用户名: 密码: 验证码:
仿生粘附结构的方向性粘附机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壁虎等动物的微纳分级粘附系统为具有仿生粘附结构的干粘附材料的研发提供了仿生学原型。这种仿生粘附材料在爬壁机器人,微操纵,微纳转印工艺,生物医学胶带等领域具有广泛的应用前景。生物和仿生粘附力学,仿生粘附结构的加工方法和测试技术的研究可为高性能仿生粘附材料的研发奠定理论和技术基础,并己成为国内外的研究热点。然而对实际可应用的具有方向性粘附特性的仿生粘附结构的分析和优化设计工作亟待深入探索。
     本文以揭示典型仿生粘附结构的方向性粘附机理为目标,系统研究了几种典型仿生粘附结构在刚性平面的粘附问题,进而探讨了粘附结构在正弦表面和粗糙表面上的方向性粘附规律,分析了粘附结构阵列的优化设计问题,并探索了仿生粘附结构的飞秒激光双光子加工方法和基于原子力显微镜(AFM)平台的方向性粘附特性的测试技术。
     在粘附力学分析方面,首先基于不可拉伸欧拉弹性杆理论和表面能概念,利用变分法和数学分析推导出不可拉伸直纤维结构在刚性平面上粘附的侧面接触模型(ISCM, Inextensible Side Contact Model)。这一模型可用于预测这种粘附结构的脱附模式和粘附规律。研究结果表明,增加剪切力,纤维倾角和纤维的弯曲柔性都能够有效地增加法向拔出力。而且利用能量最小化原理证明所有粘附平衡状态都是稳定的。
     其次,通过将轴向变形能计入系统的能量泛函,将ISCM模型推广到可拉伸直纤维结构的情况,建立了可拉伸侧面接触模型(ESCM, Extensible Side Contact Model)。而且对ESCM模型作简单的修正,可将它用于分析纤维粘附部分的预张力对粘附行为的影响。研究结果表明:由于纤维的可拉伸变形,当施加最优的剪切力时纤维存在最大法向拔出力,且在弯曲刚度不变的情况下,最大法向拔出力随轴向刚度的增大而增强。而对预应力效应的研究表明:施加一个最优的预张力能够使最大法向拔出力极大化。
     接着,还将ESCM模型推广到两级纤维结构在刚性平面上粘附的情况。结果表明,对于典型的两级纤维结构,存在一个依赖于结构参数的临界剪切力。当剪切力低于这个临界值时,弯曲变形起主导作用,粘附力随着剪切力几乎线性地增加,且可以通过改变纤维的结构参数来调控其粘附规律;而当剪切力超过这个值,轴向变形起主导作用,且粘附规律与经典的Kendall模型所预测的结果一致。从定性的角度看,模型所预测的粘附规律与文献报道的对生物和仿生多级粘附结构的实验结果比较一致。
     最后,也将侧面接触模型推广到直纤维在刚性曲面,尤其是正弦表面上粘附的情况。研究表明:当纤维在正弦表面上粘附时,存在最有利的位置使法向拔出力最大化。当沿着纤维的倾斜方向施加适度的剪切力时,纤维在曲面上的法向拔出力会随着剪切力的增加而增强(即所谓的“方向性粘附特性”);而当剪切力超过临界值时,纤维会沿着表面滑移,这有利于实现纤维与表面之间的位置匹配,从而能在一定程度上增强纤维的粘附力。基于这些研究和进一步的分析,可对壁虎脚掌在不同粗糙表面上粘附时所表现出的粗糙度尺度效应进行定性地解释。
     在粘附纤维结构阵列的优化设计方面,基于推导出来的单根粘附结构的粘附规律,分别对单级和两级纤维结构阵列的优化设计问题进行了系统的研究。对于每一种纤维结构阵列,定义了纤维阵列的结构参数,推导了相邻纤维不发生聚集的条件(抗聚集条件)和纤维阵列的粗糙表面适应性条件,进而对优化问题进行了深入的分析和讨论。由此获得的知识和优化方法能够帮助仿生纤维阵列的优化设计。
     在实验研究方面,用飞秒激光双光子聚合加工技术加工了仿生粘附结构及其阵列,并提出了将端头带微柱子的微悬臂梁集成到AFM的两轴力测试平台上,对单根仿生粘附结构的方向性粘附特性进行测试的方法,还通过结构设计和微加工工艺初步研制出这种特殊的微悬臂梁。
     基于以上研究,本论文在以下方面做出了创新:1)为不可拉伸和可拉伸直纤维结构在刚性平面上粘附问题建立了不可拉伸侧面接触模型(ISCM)和可拉伸侧面接触模型(ESCM)。这些模型可直接用于预测相应粘附结构在刚性平面上的脱附模式和方向性粘附规律。2)将侧面接触模型推广到两级直纤维结构在刚性平面上粘附和单级直纤维结构在刚性曲面上粘附的情况。这些模型可对相应的粘附规律进行理论预测,从而能够为相应的实验结果提供理论解释。3)提出将端头带微柱子的微悬臂梁作为传感元件,集成到AFM平台上对单根仿生粘附结构的方向性粘附特性进行测试的方法。
The hierarchical micro/nano adhesive system of geckos provides a biomimetic model for the researches and developments of dry adhesives with biomimetic structures. This kind of biomimetic adhesives has wide applications in the vast fields of adhesion based climbing robots, micromanipulations, micro/nano transfer printing techniques and biomedical adhesives, etc. Researches on adhesion mechanics, micro/nano fabrication methods and test techniques of biomimetic adhesive structures will form the basis for the developments of high-performance biomimetic adhesive materials and have become a hot research field at home and abroad. However, very few jobs on analysis and optimization have been done with respect to practically applicable biomimetic fibrillar adhesive structures with directional adhesion property.
