用户名: 密码: 验证码:
稀土、过渡金属元素掺杂的钇铝石榴石材料的制备与发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石榴石是一组在青铜时代已经广泛用作宝石的天然矿物。目前人工可以合成的用于发光材料的石榴石主要是钇铝石榴石及其一些变体。钇铝石榴石晶体是上个世纪六十年代首次合成的。七十年代,人们发现Ce3+掺杂的YAG可以发出强烈的黄光。进入九十年代以后,人们开始把YAG:Ce3+荧光粉与蓝光发光二极管(LED)搭配,利用二者混合而成的白光进行照明。虽然在之后的近二十年时间里,人们对稀土离子掺杂的YAG进行了大量的研究,取得了十分显著的成果,研究主要集中于制备工艺、掺杂改性、显色性、亮度、粒径控制等方面,以满足于实际生产的需要,但对于这种荧光粉的其它方面问题考虑较少,例如其它稀土或过渡金属离子在其中的光致发光以及热释发光性质,基质替代对于稀土或过渡金属离子在石榴石材料中的发光性质的影响,稀土或过渡金属离子在石榴石材料中的发光能量转移等问题。基于这些问题的存在,本论文采用高温固相法,制备了一系列稀土或过渡金属离子掺杂的钇铝石榴石材料,并研究了稀土或过渡金属离子的掺杂对于石榴石材料结构以及其中发光中心的发光性质的影响。主要获得了以下几个方面的成果:
     1、Ce3+在YAG中的余辉和热释光特性
     在1550℃灼烧4h可以制备纯相YAG, Ce3+的少量掺杂不改变基质YAG的结构。荧光光谱测试表明,还原气氛下制备的样品在峰值波长分别为341nm和455nm的宽带激发下,可以获得峰值波长531nm的宽带发射。在空气气氛下制备的样品中部分Ce4+可以自发的被还原成Ce3+,也可以形成531nm黄光发射。自还原样品中Ce4+的自还原并不彻底。
     紫外光激发以后,还原气氛下制备的样品在黑暗中可见黄色长余辉,余辉时间长达35min。而空气气氛下制备的Ce掺杂样品和无掺杂样品肉眼看不到长余辉现象。紫外激发后加热,Ce掺杂样品均存在较强的热释光。在弱还原气氛下制备的样品的热释光曲线上有112和256℃两个热释光峰;而在空气气氛下制备的样品的热释光曲线上只有128℃一个热释光峰。Ce3+掺杂样品的热释发光明显的强于无掺杂样品,证明Ce3+掺杂样品的热释发光主要来源于Ce3+。纯的YAG样品在受激后也有热释发光现象,其根源在于主要由反格位缺陷组成的本征缺陷以及样品合成过程中因杂质和空位所引起的非本征缺陷。Ce3+的掺入大大增加了样品中的陷阱浓度,降低了样品中的陷阱深度,导致样品在紫外激发下的长余辉发光。
     2、基质替代对于YAG的结构和发光性质的影响
     采用两种替代方式逐渐替代YAG基质中的阳离子,研究了基质替代对于YAG:Ce3+发光性质的影响。两种基质替代方式其一是用Dy3+替代Y3+,其二是用Ca2+和Si4+分别去替代Y3+和A13+。
     第一种替代方式:随着Dy3+含量的不断增加,Dy3+离子逐渐全部替代了Y2.95Al5O12: Ce3+0.05中Y3+的位置,表明YAG和DyAG二者之间可以形成完全互溶固溶体。在加入Dy3+时,样品的晶格逐渐发生膨胀,但保持原有的石榴石结构不变,其膨胀量与Dy3+含量成线性关系。样品的发射光谱均为宽带发射谱,随着Dy3+含量的不断增加,样品发射峰位发生红移,红移量也与Dy3+含量成线性关系。全部样品在紫外激发下都具有黄色长余辉现象,余辉时间最长达35min,样品的余辉时间随着Dy3+含量的增加而减小。经过热释光谱测量和计算,样品在紫外光照射下热释光谱上可见两个发射峰,低温峰位置随Dy3+含量的增加移向较低的温度,表明低温峰所代表的陷阱深度逐渐减小,有利于室温下陷俘电子的逃逸。样品在紫外激发下强的热释光效率,表明其在紫外辐射剂量测试方面有潜在的应用价值。
     第二种替代方式:随着Ca2+和Si4+的共替代量的不断增加,Ca2+和Si4+分别逐渐替代了Y2.95A15O12:Ce3+0.05中Y3+和A13+的位置,样品的晶格逐渐发生收缩,但保持原有的石榴石结构不变,其收缩量与共替代量成线性关系。样品的发射光谱均为宽带发射谱,随着共替代量的不断增加,样品发射峰位发生蓝移,蓝移量也与共替代量成线性关系。
     3、其它稀土和过渡金属离子在YAG中的发光性质
     Si4+被选作电荷和体积补偿剂与Mn2+共掺杂到YAG中,避免了电荷失衡问题,增大了Mn2+在YAG中的掺杂量,从而研究了Mn2+在YAG中的发光特性。根据引入的各离子半径,我们设计了两种替代方案,其一是Mn2+和Si4+分别替代Y3+和A13+;其二是Mn2+和Si4+共同替代A13+。样品的X射线衍射分析(XRD)表明,这样的两种替代方案均是可行的。两种替代方案中,Mn2+的掺杂量分别可以达到30和40mil%。
