用户名: 密码: 验证码:
反相微乳液法制备Fe、Ni、核壳型Ni/Au纳米粒子及类水滑石纳米化合物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fe、Ni金属纳米粒子具有磁性金属微粉材料、纳米金属材料和纳米磁性材料的多种优点;核壳型Ni/Au磁性金属纳米粒子作为一种新型的复合纳米功能材料在生物医学等领域有着广阔的应用前景。由于传统制备方法的限制,纳米粒子往往存在粒度分布不均、分散性差等问题,且无法对纳米粒子的微观形貌做到精细控制。反相微乳液体系为纳米材料的可控制备提供了新的可能。
     本论文通过在反相微乳液体系中还原Fe、Ni金属盐的方法制备Fe、Ni纳米粒子,研究了Ni金属盐溶液与乳化剂的配比对纳米粒子粒径的影响,并通过改变这一配比制备了具有不同粒径大小,且单分散的Ni纳米粒子。在此基础上,利用氧化还原-转移金属化反应制备了具有核壳结构的Ni/Au磁性金属纳米粒子,研究了用于制备核壳型纳米粒子的Ni粒子粒径和体系中的氯金酸加入量对Ni核粒径和Au壳层厚度的影响,并通过采用具有不同粒径的Ni金属纳米粒子和控制产氯金酸加入量的方法,实现了对Ni核粒径和Au壳层厚度的控制。本研究制备的Fe、Ni、核壳型Ni/Au磁性金属纳米粒子完全由Fe、Ni和Au构成,不含有其它杂质。对于核壳型Ni/Au磁性金属纳米粒子,包裹Ni核的Au壳层可以有效地减缓Ni核的氧化速度。核壳型Ni/Au磁性金属纳米粒子的截止温度随着Ni核的减小从53 K降低到16 K。在截止温度以下,纳米粒子表现出铁磁性;在截止温度以上,纳米粒子表现出理想的超顺磁性。
     此外,通过反相微乳液法合成了一种可作为催化剂前驱体的Ni基类水滑石化合物,研究了乳化剂类型对制备过程的影响,发现采用由阴离子乳化剂和非离子乳化剂体系组成的混合型乳化剂体系可以制得理想的纳米级水滑石化合物。与传统的共沉淀制备法相比,通过反相微乳液法制备的催化剂具有更小的Ni晶粒,更好的热稳定性,更高的比表面和Ni金属分散度,而且,Ni颗粒在载体中也分散得更加均匀。
Fe and Ni nanoparticles possess the merits of magnetic metal fine powders, nanometer metals, and nanometer magnetic materials. As a new kind of nanometer functional composite materials, core/shell Ni/Au nanoparticles have broad applications in biomedical field. However, due to the limitations of the traditional preparation methods, it is difficult to get nanoparticles with uniform diameters, and to control the morphology elaborately. Reverse microemulsion provids a new possible method to resolve these problems.
     In this work, Fe2+, Ni2+ cations were reduced in the reverse microemulsionsystem to prepare Fe, Ni nanoparticles, and the relations between the Ni nanoparticle diameters and the ratios of Ni2+ solution to emulsifier were investigated. On this basis, core/shell Ni/Au nanoparticles were prepared through a redox-transmetalation method, and the diameters of Ni nanoparticles, the amount of added HAuCl4 which affected the morphology of core/shell Ni/Au nanoparticles was discussed. The morphology was found determined by these factors. The Fe, Ni, and core/shell Ni/Au nanoparticles prepared in this work was pure, without any impurities. For core/shell Ni/Au nanoparticles, the gold shells could effectively slow down the oxidation of the Ni cores. The block temperature of the core/shell Ni/Au nanoparticles decreased from 53K to 16K, with the decreasing of the Ni cores. When the temperature below the block temperature, the sample was ferromagnetic, while above the temperature the sample was superparamagnetic.
