本相符,验证了该数值模型的可靠性,为下一步天然“微针”(蚊子口针)刺入皮肤的数值模拟奠定基础,并为微针的设计和优化提供了一定的理论依据。在此基础上,利用三维建模软件CATIA建立了蚊子口针的端部模型,对口针端部刺入皮肤的过程进行了数值模拟,对刺入过程中皮肤的变形和破坏、口针受力随刺入位移变化的关系以及刺入力进行了讨论。模拟结果与实际刺入实验吻合良好。
Insect microsystems in biological world are actually natural micro-mechanical systems with a high reliability. The working mechanics principles of the insect's relevant organs often show perfect coordination and unification in the multi scale from macro to micro and even nano scale, which make the insects have many wonderful special skills. Study of the mechanics behaviors of biomaterials and micronano-stuctures related to these special skills has important significance to the design and fabrication of advanced micro-mechanical systems. Mosquito is a kind of common insect, but has many special skills. The first one is its superior "water floating" function. Mosquito can float, walk, lay eggs and take off or land freely on the water surface.The second is its "painless blood-sucking" skill. A mosquito uses a natural "microneedle" system with a large ratio of the length to the diameter and high flexibility and strength called fascicle to painlessly penetrate into human skin and suck blood. This natural "microneedle" system never has any strength problem in the penetrating process. The third one is its adhesion function. Mosquito can adhere to any solid surface freely, such as the wall, smooth glass and so on. The fourth one is its special flying skill. It can not only fly forward, but also stop immediately and even fly back in air. The fifth one is its spying and navigating skill. It can detect and aim exactly at a target that it wants to attack (bite) even at night. It also has too many other special functions to list here. In the present work, we study mainly the first two special skills. A series of researchs are carried out on the surface wettability and high water-supporting force of the mosquito leg, mechanical mechanism of the fascicle insertion into skin, and so on. Advanced micronano test and observation technique, appropriate theoretical model and trustworthy numerical technology are main research tools adopted.
     An experimental study is carried out to investigate the surface wettability of the mosquito leg. It has been found that the mosquito leg is a natural surface with excellent water repellent properties. The composition of the mosquito leg is studied by a FTIR spectrometer. The analytical result shows that the main composition of the mosquito leg is not enough to cause the superhydrophobicity, although it has some effects on the wettability. Scanning electron microscope (SEM) observations reveal that the uniquely three-level micronano-structure on the mosquito leg consists of numerous oriented ten-micron scales with uniform sub-micron longitudinal ridges and nanometer cross ribs. Based on the special micronano structures combined with the classical wetting theory, a "multi-level structure" model is proposed to analyze the superhydrophobicity of the mosquito leg. It has been theoretically demonstrated that the hierarchical micronano-structure on the leg surface results in such superior water repellency.
     The water supporting force of the mosquito leg is studied experimentally. It has been found that the mosquito leg has a surprising high water-supporting ability. The average water supporting force of a single leg reaches up to 600μN, about 23 times the total body weight of this insect. The process of the mosquito leg pressed into water is analyzed theoretically. The water supporting force of the mosquito leg is calculated. The theoretical solutions are compared with the experimental results. It has been found by using the theoretical model combined with experiments that to achieve a superior strong supporting ability on water a mosquito leg has several physical mechanisms, including the leg length, the hierarchical micronano-structure and the special cross-section shape.
     The micronano-structure of the mosquito fascicle and the biomechanics behavior of the fascicle inserting into human skin are studied experimentally. It has been shown that the two main piercing parts—the labrum and maxilla both have micronano-sharp tips. There are reinforced structures along the axis direction of the labrum and fine micronano saw-teeth along the bothsides of the maxilla. It is also found that the mosquito does not directly penetrate its feeding fascicle into a victim's skin, but instead firstly uses the labrum tip to puncture the skin surface and anchor it down into the top layer of the skin, and then use the micronano saw-toothed maxillae to saw their way into the tissue of skin with a special frequency. A quantitative analysis is carried out to study the rule of the oscillation inserting process of the mosquito fascicle. It has been found that the oscillation frequency is not a constant but decreases with the time (or the depth) of penetration, while the oscillation amplitude is about 40~80μm and increases with the time (or the depth) of penetration.