     在第一种替代中,由于掺入的两种离子均比替代的两种离子小,替代使基质YAG的晶格常数缩小,但在一定的限度(<30mil%)内并不改变原有的石榴石结构。样品的激发和发射光谱分析表明样品在紫外光和蓝紫光的激发下可以宽带发射峰值波长位于580-592nm的橙色荧光,其发光波长随着替代量的增加而红移。样品的发光强度在Mn2+掺杂量小于7.5mol%时随着掺杂量的增加而增加,大于7.5mol%时随着共掺杂量的增加而减小,即样品的发光强度在掺杂量为7.5mol%时取得最大值。样品在紫外光激发下可以长余辉发射橙色光,余辉时间最长达18min。通过对样品进行热释光测试发现共掺杂样品中存在两种不同深度的陷阱能级,而且它们的能级深度随着替代量的增加而减小,有利于室温下陷阱中被陷俘电子的释放。样品在紫外光激发下高的热释光强度表明其在紫外辐射剂量测试方面具有潜在的应用价值。
     在第二种替代中,掺入的两种离子一种比替代的离子大,另一种比替代的离子小其总的掺入效果是在一定限度内(<40mol%)使基质YAG的晶格常数缩小而不改变其石榴石结构。纯相样品的激发和发射光谱分析表明样品在紫外光和蓝紫光的激发下可以宽带发射峰值波长位于586-593nm的橙色荧光。样品的发光波长随着掺杂量的增加而红移。样品的发光强度在Mn2+掺杂量小于10mol%时随着掺杂量的增加而增加,大于10mol%时随着共掺杂量的增加而减小,即样品的发光强度在掺杂量为10mol%时取得最大值。
     4、稀土和过渡金属离子在YAG中发光能量转移
     通过采用Si4+作为电荷补偿剂,可以增大Mn2+在YAG中的掺杂量。在此基础上研究了Mn2+单掺杂磷光体Y3MnxAl5-2xSixO12的结构和发光性质。Mn2+在YAG中宽带发射峰值波长从586到593nm的橙色光,发光强度在Mn2+掺杂量为10mol%时达到最大,发光峰值波长随掺杂量的增加而红移。Tb3+单掺杂磷光体Y3-yTb3yAl5O12在275nm激发下,可见两组发射峰,分别对应于激发态5D3和5D4到基态7FJ(J=6、5、4、3)的跃迁。将Tb3+、Mn2+共掺于YAG中,Tb3+的发光对于Mn2+的发光具有明显的敏化作用,发生了从Tb3+到Mn2+的能量转移。经分析,发生能量转移的原因在于Tb3+的发射光谱与Mn2+的激发光谱有较好的重叠。本文的实验和分析证明,电荷补偿和其它发光中心离子的敏化是提高Mn2+在YAG中发光强度的两个有效途径。
     合成了一系列Bi3+和Dy3+共掺杂的YAG,并研究了两种离子在YAG中的发光和从Bi3+到Dy3+的能量转移。Bi3+在276nm紫外光的激发下可以发射峰值波长位于304nm的宽带,起源于Bi3+从激发态3P0,1到基态1So的跃迁。Dy3+在YAG中可以发射两组发射峰,分别位于484和583nm附近,可分别归属为从激发态4F9/2到基态6H15/2和6H 13/2的跃迁。把Bi3+共掺入Dy3+单掺杂系统,Dy3+的发射显著增强。Dy3+的发射强度显著增强,证明发生了从Bi3+到Dy3+的共振能量转移,原因在于Bi3+的发射光谱和Dy3+的激发光谱之间有明显的重叠。经分析,二者之间的共振能量转移是通过“电偶极—电四极”相互作用引起的。
     5、Eu3+在Sr2CeO4及ZnB2O4中发光的电荷补偿
     在Sr2Ce04体系中,荧光粉可以强烈的宽带吸收紫外线,其峰值波长为276nm,覆盖低压汞灯的主要发射波长(254nm)。实验确定Eu3+在Sr2Ce04中的最优掺杂浓度是x=0.13。所用到的四种电荷补偿方法都能够增强Eu3+的红光发射强度而不改变其激发和发射光谱的形状和位置。Li+,Na+或K+取代Sr2+, Al3+取代Ce4+可以分别把Eu3+的红光发射增大到1.3,1.6,2.1和1.4倍。研究表明Eu3+重掺杂的电荷补偿的Sr2Ce04是一种可以用于低压汞灯及方兴未艾的AlxGa1-xN基紫外LED的优秀红色荧光粉。
     在ZnB2O4体系中,XRD结果显示所制备的样品几乎是纯相。Eu3+在ZB中可以强烈吸收393nm紫外光发出色纯度较好的红光。电荷补偿可以提高样品的结晶度,增加其红光发射强度,还可以改善红光发射的色纯度。但不同的电荷补偿方法均不影响激发和发射光谱的位置和形状。Li+的补偿效果最好,其次是Na+,K+和自补偿。这几种方法分别可以将红光发射增大到4.4,3.7,3.4和2.2倍。样品的形貌分析表明制备的样品是不均一的,电荷补偿剂的引入改善了样品的结晶度,因而增加了样品的平均晶粒度。