     In addition, Ni-based hydrotalcite-like compounds was synthesized through the reverse microemulsion method, which could be used as catalyst precursor. The type of emulsifiers which could affect the synthesis process was investigated. The mixture of anion emulsifier and cation emulsifier were able to provide a proper system for the syntheis of hydrotalcite-like compounds. Compared with the conventional coprecipitation method, the catalyst obtained from reverse microemulsion exhibited finer Ni crystal grains, higher specific surface, better thermal stability, and uniform dispersion.
引文
[1] J. W. Vanderhoff, E. B. Bradford, H. L. Tarkowski, et al. Polymerization and polycondensation processes, Adv. Chem. Ser., 1962, 34: 32~51?
    [2]天津大学高分子教研室,粉状聚丙烯酰胺及其部分水解物的研制-乳液聚合法,塑料工业, 1978, (3): 14~17
    [3]胡金生,哈润华,顾汉卿,丙烯酰胺的反相乳液聚合,高分子材料科学与工程, 1985, 1: 36~45
    [4] D. Hunkeler, A. E. Hamielec, W. Baade,?Mechanism, kinetics and modelling of the inverse-microsuspension homopolymerization of acrylamide, Polymer, 1989, 30(1): 127~142
    [5] T. P. Boar, J. H. Schulman, Nature, 1943, 152: 102
    [6] J. E. Bowcott, J. H. Schulman, Z Electrochem, 1955, 59: 283
    [7] L. M. Prince. Microemulsion, Academic Press, New York, 1977
    [8] J. H. Schulman, W. Stoeckenius, L. M. Prince, Mechanism of formation and structure of micro emulsions by electron microscopy, J. Phys. Chem., 1959, 63: 1677~1680?
    [9] K. Shinoda, S. Friberg, Adv. Colloid Int Sci., 1960, 4: 281
    [10] S. Friberg, Emulsion and Microemulsion, American Chemical Society short course presentation, Atlanta, Georgia, Aprial, 1981
    [11] B. Lindaman, N. Kamenka, B. Brun, et al. Microemulsion, Pleum Press, New York, 1982, p155
    [12] K. Shinoda, H. Saito, The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant, J. Colloid. Int. Sci., 1968, 26(1): 70~74
    [13] L. E. Scriven, K. L. Mittal, Micellization, solubilization and microemulsion, Plenum Press, New York, 1977, Vol 2
    [14] H. L. Rosano, M. Clausse, Microemulsion Systems, M. Dekker, New York, 1987
    [15] P. Becker, Encyclopedia of Emulsion Technology, M. Dekker, New York, 1983, Vol 1
    [16]张立德,牟季美著纳米材料和纳米结构[M].应用物理学丛书科学出版社出版2002
    [17] R. P. Andree, R. S. Averback, Research Opportunities on Clusters and Cluster - Assembled Materials. J. Mater. Res., 1989, 4(3): 704~707
    [18]金利通,鲜跃仲,张芬芬,纳米电化学与生物传感器的研究进展,华东师范大学学报(自然科学版), 2005, 12(5-6): 13~22
    [19]薛群基,徐康,纳米化学,化学进展, 2000, 4: 431~444?