     Two different high precision micro-Newton force measurement devices are designed to measure the insertion force for mosquito fascicle to penetrate into human skin respectively. The measured results show that the mosquito uses a very low force (tens of micro-Newton in average) to penetrate into the skin. This force is at least three orders of magnitude smaller than the reported lowest insertion force for an artificial microneedle with an ultra sharp tip to insert into the human skin. In addition, it has also been found that after the mosquito fascicle tip penetrates into the surface of the skin, the force used by the mosquito to penetrate its fascicle deeper into the skin will not continuously increase, but firstly decreases with the increase in the insertion depth and then levels out at a surprisingly low mean force (even almost be zero). These characteristics differ from the insertion force variation observed using artificial microneedles. The study on the insertion mechanism of the mosquito fascicle shows that the mosquito's micronano-structured fascicle and its amazing oscillation inserting skill make it penetrate easily into human skin with a surprising low force. Based on the mechanical principle of the mosquito penetrating its fascicle into skin with a surprisingly low mean force, an oscillation micronano serrated scalpel has been designed and proved to have a good effect in reducing cutting force by experiment.
     Considering the mechanical properties of different skin layers and the failure of material, the processes of the insertion of artificial microneedle and natural "microneedle" (mosquito fascicle) into a skin are analyzed by using the non-liner finite element code ABAQUS. Firstly, through the finite element simulation analysis of the insertion process of an artificial microneedle into skin, the interaction mechanism between the microneedle and skin during the insertion process of the micro-needle is revealed. The skin deformation and failure and the general behavior of the microneedle force-displacement history are discussed. The insertion force can be got. A further study is given on the influences of the mechanical properties of the skin and microneedle geometry on the insertion force. A qualitative agreement occurs between computation and the experiment. The numerical results demonstrate the validity of this numerical model, laying a foundation for the numerical simulation of the insertion process of the natural "microneedle" (mosquito fascicle) into skin and giving a theory basis for the optimum design of the artificial microneedles. Then, the simulation model of the mosquito fascicle tip is built up by the three-dimensional modeling software CATIA. A numerical simulation is conducted to analyze the insertion process of the mosquito fascicle tip into human skin. The deformation and failure of the skin, the general behavior of the labrum force-displacement history and the insertion force are discussed. An ideal agreement is found between the numerical results and the experimental measurements.
引文
[1]Reif W F. Morphogenesis and function of the squamation in sharks [J]. Neues Jahrbuch fur Geologie and Palaentologie, Abhandlungen Band,1982,164:172-183.
    [2]Bechert D W, Bruse M, Hage, W, et al. Fluid Mechanics of Biological Surfaces and their Technological application [J]. Naturwissenschaften,2000,87:157-171
    [3]Bechert D W, Bruse M, Hage W. Experiments with three-dimensional riblets as an idealized model of shark skin [J]. Experiments in Fluids,2000,28:403-412.
    [4]Autumn K, Liang Y A, Hsieh S T, et al. Adhesive force of a single gecko foot-hair [J]. Nature,2000,405:681-685.
    [5]Geim A K, Dubonos S V, Grigorieva I V, et. al. Microfabricated adhesive mimicking gecko foot-hair [J]. Nature Materials,2003,2:461-463.
    [6]Mayer G. Rigid biological systems as models for synthetic composites [J]. Science, 2005,310:1144-1147.
    [7]Parker A R, Lawrence C R. Water capture by a desert beetle [J]. Nature,2001,414:33-34.
    [8]崔大祥,高华健.生物纳米材料的进展与前景[J].中国科学院院刊,2003,1:20-24.
    [9]昆虫与仿生学,http://www.scitom.com.cn/discovery/Bionics/bio202.html [EB/OL].
    [10]Fujimasa I. Micromachines:A new era in mechanical engineering [M]. New York:Oxford University Press,1996.
    [11]Zhou Y, Nelson B. Adhesion force modeling and measurement for micro-manipulation [C]. SPIE Conference on Microrobotics and Micromanipulation, Boston,1998.
    [12]Scherge M, Gorb S. Biological Mecro- and Nanotribology:Nature's Solution [M]. Berlin Heidelberg:Soringer-Verlag,2001.