     This dissertation focuses on clarifying the directional adhesion mechanism of typical biomimetic adhesive structures. To be specific, the adhesion problems of several typical fibrillar adhesive structures on a rigid flat surface or on a rigid curved surface, the design and optimization of both single-level and two-level adhesive fiber arrays, and the femtosecond laser two-photon polymerization based fabrication and the atomic force microscopy (AFM) platform based test of fibrillar adhesive structures are systematically investigated in this dissertation.
     Firstly, in order to study the directional adhesion behavior of an inextensible straight fiber on a rigid flat surface, an inextensible side contact model (ISCM) is proposed via a variational method based on the inextensible Euler elastica theory and the surface energy concept. The ISCM can be used to directly predict the detachment mode and the adhesion law of the fiber. It is found that increasing the applied shear force, the slanted angle or the bending compliance will effectively enhance the normal pull-off force. Moreover, all the adhesion equilibrium states are found stable by using the stability criterion of energy minimization.
     Secondly, by taking the axial deformation energy into account in the energy functional of the system, the ISEM model is generalized to the extensible case, thus forming an extensible side contact model (ESCM) that is applicable to extensible straight fiber. Moreover, the ESCM can be slightly modified so as to be applicable to study the pretension effect on the adhesion behavior. It is found that, due to the extensibility of the fiber, there exists a maximum normal pull-off force (MNPF) when an optimal shear force is applied. The MNPF increases with the fiber's axial stiffness when its bending stiffness is constant. Studies on the pretension effect demonstrate that when an optimal pretension is applied, the MNPF is maximized.
     Thirdly, the ESCM is generalized to the case of two-level fibers. The generalized model predicts that for a typical two-level fiber, there exists a structural parameters-dependent critical shear force, below and above which the bending deformation dominates or the axial deformation dominates. In the bending deformation dominated region, the adhesion force increases almost linearly with the applied shear force and the adhesion law can be tuned effectively by varying the structural parameters; while in the axial deformation dominated region, the adhesion law is almost the same with that predicted by the classical Kendall model. Additionally, an optimum structure behaving consistently with geckos'setal arrays is obtained by designing the structural parameters properly, especially the slanted angles.
     The side contact model is also generalized to the case of a straight fiber in side contact with a curved surface, especially a sinusoidal surface. Detailed studies show that, for fibers adhered on a sinusoidal surface, there exists a benefit position so that the normal pull-off force is maximized. More importantly, if a proper shear force is applied, the normal pull-off force increases with the shear force; however, if the shear force exceeds a critical value, the fiber will slide along the surface, which would benefit for matching the position between the fiber and the curved surface, thus promoting the fiber's adhesion force to a certain degree. Based on these studies and further analysis, the size effect of roughness found in the geckos' adhesion on surfaces with different roughness is qualitatively explained.
     Based on the derived adhesion law of a single straight fiber, the design and optimization of both single-level and two-level adhesive fiber arrays are systematically studied. For each kind of fiber array, the structural parameters are defined, the condition that adjacent fibers do not adhere with each other (anti-bunching condition) and the rough surface adaptable condition are analyzed, and the adhesion strength is formulated. On these bases, the optimization problem is analyzed and discussed. The derived knowledge and analysis method should contribute to rational design of biomimetic adhesive fiber arrays.
     On the aspect of experiment, the femtosecond laser two-photon polymerization technique is adopted to fabricate a single fibrillar adhesive structure. The adhesive fiber array is also fabricated parallelly with the aid of computed hologram loaded spatial light modulator (SLM). In order to test the directional adhesion property of the fabricated adhesive structure, a micro cantilever with a micro pillar at its free end is designed and fabricated. It can be used as a sensing element and is integratable to the AFM measurement platform so as to measure the two axial forces, the normal adhesion force and the shear force of the adhesive structure.
     It's concluded from the above researches that the following contributions have been made to the fields of biomimetic adhesion:1) Two models (ISCM and ESCM) are proposed to predict the directional adhesion laws for inextensible and extensible straight fibers adhered on a rigid flat surface respectively;2) The ESCM model is generalized to the case of two-level fibers adhered on a rigid flat surface and the case of single-level fibers adhered on a rigid curved surface;3) A method for characterizing the directional adhesion property of a single biomimetic adhesive structure is proposed by using a specially designed micro-cantilever as the sensing element and integrating it into the two-axial force measurement platform of AFM.
引文
[1]Bhushan B. Biomimetics:lessons from nature-an overview. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2009,367(1893):1445-86.
    [2]Gruber P, Bruckner D, Hellmich C, et al. Biomimetics-Materials, Structures and Processes:Examples, Ideas and Case Studies:Springer; 2011.
    [3]Gorb S. Introduction:Surface Properties and their Functions in Biological Systems. Functional Surfaces in Biology2009. p.3-7.
    [4]Favret EA, Fuentes NO. Functional properties of bio-inspired surfaces: characterization and technological applications:World Scientific Publishing Company Incorporated; 2009.
    [5]Bruzzone A, Costa H, Lonardo P, et al. Advances in engineered surfaces for functional performance. CIRP Annals-Manufacturing Technology,2008,57(2): 750-69.
    [6]Abbott SJ, Gaskell PH. Mass production of bio-inspired structured surfaces. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,2007,221(10):1181-91.
    [7]Boesel LF, Greiner C, Arzt E, et al. Gecko-Inspired Surfaces:A Path to Strong and Reversible Dry Adhesives. Adv Mater,2010,22(19):2125-37.
    [8]Kwak MK, Pang C, Jeong H-E, et al. Towards the Next Level of Bioinspired Dry Adhesives:New Designs and Applications. Adv Funct Mater,2011,21(19): 3606-16.
    [9]Aristotle. Historia animalium:translated by Thompson, D'A.W. (Oxford: Clarendon Press 350 B.C.E.),1918.