    [20] V. M. Cepak, C. R. Martin, Preparation of polymeric micro- and nanostructures using a template-based deposition method, Chem. mater., 1999 11(5): 1363~1367
    [21] T. Tanigaki, Y. Saito, T. Nakada, et al. Structure of carbon-coated or silicon-oxide-coated ZnTe, ZnSe and ZnS nanoparticles produced by gas evaporation technique, J. Nanopart. Res., 2002, 4: 83~93
    [22] D. Babonneau, T. Cabioc'h, A. Naudon, et al. Silver nanoparticles encapsulated in carbon cages obtained by co-sputtering of the metal and graphite, Surf. Sci. 1998, 409(2): 358~371
    [23] Q. Chen, A. J. Rondinone, B. C.Chakoumakos, et al. Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation, J. Magn. Magn. Mater. 1999, 194: 1~7
    [24] Q. Y. Lu, F. Gao, D. Y. Zhao, One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes, and Nanovesicles by a Simple Organic Amine-Assisted Hydrothermal Process, Nano. Lett., 2002, 2(7): 725~728
    [25] D. H. Chen, X. R. He, Synthesis of nickel ferrite nanoparticles by sol-gel method, Mater. Res. Bull., 2001, 36(7-8): 1369~1377
    [26] M. Ji, X. Y. Chen, C. M. Wai, et al. Synthesizing and dispersing silver nanoparticles in a water-in-supercritical carbon dioxide microemulsion, J. Am. Chem. Soc., 1999, 121(11): 2631~2632
    [27] P. Barnickel, A. Workaun, W. Sager. Size taikoung of silver colloids by reduction on W/O microemulsions, J. Colloid and Interface Sci., 1992, 148: 80~84
    [28]勾华,张朝平,罗玉萍,微乳液和反相微乳液法在合成和制备纳米铁系化合物上的应用,贵州大学学报(自然科学版), 2001, 18(2): 143~145
    [29] C. F. Hoener, K. A. Allan, A. J. Campion, et al. J. Phys. Chem. A, 1992, 96:3812
    [30]邵庆辉等,微乳化技术在纳米材料制备中的研究,化工新型材料, 2001, (7): 9~12
    [31]成国祥等,反相胶束微反应器及其制备纳米微粒的研究进展,化学通报, 1997, (3): 14~19
    [32] H. Takayuki, H. Sato, Mechanism of formation of CdS and ZnS ultrafine particles in reverse micelles. Ind. Eng. Chem. Res., 1994, 33: 3262~3266
    [33]肖良质,邹炳锁,张岩,微乳胶法制备单分散Fe2O3超微粒子及其表征,吉林大学自然科学学报, 1990, (4): 115
    [34] M. P. Pileni, I. Lisiecki, Nanometer metallic copper partides systhesis in reverse micelles, Colloid and interfaces A, 1993, 80: 63~68
    [35] A. Jada, J. Lang. R. Zana, Temary water in oil microemuisions made of cationic surfactants, wateter, and aromatic solvents. 2. droplet sizes and interactions and exchange of material between droplets, J. Phys. Chem., 1990, 94(1): 387
    [36] M. Boutonnet, J. Kizling, P. stenivs, The preparation of monodisperse colloidal metal particles from mieroemulsion. Colloids and Surfaces, 1982, 5: 209~212
    [37] D. H. Chen, S. H. Wu, Synthesis of Nickel Nanoparticles in Water-in-Oil Microemulsions, Chem. Mater., 2000, 12: 1354~1360
    [38] S. Kishore, J. A. Nelson, J. H. Adair, et al. Hydrogen storage in spherical and platelet palladium nanoparticles, J. Alloy Compd., 2005, 389:234~242
    [39] F. X. Chen, G. Q.Xu, T. S. Andy Hor, Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion, Mater. Lett., 2003, 57(21): 3282~3286
    [40] A. A. Bol, R.V. Beek, A. Meijerink, On the incorporation of trivalent rare earth ions in II-VI semiconductor nanocrystals, Chem. Mater., 2002, 14(3): 1121~1126
    [41] I. Bana, M. Drofenik, D. Makovec, The synthesis of iron-nickel alloy nanoparticles using a reverse micelle technique, J. Magn. Magn. Mater. 2006, 307(2): 250~256