    [13]刘可松,江雷.仿生结构及其功能材料研究进展[J].科学通报,2009,54:2667-2681.
    [14]Claugher D. Scanning electron microscopy in taxonomy and functional morphology [C]. Oxford:Clarendon Press,1990.
    [15]Fang Y, Sun G, Wang T Q, et al. Hydrophobicity mechanism of non-smooth pattern on surface of butterfly wing [J]. Chinese Science Bulletin,2007,52:711-716.
    [16]江雷. “出淤泥而不染”的奥秘[J].大自然,2005,5:8-9.
    [17]Bhushan B, Jung Y C. Micro-and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces [J]. Nanotechnology,2006,17:2758-2772.
    [18]Young T. Experiments and Calculations Relative to Physical Optics [J]. Philosophical Transactions of the Royal Society of London A,1805,94:1-16.
    [19]Mchale G, Newton M I. Frenkel's method and the dynamic wetting of heterogeneous planar surfaces [J]. Langmuir,1999,15:4321-4323.
    [20]Wenzel R N. Resistance of solid surface to wetting by water [J]. Industrial & Engineering Chemistry Research,1936,28:988.
    [21]Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Transactions of the Faraday Society,1944,40:546-551.
    [22]Cassie A B D. Contact angles [J]. Discuss Faraday Soc,1948,3:11-16.
    [23]Adamson A W, Gast A P. Physical Chemistry of Surfaces (6th ed) [M]. New York:John Wiley&Sons,1997,358-362.
    [24]Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces [J]. Annals of Botany,1997,79:667—677.
    [25]Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces [J]. Planta,1997,202:1-8.
    [26]Neinhuis C, Barthlott W. Seasonal changes of leaf surface contamination in beech, oak and ginkgo in relation to leaf micro-morphology and wettability [J]. New Phytologist,1998,138:91-98.
    [27]Feng L, Li S H, Li Y S, et al. Super-hydrophobic surfaces:From natural to artificial [J]. Advanced Materials,14:1857-1860.
    [28]Patankar N A, J Lee. Transition between superhydrophobic states on rough surfaces [J]. Langmuir,2004,20:7097-7102.
    [29]Bhushan B, Jung Y C. Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces [J]. Nanotechnology,2006,17:2758-2772.
    [30]江雷.从自然到仿生的超疏水纳米界面材料[J].科技导报,2005,23:4-8.
    [31]Otten A, Herminghau S. How Plants Keep Dry:a Physicist Point of View [J]. Langmuir, 2004,20:2405-2408.
    [32]Guo Z, Liu W. Biomimic from the superhydrophobic plant leaves in nature:Binary structure and unitary structure [J]. Plant Science,2007,172:1103-1112.
    [33]Wagner T, Neinhuis C, Barthlott W. Wettability and contaminability of insect wings as a function of their surface sculptures [J]. Acta Zoologica,1996,77:213-225.
    [34]高雪峰,江雷.天然超疏水生物表面研究的新进展[J].物理,2006,35:559-563.
    [35]房岩,孙刚,王同庆,等.蝴蝶翅膀表面非光滑形态疏水机理[J].科学通报,2007,52:354-357
    [36]弯艳玲,丛 茜,金敬福,等.蜻蜒翅膀微观结构及其润湿性能研究[J].吉林大学学报,2009,39:732-736.
    [37]Blickhan R, Full R J. Similarity in multilegged locomotion:bouncing like a monopode [J]. Journal of Comparative Physiology A,1993,173:509-517.
    [38]Farley C T, Glasheen J, and McMahon T A. Running springs:speed and animal sizen [J]. Journal of Experimental Biology,1993,185:71-86.
    [39]Farley C T, Taylor C R. A mechanical trigger for the trot-gallop transition in horses [J]. Science,1991,253:306-308.
    [40]Hu D L, Chan B, Bush J W M. The hydrodynamics of water strider locomotion [J]. Nature, 2003,424:663-666.
    [41]Bush J W M, Hu D L. Walking on water:biolocomotion at the interface [J]. Annual Review of Fluid Mechanics,2006,38:339-370.
