用户名: 密码: 验证码:
齿轮刚度计算及其有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮传动作为机械传动最常用的形式之一,在机械、电子、纺织、冶金、采矿、汽车、航空、航天及船舶设备(装置)制造中得到了广泛应用。随着机械科学和制造技术的迅速发展,对机械传动系统的运行精度和质量提出了新的更高的要求,齿轮刚度计算及其动态特性研究倍受国内外学者们的高度关注。
     本文在对国内外有关齿轮刚度研究进展进行概述和分析的基础上,系统开展了直齿圆柱齿轮和直齿圆锥齿轮刚度计算与分析研究,并利用有限元法对直齿锥齿轮的刚度进行了深入分析,提出了一种适用于小齿数、小直径直齿锥齿轮刚度计算的等效转换方法,进一步丰富和发展了齿轮刚度的计算理论,其主要研究工作进展及其创新点为:
     1.针对直齿圆柱齿轮刚度理论计算时采用的当量齿形,本研究采用一种更接近理论齿形的当量齿形,推导出一种新的直齿圆柱齿形刚度计算公式,通过对新的齿轮刚度计算公式与石川公式计算结果的比较,给出了石川公式计算的偏差。
     2.通过对直齿圆柱齿轮刚度的系统分析,揭示出影响直齿圆柱齿轮刚度的主要因素及其变化规律,通过对齿轮刚度计算结果的比较,发现了直齿圆柱齿轮刚度随着齿数的增加而增加,而与齿轮的模数无关,并且通过新的直齿圆柱齿轮刚度计算结果证实了本研究结论的正确性。
     3.运用ANSYS软件对直齿锥齿轮的刚度进行有限元分析,同时将其有限元计算值与其理论计算值进行比较,结果表明:用新的齿轮刚度计算公式计算的刚度值比用石川公式计算的刚度值有明显的提高,且新的齿轮刚度计算公式的计算值更接近趋向于有限元计算值;而新的齿轮刚度计算公式的计算值与有限元计算值基本上趋于一致,并且在分锥角较小时两者之间误差小,随着分锥角增大两者之间误差会有所增大。
     4.在分析了常用等效转换方法的缺陷和直齿锥齿轮刚度的理论与数值计算结果的基础上,提出一种新的适用于小齿数、小直径直齿锥齿轮刚度计算的等效转换新方法,为系统全面研究和解析齿轮刚度提供了新的方法。
     本研究是国家自然科学基金项目《锥齿轮局部互换性研究》的内容之一。有关齿轮刚度计算和运用ANSYS软件研究直齿锥齿轮刚度的工作及取得的成果,对进一步丰富和发展了齿轮刚度理论具有重要的理论意义,其应用将产生良好的经济和社会效益。
Gear drive is one of the most common mechanical transmission modes. It has abroadbeen used in many industry fields, such as machine and electron and textile andmetallurgy and mining and automobile and aerospace and ship equipment manufacturing,etc. With the rapid development of mechanical science and manufacturing technology, thenew advanced requirement on the transmission accuracy and quality of mechanicaltransmission system is put forward. Research on the stiffness calculation and dynamiccharacteristic of gears is highly concerned by engineering experts and scholars both hereand abroad.
     Based on the summarization and analysis of the progress of gears stiffness both hereand abroad, this paper systematically expands the research of stiffness calculation andanalysis of straight spur and bevel gears and deep analyzes mesh stiffness of straightbevel gears using finite element methods and presents a new equivalent conversionmethod for mesh stiffness calculation of straight bevel gears of the small teeth number anddiameter and further enriches and develops the theoretical calculation of gears stiffness.The major innovative achievements and work progress are listed as follows :
     1.Equivalent weight tooth shape is adopted when mesh stiffness of gears iscalculated , so this research adopts a kind of new equivalent weight tooth shape which iscloser to the theoretical tooth shape than old equivalent weight tooth shape and educes thenew formulae of spur gears mesh stiffness. Then ,it is shown that the results calculated byusing Shi Chuan gears stiffness formulae have a certain deviation by means of comparisonbetween the results calculated by using the new gears stiffness formulae and the resultscalculated by using Shi Chuan gears stiffness formulae .
     2.By the systematical analysis of spur gears stiffness, the main influencing factorsand laws of spur gears mesh stiffness are found out. It is presented that spur gears stiffnessmagnitude increases with the increase of the teeth number of spur gears but it isindependent of spur gears modulus by means of comparison among the calculated resultsof spur gears stiffness, and the results calculated by the new spur gears stiffness formulaehave further proved its correctness.