    [42] W. H. Wang, X. L. Tian, K. Chen, et al. Synthesis and characterization of Pt–Cu bimetallic alloy nanoparticles by reverse micelles method, Colloid Surface A, 2006, 273: 35~42
    [43] H. Tang, G. Y. Xu, L. Q. Weng, et al.? Luminescence and photophysicalproperties of colloidal ZnS nanoparticles, Acta Mater., 2004, 52(6):1489~1494
    [44] J. Zhang, L. D. Sun, C. S. Liao, et al. Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method, Solid State Commun., 2002, 124: 45~48
    [45]叶钊,林荣英,林松等,反相胶束微反应器制备Fe2O3超细粒子的研究,福州大学学报, 2002, 30(6): 918-920
    [46] M. Artum, R. Lopez-Quintela, Chemical reactions in microemulsions: a powerful method to obtain trafine particles, J. Colloid and Interface Sci., 1993, 158: 447
    [47] H. Srikanth, E. E. Carpenter, L. Spinu, et al, Dynamic transverse susceptibility in Au–Fe–Au nanoparticles, Mater. Sci. Eng. A, 2001, 304-306: 901~904
    [48] C. T. Seip, C. J. O’Connor, The fabrication and organization of self-assembled metallic nanoparticles formed in reverse micelles, Nanostructured Materials, 1999, 12: 183~186
    [49] D. Chen, J.J. Li, C.S. Shi, et al. Properties of core-shell Ni-Au nanoparticles synthesized through a redox-transmetalation method in reverse microemulsion, Chem. Mat., 2007, 19(14): 3399~3405
    [50] P. Tartaj, C. J. Serna, Synthesis of monodisperse superparamagnetic Fe/Silica nanospherical composites, J. Am. Chem. Soc., 2003, 125(51): 15754~15755
    [51] J. L. Gong, J. H. Jiang, Y. Liang, et al. Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology, J. Colloid. Interf. Sci., 2006, 298(2): 752~756
    [52] F. Teng, Z. J. Tian, G. X. Xiong, Z. S. Xu, Preparation of CdS–SiO2 core-shell particles and hollow SiO2 spheres ranging from nanometers to microns in the nonionic reverse microemulsions, Catal. Today, 2004, 93-95: 651~657
    [53] Sollagj, Montielv, Aldaza, Synthesis and electrochemical decontamination of platinum-palladium nanoparticles prepared by water-in-oil mieroemulsion, J. of the Electrochemical Society, 2003, 150(2): 104~109
    [54] J. Zhang, L. D. Sun, C. S. Liao, Size control and photolum inescence enhancement of CdS nanoparticle prepared via reverse micelle method, Solid State Communications, 2002, 124:45~48
    [55] D. H. Chen, C. H. Hsieh, Synthesis of nickel nanoparticles in aqueous cationicsurfactant solutions, J. Mater. Chem., 2002, 12, 2412~2415
    [56] J. Legrand, A. Taleb, S. Gota, et al. Synthesis and XPS Characterization of Nickel Boride Nanoparticles, Langmuir 2002, 18(10): 4131~4137
    [57] S. J. Cho, A. M. Shahin, G. J. Long, et al. Magnetic and Mossbauer Spectral Study of Core/Shell Structured Fe/Au Nanoparticles, Chem. Mater., 2006, 18: 960~967
    [58] S. J. Cho, J. C. Idrobo, J. Olamit, et al. Growth mechanisms and oxidation resistance of gold-coated iron nanoparticles, Chem. Mater., 2005, 17: 3181~3186
    [59] E. E. Carpenter, C. T. Seip, C. J. O’Connor, Magnetism of nanophase metal and metal alloy particles formed in ordered phases, J. Appl. Phys., 1999, 85(8): 5184~5186
    [60] W. L. Zhou, E. E. Carpenter, J. Lin, et al. Nanostructures of gold coated iron core-shell nanoparticles and the nanobands assembled under magnetic field, Eur. Phys. J. D 2001, 16: 289~292
    [61] J. Lin, W. L. Zhou, A. Kumbhar, et al. Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly, J. Solid State Chem., 2001, 159: 26~31