     当发光中心在基质中取代的是一种与之不等价的离子(如Eu3+取代Sr2+, Ca2+, Ba2+或Zn2+)时,发光中心的掺杂量将受到限制。在这种情形下,电荷补偿是一种增强发光中心发光强度的有效手段。单从电荷平衡的角度考虑,当发光中心离子所带正电荷比所替代离子多时,所选择的补偿离子所带正电荷应该比它所替代的离子少,反之亦然。发光中心离子和补偿离子可以同时取代基质中的同一种阳离子,也可以分别取代两种阳离子。然而,单从电荷平衡的角度考虑还是不够的,在满足电荷平衡的同时还要考虑其它两个方面:一是离子数的平衡,即1个离子只能取代1个离子;二是体积平衡,即如果发光中心离子比它所替代的离子大,那么补偿离子就应该比它所替代的离子小,反之亦然。
Garnets are a group of minerals which have been widely used as gems as early as Bronze Age. Garnets which can be synthesized artificially to be used as luminescent materials include yttrium aluminium garnet (Y3Al5O12, YAG) and some modifications of its. In 1960s, the single crystal of yttrium aluminium garnet was synthesized for the first time. In 1970s, people found that Ce3+ doped YAG can emit intense yellow light. When it comes to 1990s, phosphor YAG:Ce3+ began to be combined with blue light-emitting diodes (LEDs). Obtained white light can be used as a light source for interior illumination. In the subsequent nearly twenty years, people spent plenty of time and efforts in the investigation of this phosphor and obtained remarkable achievements. These investigations mainly focus on the preparation techniques, the improvement or modification of luminescence properties by doping, chromaticity, the enhancement of brightness, the controlment of particle size, and so on, to fulfill the requirements in practical production. However, the other problems were ignored such as the photoluminescence and thermoluminescence (TL) properties of the other rare earth (RE) ions and transition metal (TM) ions in garnets, the effect of host substitution on the luminescence properties of RE or TM ions in garnets, luminescence energy transfer of these ions in garnets, and so on. Thus, a series of RE or TM ions doped YAG or its modifications were synthesized with solid state reactions. The effect of the doping of RE or TM ions on the structure and luminescence properties were investigated. The main conclusions obtained in this dissertation were as follows.