     3.By using FEM and FEA software ANSYS , the finite element analyses of straightbevel gears mesh stiffness are made .Meanwhile ,all the numerical calculation results havebeen compared with their theoretical calculation results .From the compared results ,theconclusions can be obtained as follow: The value calculated by the new gears stiffness formulae is more enhanced obviously and closer to the numerical calculation value thanthe value calculated by Shi Chuan gears stiffness formulae ;The value calculated by thenew gears stiffness formulae and the finite element methods is parallel ,and error betweenthem is small when reference cone angle is less but when reference cone angleincreases ,error between them increases.
     4.Based on analyzing the defects of the usual equivalent conversion methods and theresults calculated by the theoretical formulae and the finite element methods , this paperpresents a new equivalent conversion method for mesh stiffness calculation of straightbevel gears of the small teeth number and diameter . It offers a new method for wholeresearching systems and analyzing gears stiffness.
     The research is a part of the project <> of National Natural Science Foundation of China. The work about calculation ofgears mesh stiffness and researching mesh stiffness of straight bevel gears using softwareANSYS and the obtained production have important theoretical significance for furtherenriching and developing the theories of gears stiffness, and its application will bring goodeconomical and societal benefit.
引文
[1] 唐定国,陈国民.齿轮传动技术的现状和展望.机械工程学报.1993,20(3):35~41
    [2] 马亮.大型船用齿轮传动系统动力学研究.2001.4 哈尔滨工业大学博士论文
    [3] 刘景军.斜齿轮啮合刚度的计算.武钢职工大学学报.2001,13(2):33~36
    [4] 石守红,张锁怀.时变啮合刚度对转子-轴承系统动力特性的影响.西北大学学报.2001,31(4):308~310
    [5] 石守红,贾振波,韩玉强等.齿轮时变啮合刚度引起的分岔与动载荷.机械科学与技术.2001,20(5):721~722
    [6] H. N. Ozguven. Assessment of some recently developed mathematical models in gear dynamics. Proceedings of the Eight World Congress on the Theory of Machines and Mechanisms, Prague, 1991: 605~608
    [7] 李瑰贤,马亮,陶建国等.船舶用齿轮传动啮合刚度及动态性能研究.船舶工程.2000,(5):41~43
    [8] 王立华,李润方,林腾蛟等.齿轮系统时变刚度和间隙非线性振动特性研究.中国机械工程.2003,14(13):1143~1146
    [9] Smith, J. D. Gear Noise and Vibration. Marcel Dekker, New York, 1999
    [10] 李润方,王建军.齿轮系统动力学.北京:科学出版社.1997
    [11] 唐进元,颜海燕.线外啮合齿轮传动啮合刚度计算.机械传动.2002,26(4):22~24
    [12] W. Nadolski, A. Pielorz. The influence of wadable stiffness of teeth on dynamic loads in single-gear transmission. Archive of Applied Mechanics 1998, 68: 185~194
    [13] GRZEGORZLITAK, MICHAEL I. FRISWELL. Dynamics of a Gear System with Faults in Meshing Stiffness. Nonlinear Dynamics. 2005, 41: 415~421
    [14] Tahar Fakhfakh, Fakher Chaari, Mohamed Haddar. Numerical and experimental analysis of a gear system with teeth defects. Int. J. Adv. Manuf. Technol. 2004