    [10]RUIBAL R. The structure of the digital setae of lizards. J Morph,1965,117: 271-93.
    [11]Gao HJ, Wang X, Yao HM, et al. Mechanics of hierarchical adhesion structures of geckos. Mech Mater,2005,37(2-3):275-85.
    [12]Autumn K. Properties, principles, and parameters of the gecko adhesive system. Biological adhesives,2006:225-56.
    [13]Autumn K, Peattie AM. Mechanisms of adhesion in geckos. Integr Comp Biol, 2002,42(6):1081-90.
    [14]Chui B, Kenny T, Mamin H, et al. Independent detection of vertical and lateral forces with a sidewall-implanted dual-axis piezoresistive cantilever. Appl Phys Lett,1998,72(11):1388-90.
    [15]Autumn K, Liang YA, Hsieh ST, et al. Adhesive force of a single gecko foot-hair. Nature,2000,405(6787):681-5.
    [16]Autumn K, Sitti M, Liang YA, et al. Evidence for van der Waals adhesion in gecko setae. Proc Nat Acad Sci USA,2002,99(19):12252.
    [17]Huber G, Mantz H, Spolenak R, et al. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc Nat Acad Sci USA,2005,102(45):16293-6.
    [18]Autumn K, Dittmore A, Santos D, et al. Frictional adhesion:a new angle on gecko attachment. J Exp Biol,2006,209(18):3569-79.
    [19]Autumn K, Majidi C, Groff RE, et al. Effective elastic modulus of isolated gecko setal arrays. J Exp Biol,2006,209(18):3558-68.
    [20]Zhao B, Pesika N, Rosenberg K, et al. Adhesion and friction force coupling of gecko setal arrays:Implications for structured adhesive surfaces. Langmuir, 2008,24(4):1517-24.
    [21]Gravish N, Wilkinson M, Autumn K. Frictional and elastic energy in gecko adhesive detachment. J R Soc Interface,2008,5(20):339-48.
    [22]Hill GC, Soto DR, Peattie AM, et al. Orientation angle and the adhesion of single gecko setae. J R Soc Interface,2011,8(60):926-33.
    [23]Huber G, Gorb SN, Hosoda N, et al. Influence of surface roughness on gecko adhesion. Acta Biomater,2007,3(4):607-10.
    [24]Hansen W, Autumn K. Evidence for self-cleaning in gecko setae. Proc Nat Acad Sci USA,2005,102(2):385.
    [25]Pugno NM, Lepore E. Observation of optimal gecko's adhesion on nanorough surfaces. Biosystems,2008,94(3):218-22.
    [26]Tian Y, Pesika N, Zeng H, et al. Adhesion and friction in gecko toe attachment and detachment. Proc Nat Acad Sci USA,2006,103(51):19320-5.
    [27]Yao H, Gao H. Mechanics of robust and releasable adhesion in biology: Bottom-up designed hierarchical structures of gecko. J Mech Phys Solids,2006, 54(6):1120-46.
    [28]Pesika NS, Tian Y, Zhao B, et al. Peel-zone model of tape peeling based on the gecko adhesive system. J Adhes,2007,83(4):383-401.
    [29]Chen B, Wu PD, Gao H. Hierarchical modelling of attachment and detachment mechanisms of gecko toe adhesion. Pro R Soc A,2008,464(2094):1639-52.
    [30]Filippov A, Popov VL, Gorb SN. Shear induced adhesion:Contact mechanics of biological spatula-like attachment devices. J Theor Biol,2011,276(1): 126-31.
    [31]Chen B, Wu P, Gao H. Pre-tension generates strongly reversible adhesion of a spatula pad on substrate. J R Soc Interface,2009,6(35):529-37.
    [32]Cheng Q, Chen B, Gao H, et al. Sliding-induced non-uniform pre-tension governs robust and reversible adhesion:a revisit of adhesion mechanisms of geckos. J R Soc Interface,2012,9(67):283-91.
    [33]万进,田煜,周铭,et al.载荷对壁虎刚毛束的摩擦各向异性特性影响的实验研究.物理学报,2012,61(1):16202-016202.
    [34]http://en.wikipedia.org/wiki/Adhesion.
    [35]Israelachvili JN. Intermolecular and surface forces. New York:Academic; 1992.
    [36]Yan S, He L. Adhesive force between a spherical rigid particle and an incompressible elastic substrate. Mech Mater,2012,49:66.
    [37]Dugdale D. Yielding of steel sheets containing slits. J Mech Phys Solids,1960, 8(2):100-4.
    [38]Johnson K. Contact mechanics:Cambridge University Press, Cambridge; 1985.
    [39]Johnson K, Kendall K, Roberts A. Surface energy and the contact of elastic solids. Proceedings of the Royal Society of London A Mathematical and Physical Sciences,1971,324(1558):301-13.
    [40]Derjaguin B, Muller V, Toporov YP. Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci,1975,53(2):314-26.
    [41]Maugis D. Contact, adhesion and rupture of elastic solids. Berlin Heidelberg: Springer-Verlag; 2000.
    [42]Jagota A, Hui C-Y. Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces. Mater Sci Eng, R,2011,72(12):253-92.
    [43]Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices. Proc Nat Acad Sci USA,2003,100(19):10603-6.
    [44]Qian J, Gao H. Scaling effects of wet adhesion in biological attachment systems. Acta Biomater,2006,2(1):51-8.
    [45]Cai S, Bhushan B. Meniscus and viscous forces during separation of hydrophilic and hydrophobic surfaces with liquid-mediated contacts. Materials Science and Engineering:R:Reports,2008,61(1):78-106.
    [46]Greiner C, del Campo A, Arzt E. Adhesion of bioinspired micropatterned surfaces:Effects of pillar radius, aspect ratio, and preload. Langmuir,2007, 23(7):3495-502.