    [42]Bush J W M, Hu D L, Prakash M. The integument of water-walking arthropods:form and function [J]. Advances in Insect Physiology,2007,34:117-192.
    [43]Hsieh S. Three-dimensional hind limb kinematics of water running in the plumed basilisk lizard(Basiliscus plumifrons) [J]. The Journal of Experimental Biology, 2003,206:4363-4377.
    [44]Baudoin R. La physico-chimie des surfaces dans la vie des arthropodes aeriens des miroirs d'eau, desrivages marins et lacustres et de la zone intercotidale [J]. Bull Biol Fr Belg,1955,89:16-164.
    [45]Keller J B. Surface tension force on a partly submerged body [J]. Physical Fluids, 1998,10:3009-3010.
    [46]Bowdan E. Walking and rowing in the water strider, Gerris remigis [J]. Journal of Comparative Physiology A,1978,123:43-49.
    [47]Andersen N M. A comparative study of locomotion on the water surface in semiaquatic bugs (Insecta, Hemiptera, Gerromorpha) [J]. Vidensk Meddr Dansk Naturh Foren,1976, 139:337-396.
    [48]Denny M W. Air and Water:The Biology and Physics of Life's Media [M]. Princeton University Press, Princeton,1993.
    [49]Hu D L, Chan B, Bush J W M. The hydrodynamics of water strider locomotion [J]. Nature, 2003,424:663-666.
    [50]Gao X F, Jiang L. Water-repellent legs of water striders [J]. Nature,2004,432:26.
    [51]Feng X Q, Gao X F, Wu Z N, et al. Superior water repellency of water strider legs with hierarchical structures:experiments and analysis [J]. Langmuir,2007, 23:4892-4896.
    [52]Liu J L, Feng X Q, Wang G L. Buoyant force and sinking conditions of a hydrophobic thin rod floating on water [J]. Physical Review E,2007,76:066103.
    [53]彩万志.普通昆虫学[M].北京:中国农业大学出版社,2001.
    [54]理查兹O W,戴维斯R G.依姆斯昆虫学纲要[M].北京:科学技术出版社,1982.
    [55]刘明,任东,谭京晶.昆虫口器及其进化简史[J].昆虫知识,2005,42:587-592.
    [56]刘浦山.昆虫趣闻[M].郑州:河南科学技术出版社,1982.
    [57]颜忠诚.昆虫的口器[J].生物学通报,2005,40:6-8.
    [58]郑乐怡,归鸿.昆虫分类[M].南京:南京师范大学出版社,1999.
    [59]南开大学,中山大学,北京大学,四川大学,复旦大学合编.昆虫学[M].北京:人民教育出版社,1980.
    [60]北京农业大学主编.昆虫学通论(上册)[M].北京:农业出版社出版,1980.
    [61]北京农业大学主编.昆虫学通论(下册)[M].北京:农业出版社,1981.
    [62]http://www.hudong.com/versionview/vHFZRaOdfBEQCAxsYUldsQw**[EB/OL].
    [63]http://www.blueanimalbio.com/bugs/body/tou.htm [EB/OL].
    [64]Aoyagi S, Izumi H. Development of micro lancet needle made of biodegradable polymer for medical treatment [J]. Institute of Electrical Engineers of Japan,2007,127:342 349.
    [65]Jones J C. The feeding behavior of mosquitoes [J]. Scientific American,1978,138-148.
    [66]Robinson G G. The mouthparts and their function in the female mosquito, Anopheles maculipennis [J]. Parasitology,1939,31:212-242.
    [67]Gordon R M, Lumsden W H R. A study of the behavior of the mouth-parts of mosquitoes when taking up blood from living tissue together with some observations on the ingestion of microfilariae[J]. Annals of Tropical Medicine & Parasitology,1939, 33:259-278.
    [68]Hudson A. Notes on the piercing mouthparts of three species of mosquitoes viewed with the scanning electron microscope [J]. Canadian Entomologist,1970,102:501-509.
    [69]http://www.radarcan.com/en/mosquitoes.html [EB/OL].
    [70]Aoyagi S, Izumi H, Fukuda M. Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito's proboscis [J]. Sensors and Actuators A,2008,143:20-28.