    [15] Ahmad Al-shyyab. Non-linear Dynamic Analysis of a Multi-Mesh Gear Train Using Multi-Term Harmonic Balance Method. 2003,12. The University of Toledo. Submitted as parbial fulfillment of the requirements for The Doctor of Philosophy in Engineering
    [16] Geunho Lee. Modelling of Multi-Mesh Gear Dynamic Analysis Based on Pseudo-interference Stiffness Estimation. 1997, University of Connecticut. Submitted in Partial Fulfillment of the Requirement of the Degree of Doctor of philosophy
    [17] J. J. Zhang, I. I. Esat, Y. H. Shi. Load analysis with varying mesh stiffness. Computers and structures. 1999,70:273~280
    [18] 许洪斌,张光辉,加藤正名.分阶式双渐开线齿轮轮齿刚度的研究.重庆大学学报.1999,22(1):116~120
    [19] 刘卫东,刘占辰.轴向载荷作用下钟表齿轮系统刚度可靠性研究.南昌大学学报. 1999,21(1):11~14
    [20] 韩晓娟.齿轮传动系统刚度的确定方法.力学与实践.1998,20:66~67
    [21] 常山,徐振忠,霍肇波等.斜齿圆柱齿轮瞬时啮合冈《度及齿廓修形的研究.热能动力工程.1997,12(4):270~274
    [22] S. Du, R. B. Randall, D. W. Kelly. Modelling of spur gear mesh stiffness and static transmission error. Instn Mech Engrs. 1998, 212: 287~297
    [23] A. Carbou and G. V. Tordian. Numerial implementation of complex potentials for gear teeth analysis. Trans. ASME, J. Mech. Des.. 1981,103(2): 460~465
    [24] 程乃士,刘温.用平面弹性理论的复变函数解法精确确定直齿轮的轮齿挠度.应用数学和力学.1985,6(7):619~631
    [25] JGMA 401-01,平 曲强 算式,1974
    [26] R. W. Cornell. Compliance and stress sensitivity of spur gear teeth. Trans. SAME, J. Mech. Des.. 1981,103(2): 447~459
    [27] K. Nagaya and S. Uematsu. Effects of moving speeds of dynamic loads on the defection of gear teeth. Trans. ASME. J. Mech. Des.. 1981,103(2): 357~363
    [28] [澳]B.Rebbechi and J.D.C.Crisp.弹性直齿圆柱齿轮的振动机理及其啮合点的动力分析.李庆芬译.齿轮.1985,9(4):47~51
    [29] 丁玉成,王建军,李润方.直齿轮接触有限元分析及轮齿热弹变形.重庆大学学报.1987,10(2):1~9
    [30] 李润方,丁玉成,王建军.直齿圆柱齿轮啮合热弹变形数值分析及修形设计.机械设计.1988,(1):1~8
    [31] 李润方,陈晓南.弹塑性接触有限元混合法及其在齿轮传动中的应用.工程力学.1989,6(2):87~97
    [32] 刘更,沈允文.内、外啮合斜齿轮三维有限元网格自动生成原理及其程序实现.机械工程学报.1992,28(5):20~25
    [33] 赵力航,王寿佑.多齿对耦合带轮体圆柱齿轮变形和刚度的研究.机械传动.1993,17(1):24~29
    [34] 李剑锋,王寿佑,艾兴等.圆柱齿轮多齿对耦合瞬时啮合刚度的研究.机械传动.1994,18(3):31
    [35] 李剑锋,张准,王寿佑.圆柱斜齿轮多齿对耦合瞬时啮合刚度的有限元分析.济南大学学报.1994,4(1):69~73
    [36] 陶栋材.薄轮辐齿轮传动啮合刚度计算分析.湖南农学院学报.1995,21(3):287~291
    [37] 刘伟强,祖似杰.电动轮传动系统齿根动应力的试验研究.机械传动.1997,21(4):23~25
    [38] 林腾蛟,李润方,陈兵奎等.混合标架下宽斜齿轮三维接触有限元前处理技术.机械传动.1997,21(2):9~12
    [39] 林腾蛟,李润方,朱才朝等.斜齿轮的齿面载荷及啮合刚度数值分析.机械工艺师.2000.10
    [40] L. D. Maclennan. An analytical method to determine the influence of shape deviation on load distribution and mesh stiffness for spur gears. J. Mechanical Engineering Science. 2002, 216: 1005~1016
    [41] J. Wang and I. Howard. The torsional stiffness of involute spur gears. J. Mechanical Engineering Science. 2004, 218: 131~142
    [42] 黄慧春,沈永鹤.三环传动中内齿轮环板的刚度分析.机械设计与研究.2004,20(5):87~88
    [43] 黄康,赵韩,赵小勇.斜齿微线段齿轮刚度研究.农业机械学报.2005,36(4):119~122