    [47]Tang T, Hui CY, Glassmaker NJ. Can a fibrillar interface be stronger and tougher than a non-fibrillar one? J R Soc Interface,2005,2(5):505-16.
    [48]Gao HJ, Yao HM. Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc Nat Acad Sci USA,2004,101(21):7851-6.
    [49]Hui CY, Glassmaker NJ, Tang T, et al. Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J R Soc Interface,2004,1(1):35-48.
    [50]Spolenak R, Gorb S, Gao H, et al. Effects of contact shape on the scaling of biological attachments. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science,2005,461(2054):305-19.
    [51]del Campo A, Greiner C, Arzt E. Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir,2007,23(20):10235-43.
    [52]Wang D, Zhao A, Jiang R, et al. Surface properties of bionic micro-pillar arrays with various shapes of tips. Appl Surf Sci,2012.
    [53]Spuskanyuk A, McMeeking R, Deshpande V, et al. The effect of shape on the adhesion of fibrillar surfaces. Acta Biomater,2008,4(6):1669-76.
    [54]Carbone G, Pierro E, Gorb SN. Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces. Soft Matter,2011,7(12):5545-52.
    [55]Carbone G, Pierro E. Sticky Bio-inspired Micropillars:Finding the Best Shape. Small,2012.
    [56]Murphy MP, Aksak B, Sitti M. Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J Adhes Sci Technol,2007,21(12-13):1281-96.
    [57]Murphy MP, Aksak B, Sitti M. Gecko-inspired Directional and Controllable Adhesion. Small,2009,5(2):170-5.
    [58]Kendall K. Thin-Film Peeling-Elastic Term. J Phys D:Appl Phys,1975,8(13): 1449-52.
    [59]Peng ZL, Chen SH, Soh AK. Peeling behavior of a bio-inspired nano-film on a substrate. Int J Solids Struct,2010,47:1952-64.
    [60]Pugno NM. The theory of multiple peeling. Int J Fract,2011:1-9.
    [61]Majidi CS. Shear adhesion between an elastica and a rigid flat surface. Mech Res Commun,2009,36(3):369-72.
    [62]Majidi C, O'Reilly OM, Williams JA. On the stability of a rod adhering to a rigid surface:Shear-induced stable adhesion and the instability of peeling. J Mech Phys Solids,2012,60(5):827-43.
    [63]Sauer RA. Multiscale modelling and simulation of the deformation and adhesion of a single gecko seta. Comput Method Biomec,2009,12(6):627-40.
    [64]陈少华,彭志龙.壁虎粘附微观力学机制的仿生研究进展.力学进展,2012,42(3).
    [65]Russell AP, Johnson MK. Real-world challenges to, and capabilities of, the gekkotan adhesive system:contrasting the rough and the smooth. Canadian Journal of Zoology-Revue Canadienne De Zoologie,2007,85(12):1228-38.
    [66]Canas N, Kamperman M, Voelker B, et al. Effect of nano- and micro-roughness on adhesion of bioinspired micropatterned surfaces. Acta Biomater,2012,8(1): 282-8.
    [67]Persson B, Gorb S. The effect of surface roughness on the adhesion of elastic plates with application to biological systems. The Journal of chemical physics, 2003,119:11437.
    [68]Hui CY, Glassmaker N, Jagota A. How compliance compensates for surface roughness in fibrillar adhesion. J Adhes,2005,81(7-8):699-721.
    [69]Bhushan B, Peressadko AG, Kim TW. Adhesion analysis of two-level hierarchical morphology in natural attachment systems for 'smart adhesion'. J Adhes Sci Technol,2006,20(13):1475-91.
    [70]Kim TW, Bhushan B. Effect of stiffness of multi-level hierarchical attachment system on adhesion enhancement. Ultramicroscopy,2007,107(10-11):902-12.
    [71]Porwal PK, Hui CY. Strength statistics of adhesive contact between a fibrillar structure and a rough substrate. J R Soc Interface,2008,5(21):441-8.
    [72]Peng Z, Chen S. Effects of surface roughness and film thickness on the adhesion of a bioinspired nano film. Physical Review E,2011,83(5):051915.
    [73]Persson BNJ. Biological adhesion for locomotion on rough surfaces:Basic principles and a theorist's view. MRS Bull,2007,32(6):486-90.
    [74]Ren N, Wang X, Mei T, et al., editors. Detachment Control Analysis for Nanofabricated Adhesive Mimicking Gecko Foot-Hairs. Mechatronics and Automation, Proceedings of the 2006 IEEE International Conference on; 2006: IEEE.
    [75]Sameoto D, Menon C. Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives. Smart Materials & Structures,2010,19(10).
    [76]Bhushan B. Gecko Feet:Natural Hairy Attachment Systems for Smart Adhesion. Springer Handbook of Nanotechnology,2010:1553-97.
    [77]Zhang H, Guo D, Dai Z. Progress on gecko-inspired micro/nano-adhesion arrays. Chin Sci Bull,2010,55(18):1843-50.
    [78]Sitti M, Fearing RS. Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J Adhes Sci Technol,2003,17(8):1055-73.
    [79]Geim A, Grigorieva SVDIV, Novoselov K, et al. Microfabricated adhesive mimicking gecko foot-hair. Nat Mater,2003,2(7):461-3.
    [80]Kim DS, Lee HS, Lee J, et al. Replication of high-aspect-ratio nanopillar array for biomimetic gecko foot-hair prototype by UV nano embossing with anodic aluminum oxide mold. Microsyst Technol,2007,13(5):601-6.
    [81]Zhao A, Mei T, Lin X, et al., editors. Fabrication and Characterization of Tree-like nanorod arrays for Bionic Gecko Foot-hairs. Nanotechnology,2007 IEEE-NANO 20077th IEEE Conference on; 2007:IEEE.