     1. Afterglow and TL properties of Ce3+ in YAG
     Pure YAG can be obtained by sintering the raw material for 4h at 1550℃. The doping of Ce3+ with a small amount does not change the structure of host YAG.
     The measurement of fluorescence spectra show that the sample prepared in reducing atmosphere can emit a broad band peaking at 531nm under the excitation of 341 and 455nm. Ce4+in the sample prepared in air can be partly reduced to Ce3+ spontaneously. Thus it can also emit yellow light peaking at 531nm. The luminescent intensity of the sample prepared in air is about one third of the intensity of the sample prepared in a reducing atmosphere. This indicates that the spontaneous reducing in air is incomplete. Under the ultraviolet excitation, yellow long afterglow can be found in the sample prepared in reducing atmosphere. The afterglow time is as long as 35 minutes. While there is no long afterglow is observed in Ce3+ doped YAG prepared in air and undoped YAG:Ce3+ doped samples show obvious thermoluminescence after they are excited by ultraviolet (UV) light.
     There are two TL peaks at 112 and 256℃respectively in the TL spectrum of reduced sample. However there is only one at 128℃in the sample prepared in air. The TL of Ce3+ doped samples is obviously stronger than the undoped one. This indicates that TL is originated from doped Ce3+. There is also TL in pure YAG after UV excitation which is originated from the extrinsic defects introduced by the impurity formed in the synthesis process and intrinsic defects mainly composed or anti-site defects. The doping of Ce3+ increases the concentration of defects remarkably and decreases the depth of defect energy level. This results in the long afterglow of samples under UV excitation.
     2. Effect of host substitution on the structure and luminescence properties of Ce3+ in YAG
     The cations in YAG were gradually substituted with two methods. Then the effect of host substitution on the structure and luminescence properties was investigated in detail. One method is to substitute Y3+ with Dy3+. The other one is to substitute Y3+ and Al3+ with Ca2+ and Si4+ respectively.
     For the first substitution method Dy3+ gradually replaces Y3+ in Y2.95Al5O12:Ce3+ 0.05 with the increment of Dy3+ content. This indicates that YAG and DyAG can form complete solid solution. The crystal lattice expand with the increment of Dy3+ content but keep original garnet structure unchanged. The expansion extent of crystal lattice is proportional with Dy3+ content. The emission of all the samples is in a broad band. However, with the increment of Dy3+ content, a red-shift of emission peak is observed. The red-shift extent is also proportional with Dy3+ content. Long afterglow can be observed for all the samples. Afterglow time decreases with the increment of Dy3+ content with the longest afterglow time of 35 minutes. Via the measurements and calculation on TL spectra, two TL peaks can be found in the TL spectra. Position of the peak with lower temperature moves to lower temperature with the increasing Dy3+ content. This indicates that the depth corresponding to the peak with lower temperature decreases with the increasing Dy3+ content which is advantageous to the release of trapped electrons. The satisfying TL efficiency indicates our phosphor have potential applications in UV radiation dosemeters.
     For the second method, with the increment of co-substitution content, Ca2+ and Si4+ replaced Y3+ and Al3+ respectively, which results in the shrink of crystal lattice of samples whereas it presents single garnet structure all along. The decrement of cell parameter is in linear with the increment of co-substitution content. The emission spectra of all samples are in a broad band. The peak wavelength of the emitted broad band shows a blue-shift and the amount of the blue-shift is also in linear with the co-substitution content.
     3. Luminescence properties of the other RE and TM ions in YAG
     Si4+is co-doped into YAG with Mn2+ as a charge and volume compensator. This avoids charge unbalance and increases the doping content of Mn2+ in YAG. On the basis of this, the luminescence properties of Mn2+ in YAG are investigated. According to the radii of introduced ions, we design two methods for the substitution of Mn2+ and Si4+. One is to replace Y3+ and Al3+ with Mn2+ and Si4+ respectively. The other is to replace Al3+ with both Mn2+ and Si4+. The results of X-ray diffraction (XRD) analysis indicate that both methods are practical. The maximal doping concentration of Mn2+ in two methods can be enhanced to 30 and 40mol% respectively.