    [71]Ramasubramanian M K, Barham 0 M, Swaminathan V. Mechanics of a mosquito bite with applications to microneedle design [J]. Bioinspiration & Biomimetics,2008,3:046001.
    [72]http://www.chinawestnews.net/gb/westnews/xwzx/gjxw/kjxw/userobjectlai136514.html [EB/OL].
    [73]Gattiker G E, Kaler K V, Mintchev M P. Electronic mosquito:designing a semi invasive Microsystem for blood sampling, analysis and drug delivery applications [J]. Microsystem Technologies,2005,12:44-52.
    [74]Oka K, Aoyagi S, Isono Y, et. al. Fabrication of a microneedle for a trace blood test [J]. Sensors and. Actuators,2002,97-98C:478-485.
    [75]Tsuchiya K, Jinninn S, Yamamoto H, et. al. Development of a biocompatible painless microneedle by ion-sputtering deposition [C]. Proceedings of the School of Engineering of Tokai University, Series E,2007,32:1-5.
    [76]Sharaf R, Aggarwal P, Kaler K, et. al. On The Design of an Electronic Mosquito:Design and Analysis of the Micro-needle [C]. Proceeding of ICMENS,2003.
    [77]Prausnitz M. Microneedles for transdermal drug delivery [J]. Advanced Drug Delivery Reviews,2004,56:581-587.
    [78]Lin L, Pisano A P. Silicon-processed microneedles [J]. IEEE Journal of Micromechanical Systems,1999,8:78-84.
    [79]Stoeber B, Liepmann D. Fluid injection through out-of-plane microneedles [C]. Proceedings of the ASME MEMS Device 2000 IMECE,2000,2:355-359.
    [80]Griss P, Stemme G. Side-Opened Out-of-Plane Microneedles for Microfluidic Transdermal Liquid Transfer [J]. Journal of Microelectromechanical Systems,2003,12:296-301.
    [81]Davis S P, Martanto W, Allen M G, et. al. Hollow Metallic Microneedles for Insulin Delivery to Diabetic Rats [J]. IEEE Transactions on Biomedical Engineering,2005, 52:909-915.
    [82]Moon S J, Seung S L. Fabrication of Microneedle Array Using Inclined LIGA Process [C]. Paper presented at:Proceeding of Transducers'03, Boston,2003.
    [83]Hashmi S, Ling P, Hashmi G, et. al. Genetic transformation of nematodes using arrays of micromechanical piercing structures [J]. Biotechniques,1995,19:766-770.
    [84]Davis S P, Landis B J, Adams Z H, et. al. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force [J]. Journal of Biomechenical,2004,37:1155-1163.
    [85]Park J H. Polymeric microneedles for transdermal drug delivery [D]. Atlanta:Georgia Institute of Technology,2004.
    [86]Roxhed N, Gasser T C, Griss P. Penetration-Enhanced Ultrasharp Microneedles and Prediction on Skin Interaction for Efficient Transdermal Drug Delivery [J]. Journal of Microelectromechanical Systems,2007,16:1429-1440.
    [87]Autumn K, Liang Y A, Hsieh S T, et. al. Adhesive force of a single gecko foot-hair [J]. Nature,2000,405:681-685.
    [88]Autumn K, Sitti M, Liang Y A, et al. Evidence for van der Walls adhe-sion in gecko setae [C]. Proceedings of the National Academy of Sciences of the USA,2002, 99:12252-12256.
    [89]Geim A K, Dubonos S V, Grigorieva I V, et. al. Microfabricated adhesive mimicking gecko foot-hair [J]. Nature Materials,2003,2:461-463.
    [90]Gao H, Wang X, Yao H M, et. al. Mechanics of hierarchical adhesion structure of geckos [J]. Mechanics of Materials,2005,37:275-285.
    [91]Yao H M, Gao H. Mechanics of robust and releasable adhesion in biology:Bottom-up designed hierarchical structures of gecko [J]. Journal of Mechanics and Physics of Solids,2006,54:1120-1146.
    [92]West T. The foot of the fly, its structure and action:eluci-dated by comparison with the feet of other insects [J]. Transactions of the Linnean Society of London,1862, 23:393-421.