    [82]Kim S, Sitti M. Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl Phys Lett,2006,89(26).
    [83]del Campo A, Greiner C, Alvarez I, et al. Patterned surfaces with pillars with controlled 3D tip geometry mimicking bioattachment devices. Adv Mater,2007, 19(15):1973-7.
    [84]Davies J, Haq S, Hawke T, et al. A practical approach to the development of a synthetic Gecko tape. Int J Adhes Adhes,2009,29(4):380-90.
    [85]Aksak B, Murphy MP, Sitti M. Adhesion of biologically inspired vertical and angled polymer microfiber arrays. Langmuir,2007,23(6):3322-32.
    [86]Jeong HE, Lee J-K, Kim HN, et al. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proc Nat Acad Sci USA,2009,106(14): 5639-44.
    [87]刘彬,张昊,郭东杰,et al.倾斜仿生刚毛的设计,制备及黏附性能研究.摩擦学学报,2009,(5):393-8.
    [88]Murphy MP, Kim S, Sitti M. Enhanced Adhesion by Gecko-Inspired Hierarchical Fibrillar Adhesives. ACS Appl Mat Interfaces,2009,1(4):849-55.
    [89]Sitti M, editor. High aspect ratio polymer micro/nano-structure manufacturing using nanoembossing, nanomolding and directed self-assembly. Advanced Intelligent Mechatronics,2003 AIM 2003 Proceedings 2003 IEEE/ASME International Conference on; 2003:IEEE.
    [90]Del Campo A, Greiner C. SU-8:a photoresist for high-aspect-ratio and 3D submicron lithography. J Micromech Microeng,2007,17(6):R81.
    [91]Zhang H, Wu L, Jia S, et al. Fabrication and adhesion of hierarchical micro-seta. Chin Sci Bull,2012,57(11):1343-9.
    [92]Jeong HE, Kwak R, Kim JK, et al. Generation and Self-Replication of Monolithic, Dual-Scale Polymer Structures by Two-Step Capillary-Force Lithography. Small,2008,4(11):1913-8.
    [93]Yurdumakan B, Raravikar NR, Ajayan PM, et al. Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem Commun,2005, (30):3799-801.
    [94]Qu L, Dai L. Gecko-Foot-Mimetic Aligned Single-Walled Carbon Nanotube Dry Adhesives with Unique Electrical and Thermal Properties. Adv Mater,2007,19(22):3844-9.
    [95]Ge L, Sethi S, Ci L, et al. Carbon nanotube-based synthetic gecko tapes. Proc Nat Acad Sci USA,2007,104(26):10792-5.
    [96]Qu L, Dai L, Stone M, et al. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science,2008,322(5899):238-42.
    [97]Maeno Y, Nakayama Y. Gecko like high shear strength by carbon nanotube fiber adhesives. Appl Phys Lett,2009,94(1).
    [98]Zhou M, Liu K, Wan J, et al. Anisotropic interfacial friction of inclined multiwall carbon nanotube array surface. Carbon,2012.
    [99]Roehrig M, Thiel M, Worgull M, et al.3D Direct Laser Writing of Nano-and Microstxuctured Hierarchical Gecko-Mimicking Surfaces. Small,2012,8(19): 3009-15.
    [100]Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett,1997,22(2):132-4.
    [101]Lee KS, Yang DY, Park SH, et al. Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications. Polym Adv Technol,2006,17(2):72-82.
    [102]耿路峰,于敏,浦东林,et al.激光直写法制备仿刚毛微纳阵列的研究.中国机械工程,2011,22(20):2469-75.
    [103]Sameoto D, Menon C. A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives. J Micromech Microeng,2009,19(11): 115002.
    [104]Kroner E, Paretkar DR, McMeeking RM, et al. Adhesion of Flat and Structured PDMS Samples to Spherical and Flat Probes:A Comparative Study. J Adhes, 2011,87(5):447-65.
    [105]Schubert B, Lee J, Majidi C, et al. Sliding-induced adhesion of stiff polymer microfibre arrays. Ⅱ. Microscale behaviour. J R Soc Interface,2008,5(25): 845-53.
    [106]Moon M-W, Cha T-G, Lee K-R, et al. Tilted Janus polymer pillars. Soft Matter, 2010,6(16):3924-9.
    [107]Jin K, Tian Y, J.S. Erickson, et al. The Design and Fabrication of Gecko-inspired Adhesives. Langmuir,2012,28(13):5737.
    [108]Wang L, Ortiz C, Boyce MC. Mechanics of Indentation into Micro-and Nanoscale Forests of Tubes, Rods, or Pillars. Journal of Engineering Materials and Technology-Transactions of the Asme,2011,133(1).
    [109]Kim TI, Jeong HE, Suh KY, et al. Stooped Nanohairs:Geometry-Controllable, Unidirectional, Reversible, and Robust Gecko-like Dry Adhesive. Adv Mater, 2009,21(22):2276-81.
    [110]Gorb S, Varenberg M, Peressadko A, et al. Biomimetic mushroom-shaped fibrillar adhesive micro structure. J R Soc Interface,2007,4(13):271-5.
    [111]Kwak MK, Jeong HE, Bae WG, et al. Anisotropic Adhesion Properties of Triangular-Tip-Shaped Micropillars. Small,2011,7(16):2296-300.
    [112]Soto D, Hill G, Parness A, et al. Effect of fibril shape on adhesive properties. Appl Phys Lett,2010,97(5):053701.
    [113]Huber G, Gorb SN, Spolenak R, et al. Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett,2005,1(1): 2-4.
    [114]Zheng-zhi W, Yun X, Ping G. Adhesive behaviour of gecko-inspired nanofibrillar arrays:combination of experiments and finite element modelling. J Phys D:Appl Phys,2012,45(14):142001-6.