    [62] C. F. Karayigitoglu, M. Tata, et al., Modification of CdS nanoparticle characteristics through synthesis in reversed micelles and exposure to enhanced gas pressures and reduced temperatures, Colloids and Surfaces A, 1994, 82: 151
    [63] W. D. Sun, L. P. Xu, Y. Chu, Controllable synthesis characterization and catalytic properties of WO3/ZrO2 mixed oxides nanoparticles. Journal of Colloid and Interface Science, 2003, 266: 99~106
    [64] S. Xu, R. Zhao, X. L. Wang, Highly coking resistant and stable Ni/A12O3 catalysts prepared by W/O microemulsion for partial oxidation of methane, Fuel Processing Technology, 2004, 123~133
    [65]张志成,徐相凌,张曼维,过硫酸钾引发丙烯酰胺微乳液聚合[J].高分子学报, 1995, (1): 23~27
    [66] F. Ozer, M. O. Beskardes, E. J. Piskin, Methacrylatebased nanoparticles produced by microemulsiom polymerization, J. App1. Polym. Sci., 2000, 78(3): 569~575
    [67] G. W. He, Q. M. Pan, Rempel, Synthesisof poly(methylmethacrylate)nanosizeparticles by differential microemulsion polymerization, Macromal Rapid Coommun, 2003, 9(24): 585~589
    [68] Zhang Y Y,Guo T Y,Hao G J.Nanosize polymer lattices made by microemulsion copolymerization:preparation and characterization[J].Journal of Applied PolymerScience,2003,90:3625~3630
    [69] P. A. Dresco,V. S. Zaitsev, R. J. Grambino et a1., Engineering aspects of preparparation of nanocrystalline particles in microemulsion, Nanopart Res., 1999, 15(6): 1945~1951
    [70] L. M. Gan, C. H. Chew, S. E. Friberg, Polymerization of styrene in water-alcohol-ionic surfactant solutions, J. Macrm. Sci. Chem., l983, 19: 739
    [71] B. Gupta, H. Singh, Separation of Liquid Mixtures by Pervaporation, Polym. Plast. Techno1. Eng., 1992, 31(7): 635~658
    [72]仲慧,王锦堂,朱红军等,温敏超细颗粒对亲水药物的吸附[J],精细化工, 2000, 17(5): 265~266
    [73] F. Cavani, F. Trifiro, A. Vaccari, Hydrotalcite-type anionic clays: preparation, properties and applications, Catal. Today, 1991, 11: 173~186
    [74] A. J. Akande, R. O. Idem, A. K. Dalai, Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production, Appl. Catal. A: Gen., 2005, 287: 159~175
    [75] S. Freni, S. Cavallaro, N. Mondello, et al. Production of hydrogen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts, Catal. Commun., 2003, 4: 259~268
    [76] F. Aupretre, C. Descorme, D. Duprez, et al. Ethanol steam reforming over MgxNi1-xAl2O3 spinel oxide-supported Rh catalysts, J. Catal., 2005, 233: 464~477
    [77] F. Frusteri, S. Freni, V. Chiodo, et al. Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts, Int. J. Hydrogen Energy, 2006, 31: 2193~2199
    [78] P. Biswas, D. Kunzru, Steam reforming of ethanol for production of hydrogen over Ni/CeO2-ZrO2 catalyst: Effect of support and metal loading, Int. J. Hydrog Energy, 2007, 32(8): 969~980
    [79] N. Laosiripojana, S. Assabumrungrat, Catalytic steam reforming of ethanol over high surface area CeO2: The role of CeO2 as an internal pre-reforming catalyst, Appl. Catal. B-Environ., 2006, 66: 29~39
    [80] M. N. Barroso, M.F. Gomez, L.A. Arrua, et al. Hydrogen production by ethanol reforming over NiZnAl catalysts. Appl. Catal. A-Gen., 2006, 304: 116~123
    [81] Y.D. Li, J.L. Chen, L. Chang, et al. The doping effect of copper on the catalytic growth of carbon fibers from methane over a Ni/Al2O3 catalyst prepared from Feitknecht compound precursor, J. Catal., 1998, 178(1): 76~83