    [93]Rombouts J E. Uber die Fortbewegung der Fliegen an glatten Flachen [J]. Zoologischer Anzeiger,1884,7:619-623.
    [94]Maderson P F A. Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards [J]. Nature,1964,203:780-781.
    [95]Bauchhenss E. Die Pulvillen von Calliphora erythrocephala. Meig. (Diptera, Brachycera) als Adhasionsorgane [J]. Zoomor-phologie,1979,93:99-123.
    [96]Steve H. The wing of a butterfly [J]. Global Cosm Ind,2002,170:32-35.
    [97]Michael N, Bharat B. Hierarchical roughness makes superhydrophobic states stable [J]. Microelectronic Engineering,2007,84:382-386.
    [98]http://www.scitom.com.cn/discovery/Bionics/bio202.html [EB/OL].
    [99]Bico J, Marzolin C, Que're'D. Pearl drops [J]. Europhysics Letters,1999, 47:220-226.
    [100]Oner D, McCarthy T J. Ultrahydrophobic surfaces:effect of topography length scales on wettability [J]. Langmuir,2000,16:7777-7782.
    [101]Herminghaus S. Roughness-induced non-wetting [J]. Europhysics Letters,2000, 52:165-170.
    [102]Gadow H. The Cambridge Natural History Vol.8 Amphibia and Reptiles [M]. London: McMillan,1901.
    [103]Gennaro J G J. The gecko grip [J]. Natural History,1969,78:36-43.
    [104]Gorb S N. The design of the fly adhesive pad:distal tenent setae are adapted to the delivery of an adhesive secretion [J]. Proceedings of the Royal Society of London B,1998,265:747-752.
    [105]Wallentin J, Mondon M, Stadler H, et al. The secrets of fly secretes:adhesion properties probed by force-distance curves [C]. In Proceeding of Workshop on Scanning-probe microscopes and organic materials Ⅷ, Basel, Switzerland,4-6 October,1999.
    [106]Niederegger S, Gorb S N, Jiao Y. Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae) [J]. Journal of Comparative Physiology A,2001,187:961-970.
    [107]杨帆,杨卫.从苍蝇与晤面的触粘看尺度效应[J].力学与实践,2004,4:12-14.
    [108]Dai Z, Gorb S N, Schwarz U. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). [J]. Journal of Experimental Biology,2002,205:2479-2488.
    [109]Del Campo A, Greiner C, Alvarez I, et al. Patterned surface with pillars with controlled 3D tip geometry mimicking bioattachment devices [J]. Advanced Materials, 2007,19:1973-1977.
    [110]Rapacchietta A V, Neumann A W, Omenyi S N. Force and free energy analyses of small particles at fluid interfaces. I. Cylinders [J]. Journal of Colloid and Interface Science,1977,59:541-554.
    [111]Rapacchietta A V, Neumann A W, Omenyi S N. Force and free energy analyses of small particles at fluid interfaces. Ⅱ. Spheres [J]. Journal of Colloid and Interface Science,1977,59:555-567.
    [112]Hesla T I, Joseph D D. The maximum contact angle at the rim of a heavy floating disk [J]. Journal of Colloid and Interface Science,2004,279:186-191.
    [113]Vella D, Lee D G, Kim H Y. The load supported by small floating objects [J]. Langmuir, 2006,22:5979-5981.
    [114]Singh P, Joseph D D. Fluid dynamics of floating particles [J]. Journal of Fluid Mechanics,2005,530:31-80.
    [115]Adamson A W. Physical Chemistry of Surfaces [M].5th Ed. New York:Wiley,1990.
    [116]http://www.tianliang.org/635131/[EB/OL].
    [117]Roubaud E. Nouvelles recherches sur l'dvolution zoophile des faunes d'Anopheles en Europe. (A. maculipennis) d'apres les donnee de 1'armement maxillaire [J]. Annales de I'institut Pasteur,1928,42:553-618.
    [118]Abolhassani N, Patel R, Moallem M. Needle insertion into soft tissue:A survey [J]. Medical Engineering and Physics,2007,29:413-431.
    [119]Simone C, Okamura A K. Modeling of needle insertion forces for robot-assisted percutaneous therapy [C]. Proceedings of the IEEE international conference on robotics and automation (ICRA),2002,2085-2091.