    [115]Carlson A, Kim-Lee HJ, Wu J, et al. Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly. Appl Phys Lett,2011, 98(26):264104-3.
    [116]Asbeck A, Dastoor S, Parness A, et al., editors. Climbing rough vertical surfaces with hierarchical directional adhesion. Robotics and Automation,2009 ICRA'09 IEEE International Conference on; 2009:IEEE.
    [117]Kwak MK, Jeong HE, Suh KY. Rational Design and Enhanced Biocompatibility of a Dry Adhesive Medical Skin Patch. Adv Mater,2011, 23(34):3949-53.
    [118]Mahdavi A, Ferreira L, Sundback C, et al. A biodegradable and biocompatible gecko-inspired tissue adhesive. Proceedings of the National Academy of Sciences,2008,105(7):2307-12.
    [119]Menon C, Murphy M, Sitti M, editors. Gecko inspired surface climbing robots. Robotics and Biomimetics,2004 ROBIO 2004 IEEE International Conference on; 2004:IEEE.
    [120]Spenko M, Cutkosky M, Majidi C, et al. Foot design and integration for bioinspired climbing robots. Proceedings of SPIE, Unmanned Systems Tech, 2006,8(6230):623019.
    [121]Kim S, Spenko M, Trujillo S, et al. Smooth vertical surface climbing with directional adhesion. IEEE Trans Rob,2008,24(1):65-74.
    [122]Hawkes EW, Ulmen J, Esparza N, et al., editors. Scaling walls:Applying dry adhesives to the real world. Intelligent Robots and Systems (IROS),2011 IEEE/RSJ International Conference on; 2011:IEEE.
    [123]方晔,汪小华,梅涛.仿壁虎爬壁机器人的结构及其控制系统研究.工业仪表与自动化装置,2009,3:004.
    [124]李冰,汪小华,于树林,et al.仿壁虎柔性脚掌结构及控制系统的研究.中国机械工程,2011,22(8):897-900.
    [125]于树林,梅涛,李冰,et a1.柔性仿生爬壁机器人控制系统研究.自动化与仪表,2011,26(6):1-3.
    [126]王周义,顾文华,吴强,et a1.墙面及天花板上大壁虎脚趾作用力测试和脚掌形态研究.中国科学:技术科学,2011,41(9):1161-6.
    [127]俞志伟,李宏凯,张晓峰,et a1.仿壁虎脚趾结构设计及粘附运动性能测试.机械工程学报,2011,47(21):7-13.
    [128]郭策,蔡雷,谢合瑞,et a1.大壁虎脚趾运动和感觉的分区分级调控.科学通报,2009,(7):959-65.
    [129]Cheng H, Wu J, Yu Q, et al. An analytical model for shear-enhanced adhesiveless transfer printing. Mech Res Commun,2012,43:46-9.
    [130]Mengüc Y, Yang SY, Kim S, et al. Gecko-Inspired Controllable Adhesive Structures Applied to Micromanipulation. Adv Funct Mater,2012,22(6): 1246-54.
    [131]Sameoto D. Dry Adhesives for MEMS Assembly, Manipulation and Integration: Progress and Challenges. ECS Trans,2012,45(3):515-28.
    [132]Kaiser JS, Kamperman M, de Souza EJ, et al. Adhesion of biocompatible and biodegradable micropatterned surfaces. The International journal of artificial organs,2011,34(2):180-4.
    [133]Palacio MLB, Bhushan B, Schricker SR. Gecko-inspired fibril nanostructures for reversible adhesion in biomedical applications. Mater Lett,2013,92: 409-12.
    [134]Bae WG, Kim D, Kwak MK, et al. Enhanced Skin Adhesive Patch with Modulus-Tunable Composite Micropillars. Advanced Healthcare Materials, 2013,2(1):109-13.
    [1]Murphy MP, Aksak B, Sitti M. Gecko-inspired Directional and Controllable Adhesion. Small,2009,5(2):170-5.
    [2]Jeong HE, Lee J-K, Kim HN, et al. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proc Nat Acad Sci USA,2009,106(14): 5639-44.
    [3]Kim S, Spenko M, Trujillo S, et al. Smooth vertical surface climbing with directional adhesion. IEEE Trans Rob,2008,24(1):65-74.
    [4]Autumn K, Liang YA, Hsieh ST, et al. Adhesive force of a single gecko foot-hair. Nature,2000,405(6787):681-5.
    [5]Autumn K, Sitti M, Liang YA, et al. Evidence for van der Waals adhesion in gecko setae. Proc Nat Acad Sci USA,2002,99(19):12252.
    [6]Gao HJ, Wang X, Yao HM, et al. Mechanics of hierarchical adhesion structures of geckos. Mech Mater,2005,37(2-3):275-85.
    [7]Autumn K. Properties, principles, and parameters of the gecko adhesive system. Biological adhesives,2006:225-56.
    [8]Autumn K, Dittmore A, Santos D, et al. Frictional adhesion:a new angle on gecko attachment. J Exp Biol,2006,209(18):3569-79.
    [9]Tian Y, Pesika N, Zeng H, et al. Adhesion and friction in gecko toe attachment and detachment. Proc Nat Acad Sci USA,2006,103(51):19320-5.
    [10]Kim TI, Jeong HE, Suh KY, et al. Stooped Nanohairs:Geometry-Controllable, Unidirectional, Reversible, and Robust Gecko-like Dry Adhesive. Adv Mater, 2009,21(22):2276-81.
    [11]Yoon H, Jeong HE, Kim T-i, et al. Adhesion hysteresis of Janus nanopillars fabricated by nanomolding and oblique metal deposition. Nano Today,2009, 4(5):385-92.