    [44] V. Simmon. Load and stress distributions if spur and helical gears. Trans. ASME, J. Mech. Transm. and Auto. in Des.. 1988,110(2): 197~202
    [45] 罗立凤.单圆弧齿轮的啮合刚度接触迹间载荷分配系统K_1.上海交通大学学报.1994,28(6):136~141
    [46] 张涛,冯守卫,濮良贵等.齿轮轮刚度与齿间载荷分配系数的再研究.西安公路交通大学学报.1999,19(4):112~116
    [47] 张伟社,冯守卫.直齿轮轮齿刚度的简化计算.现代制造工程.2004(3):72~74
    [48] 伍良生.直齿圆柱齿轮噪声分析与控制.齿轮.1983,7(1):18~23
    [49] 方宗德,沈允文,高向群.航空减速器设计中的振动问题.齿轮.1990,14(1):7~11
    [50] 唐增宝,钟毅芳.直齿圆柱齿轮传动系统的振动分析.机械工程学报.1992,28(4):86~93
    [51] 姚文席.渐开线直齿轮单级齿轮传动系统的振动.西安交通大学学报.1990,24(4):39~49
    [52] 朱勤,谢友柏,虞烈.多根平行轴齿轮转子系统的弯曲耦合振动分析.振动与冲击.1996,15(4):43~47
    [53] 刘起元,蒋孝煜.不稳定载荷下齿轮系统的动态特性.齿轮.1990,14(2):24~27
    [54] 张建云.丘大谋.一种求解直齿圆柱齿轮啮合刚度的方法.西安建筑科技大学学报.1996,28(2):134~137
    [55] 韩捷,张琳娜.齿轮故障的振动频谱机理研究.机械传动.1997,21(2):21~24
    [56] 王玉新,柳杨,王仪明.考虑啮合时变刚度和传递误差的齿轮振动分析.机械传动.2002,26(1):5~8
    [57] 王秋华.齿轮传动系统动力学的计算机仿真研究.2000.4 昆明理工大学硕士论文
    [58] S. J. Nalluveettd, G. Muthuveerappan. Finite Element Modelling and Analysis of a Straight Bevel Gear Tooth. Computers and Structures, 1993, 48(4): 739~744.
    [59] B. Subba Rao, M. S. Shunmugam, V. Jayaprakash. Mathematical model for generation of spiral bevel gears. Journal of Materials Processing Technology. 1994,44(3-4): 327~334
    [60] S. Vijayarangan, N. Ganesan. Static stress analysis of a composite bevel gear using a three-dimensional finite element method. Computers & Structures. 1994,51(6): 771~783
    [61] 李剑锋,王钧效,王寿祜等.直齿锥齿轮轮齿瞬时啮合刚度研究.机械传动.1995,19(3):28~31
    [62] 李剑锋,王钧效,王寿祜等.直齿锥齿轮轮齿变形及瞬时啮合刚度.山东工业大学学报.1996,26(4):451~454
    [63] Claude Gosselin, Louis Cloutier, Q. D. Nguyen. A general formulation for the calculation of the load sharing and transmission error under load of spiral bevel and hypoid gears. Mechanism and Machine Theory. 1995,30(3): 433~450
    [64] V. Ramamurtia, Nayak H. Vijayendraa, C. Sujathaa. Static and dynamic analysis of spur and bevel gears using FEM. Mechanism and Machine Theory. 1998,33(8): 1177~1193
    [65] Y. WANG, H. M. E. CHEUNG, W. J. ZHANG. 3D Dynamic Modelling of Spatial Geared Systems. Nonlinear Dynamics. 2001, 26: 371~391
    [66] 王三民,沈允文,董海军.含间隙和时变啮合刚度的弧齿锥齿轮传动系统非线性振动特性研究.机械工程学报.2003,39(2):28~32
    [67] 王志.锥齿轮误差测量及传动系统动态特性的研究.2006.5江苏大学博士论文
    [68] 李茹贞,赵清慧译.齿轮强度设计资料.北京:机械工业出版社.1984
    [69] 朱孝录,鄂中凯等.齿轮承载能力分析.北京:高等教育出版社.1992
    [70] 刘鸿文等.材料力学(下册).北京:高等教育出版社.1996
    [71] 蔡春源等.机械设计手册(齿轮传动).辽宁科学技术出版社.2000
    [72] 黄国权等.有限元法基础及ANSYS应用.机械工业出版社.2004
    [73] 王国强.实用工程数值模拟技术及其在ANSYS上的实践.西安:西北工业大学出版社.1998
    [74] 钟日铭.Pro/ENGINEER Wildfire 2.0 工业产品设计.北京:兵器工业出版社.2005
    [75] Ted Belytschko, Wing Kam liu, Brian Moran. Nonlinear Finite Elements for Continua and Stuctures.庄茁译.北京:清华大学出版社.2002
    [76] 会田俊夫.圆锥齿轮与蜗轮.金公望等译.中国农业机械出版社.1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700