    [82] J. L. Chen, Y. D. Li, Y. M. Ma, et al. Formation of bamboo-shaped carbon filaments and dependence of their morphology on catalyst composition and reaction conditions, Carbon, 2001, 39(10): 1467~1475
    [83] J. L. Chen, Y. D. Li, Z. Q. Li, et al. Production of COx-free hydrogen and nanocarbon by direct decomposition of undiluted methane on Ni–Cu–alumina catalysts, Appl. Catal. A: Gen., 2004, 269(1-2): 179~186
    [84] Y. D. Li, J. L. Chen, Y.N. Qin, et al. Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst, Energ. Fuel, 2000, 14: 1188~1194
    [85] J. Wei, D. S. Xue, Y. Xu, Photoabsorption characterization and magnetic property of multiferroic BiFeO3 nanotubes synthesized by a facile sol-gel template process, Scripta Mater., 2008, 58(1):45~48
    [86] J. Petzold, Applications of nanocrystalline softmagnetic materials for modern electronic devices, Scripta Mater., 2003, 48(7):895~901
    [87] P. Sharma, J. Waki, N. Kaushik, et al. High coercivity characteristics of FePtB exchange-coupled nanocomposite thick film spring magnets produced by sputtering, Acta Mater., 2007, 55(12):4203~4212
    [88] R. A. Varin, T. Czujko, E. B. Wasmund, et al. Catalytic effects of various forms of nickel on the synthesis rate and hydrogen desorption properties of nanocrystalline magnesium hydride (MgH2) synthesized by controlled reactive mechanical milling (CRMM), J. Alloy Compd., 2007, 432:217~231
    [89] M. J. Wozniak, P. Wozniak, M. Bystrzejewski, et al. Magnetic nanoparticles of Fe and Nd–Fe–B alloy encapsulated in carbon shells for drug delivery systems: Study of the structure and interaction with the living cells, J. Alloy Compd., 2006, 423:87~91
    [90] S. H. Koenig, K. E. Kellar, Magn. Reson. Med., 1995, 34: 227
    [91] D. S. Wang, J. B. He, N. Rosenzweig, et al. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cellseparation, Nano. Lett., 2004, 4(3): 409~413
    [92] Y. R. Chemla, H. L.Crossman, Y. Poon, et al. Ultrasensitive magnetic biosensor for homogeneous immunoassay, Proc. Natl. Acad. Sci. U. S. A., 2000, 97(26): 14268~14272
    [93] S. G. Ruehm, C. Corot, P. Vogt, et al. Magnetic Resonance Imaging of Atherosclerotic Plaque With Ultrasmall Superparamagnetic Particles of Iron Oxide in Hyperlipidemic Rabbits, Circulation 2001, 103(3): 415~422
    [94]景茂祥,沈湘黔.纳米磁性金属电磁波吸收剂的研究进展及展望[J],材料导报, 2005, 19(12): 13~16
    [95] M. Spasova, V. Salgueirino-Maceira., A Schlachter, et al. Magnetic and optical tunable microspheres with a magnetite/gold nanoparticle shell, J. Mater. Chem., 2005, 15: 2095~2098
    [96] J. Luo, L. Y. Wang, D. Mott, et al. Ternary alloy nanoparticles with controllable sizes and composition and electrocatalytic activity, J Mater Chem., 2006, 16: 1665~1673
    [97] S. Mornet, S. Vasseur, F. Grasset, et al.? Magnetic nanoparticle design for medical diagnosis and therapy, J. Mater. Chem., 2004, 14: 2161~2175
    [98] Y. J. Yu, B. Che, Z. H. Si, et al. Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion, Synth. Met., 2005, 150: 271~277
    [99] J. H. Adair, T. Li, T. Kido, et al. Recent developments in the preparation and properties of nanometer-size spherical and platelet-shaped particles and composite particles, Mater. Sci. Eng. R-Rep., 1998, 23(4-5): 139~242