    [12]Kwak MK, Jeong HE, Kim TI, et al. Bio-inspired slanted polymer nanohairs for anisotropic wetting and directional dry adhesion. Soft Matter,2010,6(9): 1849-57.
    [13]Majidi CS, Groff RE, Fearing RS. Attachment of fiber array adhesive through side contact. J Appl Phys,2005,98(10):103521.
    [14]Majidi CS. Shear adhesion between an elastica and a rigid flat surface. Mech Res Commun,2009,36(3):369-72.
    [15]Lee J, Fearing RS, Komvopoulos K. Directional adhesion of gecko-inspired angled microfiber arrays. Appl Phys Lett,2008,93(19):191910.
    [16]Jeong HE, Lee J-K, Kwak MK, et al. Effect of leaning angle of gecko-inspired slanted polymer nanohairs on dry adhesion. Appl Phys Lett,2010,96(4): 043704.
    [17]Soto D, Hill G, Parness A, et al. Effect of fibril shape on adhesive properties. Appl Phys Lett,2010,97(5):053701.
    [18]Majidi C, O'Reilly OM, Williams JA. On the stability of a rod adhering to a rigid surface:Shear-induced stable adhesion and the instability of peeling. J Mech Phys Solids,2012,60(5):827-43.
    [19]He LW, Yan SP, Li BQ, et al. Directional adhesion behavior of a single elastic fiber. J Appl Phys,2012,112(6):013516.
    [20]Timoshenko SP, Gere JM. Theory of elastic stability. New York:McGraw-Hill; 1962.
    [21]Johnson K. Contact mechanics:Cambridge University Press, Cambridge; 1985.
    [22]He LW, Yan SP, Li BQ, et al. Adhesion behavior of elastic fibrillar microstructure under the coupled effect of shear and normal forces. The 6th Asia-Pacific conference on transducers and micro/nano technologies,2012.
    [23]Sauer RA. The peeling behavior of thin films with finite bending stiffness and the implications on gecko adhesion. J Adhes,2011,87:624-43.
    [24]Peng ZL, Chen SH, Soh AK. Peeling behavior of a bio-inspired nano-film on a substrate. Int J Solids Struct,2010,47:1952-64.
    [25]Rivlin RS. The effective work of adhesion. Paint Technol,1944,9:215-6.
    [26]Kendall K. Thin-Film Peeling-Elastic Term. J Phys D:Appl Phys,1975,8(13): 1449-52.
    [27]Chen B, Wu P, Gao H. Pre-tension generates strongly reversible adhesion of a spatula pad on s(?)strate. J R Soc Interface,2009,6(35):529-37.
    [28]Cheng Q, Chen B, Gao H, et al. Sliding-induced non-uniform pre-tension governs robust and reversible adhesion:a revisit of adhesion mechanisms of geckos. J R Soc Interface,2012,9(67):283-91.
    [29]Liu J. Adhesion and friction of a bio-inspired dry adhesive and Van der Waals interactions.2009:Cornell university:Doctor of Philosophy.
    [30]Magnusson A. Ristinmaa M, Ljung C. Behaviour of the extensible elastica solution. Int J Solids Struct,2001,38(46):8441-57.
    [31]Chen B, Wu PD, Gao H. Hierarchical modelling of attachment and detachment mechanisms of gecko toe adhesion. Pro R Soc A,2008,464(2094):1639-52.
    [32]Lee J, Majidi C, Schubert B, et al. Sliding-induced adhesion of stiff polymer microfibre arrays. I. Macroscale behaviour. J R Soc Interface,2008,5(25): 835-44.
    [33]Spolenak R, Gorb S, Arzt E. Adhesion design maps for bio-inspired attachment systems. Acta Biomater,2005,1(1):5-13.
    [34]Greiner C, Spolenak R, Arzt E. Adhesion design maps for fibrillar adhesives: The effect of shape. Acta Biomater,2009,5(2):597-606.
    [35]Pesika NS, Tian Y, Zhao B, et al. Peel-zone model of tape peeling based on the gecko adhesive system. J Adhes,2007,83(4):383-401.
    [36]Varenberg M, Pugno NM, Gorb SN. Spatulate structures in biological fibrillar adhesion. Soft Matter,2010,6(14):3269-72.
    [37]Filippov A, Popov VL, Gorb SN. Shear induced adhesion:Contact mechanics of biological spatula-like attachment devices. J Theor Biol,2011,276(1): 126-31.
    [38]Sauer RA. Multiscale modelling and simulation of the deformation and adhesion of a single gecko seta. Comput Method Biomec,2009,12(6):627-40.
    [39]Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices. Proc Nat Acad Sci USA,2003,100(19):10603-6.
    [40]Zhao B, Pesika N, Rosenberg K, et al. Adhesion and friction force coupling of gecko setal arrays:Implications for structured adhesive surfaces. Langmuir, 2008,24(4):1517-24.
    [1]Huber G, Gorb SN, Hosoda N, et al. Influence of surface roughness on gecko adhesion. Acta Biomater,2007,3(4):607-10.
    [2]Federle W. Why are so many adhesive pads hairy? J Exp Biol,2006,209(14): 2611-21.
    [3]Bhushan B, Peressadko AG, Kim TW. Adhesion analysis of two-level hierarchical morphology in natural attachment systems for 'smart adhesion'. J Adhes Sci Technol,2006,20(13):1475-91.
    [4]Persson B, Gorb S. The effect of surface roughness on the adhesion of elastic plates with application to biological systems. The Journal of chemical physics, 2003,119:11437.
    [5]Kim TW, Bhushan B. Effect of stiffness of multi-level hierarchical attachment system on adhesion enhancement. Ultramicroscopy,2007,107(10-11):902-12.
    [6]Persson B. On the-mechanism of adhesion in biological systems. The Journal of chemical physics,2003,118:7614.