    [120]Brett P N, Parker T J, Harrison A J, et al. Simulation of resistance forces acting on surgical needles [C]. Proceedings of the Institute of Mechanical Engineering Part H,1997,211:335-347.
    [121]Dupont H P, Triedman J. Trajectory optimization for dynamic needle insertion [C]. Proceedings of the IEEE international conference on robotics and automation (ICRA), 2005,1646-1651.
    [122]Wittek A, Dutta-Roy T, Taylor Z, et al. Subject-specific non-linear biomechanical model of needle insertion into the brain [J]. Computational Methods of Biomechanical and Biomedical Engineering,2008,11:135-146.
    [123]Frick T B, Marucci D D, Cartmill J A, et al. Resistance forces acting on suture needles [J]. Journal of Biomechanics,2001,34:1335-1340.
    [124]Yang M, Zahn J D. Microneedle insertion force reduction using vibratory actuation [J]. Biomedical Microdevice,2004,6:177-182.
    [125]葛利江,田文儒,范秀君.外科手术刀的种类及其发展状况[J].黑龙江畜牧兽医,2001,11:35-36.
    [126]石美鑫,熊汝成,李鸿儒.实用外科学[M].北京:人民卫生出版社,1992:4-6.
    [127]杨勇,全志伟.手术刀的演变及现代手术刀的使用[J].中国实用外科杂志,2006,26:25-27.
    [128]杨勇,田志杰.现代外科手术刀[J].临床外科,2008,7(16):437-438.
    [129]朱培元.电火花加工技术的应用[J].现代零部件,2009,3:80-83.
    [130]HIBITT KARLSSON SORENSEN. ABAQUS/Explicit Theory and Users'Manuals, Version 5.8. [M].1998.
    [131]Borvik T, Hopperstad 0 S, Berstad T, et al. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses:Part II: numerical simulations [J]. International Journal of Impact Engineering,2002,27: 37-64.
    [132]Iqbal M A, Chakrabarti A, Beniwal S, et al.3D numerical simulations of sharp nosed projectile impact on ductile targets [J]. International Journal of Impact Engineering, 2010,37:185-195.
    [133]Rusinek A, Rodriguez-Martinez J A, Arias A, et al. Influence of conical projectile diameter on perpendicular impact of thin steel plate [J]. Engineering Fracture Mechanics,2008,75:2946-2967.
    [134]Arias A, Rodriguez-Martinez J A, Rusinek A. Numerical simulations of impact behavior of thin steel plates subjected to cylindrical, conical and hemispherical non-deformable projectiles [J]. Engineering Fracture Mechanics,2008,75:1635-1656.
    [135]Yan J, Strenkowski J S. A finite element analysis of orthogonal rubber cutting [J]. Journal of Materials Processing Technology,2006,174:102-108.
    [136]Odland G F. Structure of the skin. In:L. A. Goldsmith, Editor, Physiology, Biochemestry and Molecular Biology of the Skin I [M]. Oxford:Oxford University Press, 1991.
    [137]Norlen L P 0. The skin barrier-structure and physical function [D]. Stockholm: Karolinska Institute,1999.
    [138]Manschot J F M, Brakkee A J M. The measurement and modelling of the mechanical properties of human skin in vivo [J], Journal of Biomechanics,1986,19:511-515.
    [139]Wilkes G L, Brown I A, Wildnauer R H. The biomechanical properties of skin [J]. Critical Reviews in Bioengineering,1973,6:453-495.
    [140]Delalleau A, Josse G, Lagarde J M, et al. A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo [J]. Skin Research and Technology, 2008,14:152-164.
    [141]Hendriks F M. Mechanical behaviour of human epidermal and dermal layers in vivo [D]. Eindhoven:Technische Universiteit Eindhoven,2005.
    [142]Reihsner R, Balogh B, Menzel E J. Two-dimensional elastic properties of human skin in terms of an incremental model at the in vivo configuration [J]. Medical Engineering & Physics,1995,17:304-313.