    [100] W. R. Lee, M. G. Kim, J. R. Choi, et al. Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles, J. Am. Chem. Soc., 2005, 127: 16090~16097
    [101] J. I. Park, M. G. Kim, Y. W. Jun, et al. Characterization of superparamagnetic“core-shell”nanoparticles and monitoring their anisotropic phase transition to ferromagnetic“solid solution”nanoalloys, J. Am. Chem. Soc., 2004, 126: 9072~9078
    [102] J. I. Park, J. Cheon, Synthesis of“solid solution”and“core-shell”type cobalt-platinum magnetic nanoparticles via transmetalation reactions, J. Am. Chem. Soc., 2001, 123: 5743~5746
    [104] A. J. Zarur, J. Y. Ying, Reverse microemulsion synthesis of nanostructuredcomplex oxides for catalytic combustion, Nature, 2000, 403(6765): 65~67
    [105] F. Teng, J. G. Xu, Z. J. Tian, et al. Formation of a novel type of reverse microemulsion system and its application in synthesis of the nanostructured La0.95Ba0.05MnAl11O19 catalyst, Chem. Commun., 2004, (16): 1858~1859
    [106] Y. Kojima, K. Suzuki, K. Fukumoto, et al. Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide, Int. J. Hydrog Energy, 2002, 27: 1029~1034
    [107]刘程,张万福,陈长明,表面活性剂应用手册(第二版),化学工业出版社,北京, 1995, p55
    [108] J. A. Dean, Lange's Handbook of Chemistry, 15th ed., McGraw-Hill, Inc., New York,1999
    [109]刘树信,霍冀川,李炜罡等,反相微乳液法制备纳米颗粒研究进展,无机盐工业, 2004, 36(5): 7~10
    [110]潘相敏,马建新,燃料电池汽车供氢新技术-硼氢化钠水解制氢,天然气化工, 2003, 28(5): 51~55
    [112] B. Bosnich, Cooperative Bimetallic Redox Reactivity, Inorg. Chem., 1999, 38: 2554~2562
    [113] Y. P. Bao, H. Calderon, K. M. Krishnan, Synthesis and characterization of magnetic-optical Co-Au core-shell nanoparticles, J. Phys. Chem. C, 2007, 111: 1941~1944
    [114] R. H. Mutlu, A. Aydinuraz, Effect of particle size on the magnetic properties of NiB, J. Magn. Magn. Mater., 1987, 68: 328~330
    [115] F. J. Himpsel, J. E. Ortega, G. J. Mankey, et al. Magnetic nanostructures, Adv. Phys., 1998, 47: 511~597
    [116] K. V. P. M. Shafi, A. Gedanken, R. Prozorov, et al. Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles, Chem. Mater., 1998, 10: 3445~3450
    [117] J. -H. Hwang, V. P. Dravid, M. H. Teng, et al. Magnetic properties of graphitically encapsulated nickel nanocrystals, J. Mater. Res., 1997, 12: 1076
    [118] Z. Lin, J. J. Cai, L. E. Scriven, et al. Spherical-to-wormlike micelle transition in CTAB solutions, J. Phys. Chem., 1994, 98, 5984~5993
    [119] R. H. Kodama, Magnetic nanoparticles, J. Magn. Magn. Mater., 1999, 200: 359~372
    [120] T. Sato, T. Iijima, M. Seki, et al. Magnetic properties of ultrafine ferriteparticles, J. Magn. Magn. Mater., 1987, 65: 252~256
    [121] O. Clause, B. Rebours, E. Merlen, et al. Preparation and characterization of nickel-aluminum mixed oxides obtained by thermal decomposition of hydrotalcite-type precursors, J. Catal., 1992, 133: 231~246
    [122] J. H. Kim, D. J. Suh, T. J. Park, et al. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts, Appl. Catal. A-Gen., 2000, 197(2): 191~200
    [123] J. Comas, F. Marino, M. Laborde, et al. Bio-ethanol steam reforming on Ni/Al2O3 catalyst, Chem. Eng. J., 2004, 98(1-2): 61~68
    [124] S. Freni, S. Cavallaro, N. Mondello, et al. Steam reforming of ethanol on Ni/MgO catalysts: H2 production for MCFC, J. Power Sources, 2002, 108: 53~57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700