    [7]Parsaiyan H, Barazandeh F, Rezaei SM, et al. Wide-end fibers and their adhesion performance in biological attachment systems. Int J Adhes Adhes, 2009,29(4):444-50.
    [8]Peng Z, Chen S. Effects of surface roughness and film thickness on the adhesion of a bioinspired nanofilm. Physical Review E,2011,83(5):051915.
    [9]Hui CY, Glassmaker N, Jagota A. How compliance compensates for surface roughness in fibrillar adhesion. J Adhes,2005,81(7-8):699-721.
    [10]Porwal PK, Hui CY. Strength statistics of adhesive contact between a fibrillar structure and a rough substrate. J R Soc Interface,2008,5(21):441-8.
    [11]Filippov A, Popov VL, Gorb SN. Shear induced adhesion:Contact mechanics of biological spatula-like attachment devices. J Theor Biol,2011,276(1): 126-31.
    [12]Persson BNJ. Biological adhesion for locomotion on rough surfaces:Basic principles and a theorist's view. MRS Bull,2007,32(6):486-90.
    [13]Pugno NM, Lepore E. Observation of optimal gecko's adhesion on nanorough surfaces. Biosystems,2008,94(3):218-22.
    [14]Canas N, Kamperman M, Voelker B, et al. Effect of nano-and micro-roughness on adhesion of bioinspired micropatterned surfaces. Acta Biomater,2012,8(1): 282-8.
    [15]Kwak MK, Jeong HE, Suh KY. Rational Design and Enhanced Biocompatibility of a Dry Adhesive Medical Skin Patch. Adv Mater,2011, 23(34):3949-53.
    [16]Nosonovsky M, Bhushan B. Multiscale friction mechanisms and hierarchical surfaces in nano-and bio-tribology. Materials Science and Engineering:R: Reports,2007,58(3-5):162-93.
    [1]Autumn K, Sitti M, Liang YA, et al. Evidence for van der Waals adhesion in gecko setae. ProcNatAcad Sci USA,2002,99(19):12252.
    [2]Geim A, Grigorieva SVDIV, Novoselov K, et al. Microfabricated adhesive mimicking gecko foot-hair. Nat Mater,2003,2(7):461-3.
    [3]Sitti M, Fearing RS. Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J Adhes Sci Technol,2003,17(8):1055-73.
    [4]Aksak B, Murphy MP, Sitti M. Adhesion of biologically inspired vertical and angled polymer microfiber arrays. Langmuir,2007,23(6):3322-32.
    [5]Jeong HE, Lee J-K, Kim HN, et al. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proc Nat Acad Sci USA,2009,106(14): 5639-44.
    [6]Murphy MP, Aksak B, Sitti M. Gecko-inspired Directional and Controllable Adhesion. Small,2009,5(2):170-5.
    [7]Spolenak R, Gorb S, Arzt E. Adhesion design maps for bio-inspired attachment systems. Acta Biomater,2005,1(1):5-13.
    [8]Greiner C, Spolenak R, Arzt E. Adhesion design maps for fibrillar adhesives: The effect of shape. Acta Biomater,2009,5(2):597-606.
    [9]Kim TW, Bhushan B. Effect of stiffness of multi-level hierarchical attachment system on adhesion enhancement. Ultramicroscopy,2007,107(10-11):902-12.
    [10]Kim TW, Bhushan B. Optimization of biomimetic attachment system contacting with a rough surface. J Vac Sci Technol, A,2007,25(4):1003-12.
    [11]He LW, Yan SP, Li BQ, et al. Adhesion model of side contact for an extensible elastic fibre. Int J Solids Struct,2013, (accepted).
    [12]Qu L, Dai L, Stone M, et al. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science,2008,322(5899):238-42.
    [13]Majidi CS, Groff RE, Fearing RS. Attachment of fiber array adhesive through side contact. J Appl Phys,2005,98(10):103521.
    [14]He LW, Yan SP, Zhang TL, et al. Directional adhesion of gecko-inspired two-level fibrillar structures. European Journal of Mechanics A:Solid Mechanics,2013, (under review).
    [1]Lee KS, Yang DY, Park SH, et al. Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications. Polym Adv Technol,2006,17(2):72-82.
    [2]Guo R, Xiao S, Zhai X, et al. Micro lens fabrication by means of femtosecond two photon photopolymerization. Opt Express,2006,14(2):810-6.
    [3]Melissinaki V, Gill A, Ortega I, et al. Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication,2011,3(4):045005.
    [4]Maruo S, Inoue H. Optically driven viscous micropump using a rotating microdisk. Appl Phys Lett,2007,91(8):084101--3.
    [5]Wu D, Chen Q-D, Niu L-G, et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices. Lab on a Chip,2009,9(16):2391-4.
    [6]Kato J-i, Takeyasu N, Adachi Y, et al. Multiple-spot parallel processing for laser micronanofabrication. Appl Phys Lett,2005,86(4):044102--3.
    [7]Dong X-Z, Zhao Z-S, Duan X-M. Micronanofabrication of assembled three-dimensional micro structures by designable multiple beams multiphoton processing. Appl Phys Lett,2007,91(12):124103-3.
    [8]Gittard SD, Nguyen A, Obata K, et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomedical optics express,2011,2(11):3167-78.
    [9]Autumn K, Liang YA, Hsieh ST, et al. Adhesive force of a single gecko foot-hair. Nature,2000,405(6787):681-5.
    [10]Soto D, Hill G, Parness A, et al. Effect of fibril shape on adhesive properties. Appl Phys Lett,2010,97(5):053701.
    [11]Hill GC, Soto DR, Peattie AM, et al. Orientation angle and the adhesion of single gecko setae. J R Soc Interface,2011,8(60):926-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700