    [143]Haut R C. Biomechanics of soft tissue [M]//Nahum A M, Melvin J W. Accidental Injury: Biomechanics and Prevention,2nd ed. New York:Springer-Verlag,2002:228-253.
    [144]Holzapfel G A. Biomechanics of soft tissue [M]//Lemaitre J. The Handbook of Materials Behavior Models. Volume Ⅲ, Multiphysics Behaviors. Boston, MA:Academic, 2001:1049-1063.
    [145]Shergold 0 A, Fleck N A. Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin [J]. Journal of Biomechanical Engineering,2005,127:838-848.
    [146]Payne P A. Measurement of properties and function of skin [J]. Clinical Physics & Physiological Measurement,1991,12:105-129.
    [147]Bischoff J E, Arrudaa E M, Grosh K. Finite element modeling of human skin using an isotropic, nonlinear elastic constitutive model [J]. Journal of Biomechanics,2000, 33:645-652.
    [148]Shoemaker P A, Schneider D, Lee M C, et al. A constitutive model for two-dimensional soft tissues and its application to experimental data [J]. Journal of Biomechanics, 1986,19:695-702.
    [149]Tong P, Fung Y C. The stress-strain relationship for the skin [J]. Journal of Biomechanics,1976,9:649-657.
    [150]Allaire P E, Thacker J G., Edlich R F, et al. Finite deformation theory for in-vivo human skin [J]. Journal of Biomechanics,1977,1:239-249.
    [151]Moes N C C M, Horvath I. Finite elements model of the human body:geometry and non-linear material properties [C]. Proceedings of the TMCE 2002, Wuhan, China,2002, 477-494.
    [152]Wu K S, Van-Osdol W W, Dauskardt R H. Mechanical properties of human stratum corneum: Effects of temperature, hydration, and chemical treatment [J]. Biomaterials,2006, 27:785-795.
    [153]Wildnauer R H, Bothwell J W, Douglass A B. Stratum corneum biomechanical properties: I. Influence of relative humidity on normal andextracted human stratum corneum [J]. Journal of Investigative Dermatology,1971,56:72-80.
    [154]Reihsner R, Menzel E J. On the orthogonal anisotropy of human skin as a function of anatomical region [J]. Connective Tissue Research,1996,34:145-160.
    [155]Hendriks F M, Brokkenb D, Oomens C W J, et al. The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments [J]. Medical Engineering & Physics,2006,3:259-266.
    [156]Duck F A. Physical properties of tissue:A comprehensive reference book [M]. London: Academic Press,1990.
    [157]Rothman S. Physiology and Biochemistry of Skin [M]. Chicago:University of Chicago Press,1954.
    [158]Veronda D R, Westmann R A. Mechanical characterization of skin-finite deformations [J]. Journal of Biomechanics,1970,3:111-124.
    [159]Gerling G J, Thomas G W. The Effect of Fingertip Microstructures on Tactile Edge Perception [C]. WHC First Joint Eurohaptics Conference and Symposium.2005,63-72.
    [160]Gardner T N, Briggs G A D. Biomechanical measurements in microscopically thin stratum corneum using acoustics [J]. Skin Research and Technology,2001,7:254-261.
    [161]Mehta A K, Wong F. Measurement of flammability and burn potential of fabrics:Full Report from Fuels Research Laboratory [R], Cambridge:MIT,1973.
    [162]Elkhyat A, Courderot-Masuyer C, Humbert Ph. Influence of the hydrophobic and hydrophilic characteristics of sliding and slider surfaces on friction coefficient: in vivo human skin friction comparison [J]. Skin Research and Technology,2004, 10:215-221.
    [163]Gent A N. Engineering with Rubber-How to Design Rubber Components [M]. Munich:Hanser Publishers,2001.
    [164]Bartenev G M, Zuyev Y S. Strength and Failure of Visco-elastic Materials [M]. New York:Pergamon Press,1968.
    [165]Martanto W, Moore J S, Kashlan O, et al. Microinfusion Using Hollow Microneedles [J]. Pharmaceutical Research,2006,23:104-113.
    [166]Holbrook K A, Odland G F. Regional differences in the thickness (cell layers) of the human stratum corneum:an ultrastructural analysis [J]. Journal of Investigative Dermatology,1974,62:415-422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700