     For the first method, the substitution of Mn2+ and Si4+ to Y3+ and Al3+ make the interplanar distance decrease but does not change the single garnet crystal phase of the samples because the radii of both doped ions are smaller than replace ones.
     The emission spectra show that samples can emit yellow-orange light in a broad band peaking from 579 to 592 nm with long afterglow under the excitation of UV and blue-violet light. With the increment of substitution content, the emission intensity of samples increases firstly, decreases subsequently. The highest emission intensity occurs when x=0.075. The emission peaks move to longer wavelength. Afterglow spectra and decay curves show that all the Mn2+ and Si4+ co-doped samples emit yellow-orange light with long afterglow after the irradiation of UV light. The longest afterglow time is 18 minutes for Sam3.Two kinds of traps with different energy level depth in co-doped samples were observed by means of TL detection, and their depth decreases with the increment of substitution content. Higher TL efficiency shows that the phosphors present a good potential for UV irradiation dosimeter applications.
     For the second method, the co-doping of Mn2+ and Si4+ makes the interplanar distance decrease but does not change the single garnet crystal phase of the samples in a certain extent. The excitation and emission spectra of samples with pure crystal phase show that samples can broadband emit orange light peaking at 586nm to 593nm under the excitation of UV light and blue-violet light. With the increment of co-doping content, the emission intensity of the phosphors increases when Mn2+ content is lower than 10mol% while decreases when it is higher than 10mol%. That is to say, the emission intensity is biggest when Mn2+ content is 10mol%. The emission peak moves to longer wavelength with the increment of co-doping content.
     4. Luminescence energy transfer of RE and TM ions in YAG
     By employing Si4+ as a charge compensator, the doping content of Mn2+ in YAG was increased to a certain extent. On this basis, the structure and luminescence properties of Mn2+ singly doped phosphor were investigated. Mn2+ in YAG emits orange light in a broad band. With the increment of the doping content, the emission peak shifts to longer wavelength and the emission intensity of phosphors increases firstly, decreases subsequently. The emission intensity reaches its maximum when Mn2+ content is 10mol%. Two groups of emission peaks, corresponding to the optical transitions from excited states 5D3 and 5D4, to ground state 7F1(J=6,5,4,3), respectively, were observed in the emission spectra of Tb3+ singly doped phosphors. When Tb3+ and Mn2+ were co-doped into YAG, the obvious sensitization effect of Tb+ on Mn+ was observed which indicates that the energy transfer from Tb3+ to Mn2+ occurs. The reason for energy transfer from Tb3+ to Mn2+ is verified that there is a perfect overlapping between the emission spectrum of Tb3+ and excitation spectrum of Mn2+. The experiments and analysis confirm that charge compensation and the sensitization of the other luminescent ions are two effective methods which can be utilized to enhance the luminescence of Mn2+ in YAG.
     A series of Bi3+ and Dy3+ doped YAG were synthesized with solid state reactions. The luminescence properties of Bi3+ and Dy3+, and the energy transfer from Bi3+ to Dy3+ were investigated. Bi3+ in YAG emits one broad band peaking at 304nm under the excitation of UV light (276nm) which is attributed to the transition from excited states 3P0.1 to ground state1So.Dy3+ in YAG emits two groups of emission lines near 484 and 583nm respectively which are attributed to the transitions from excited state 4F9/2 to ground states 6H15/2 and 6H13/2. The co-doping of Bi3+ into Dy3+ doped YAG enhances the luminescent intensity of Dy3+ by-7 times. The remarkable enhancement of Dy3+ emission obtained by Bi3+ co-doping makes it possible that Dy3+ doped phosphors are used in w-LEDs. The enhancement also proves the occurrence of resonance energy transfer from Bi3+ to Dy3+ which results from the overlapping between the emission spectrum of Bi3+ and the excitation spectrum of Dy3+. The resonance energy transfer from Bi3+ to Dy3+ is performed through dipole-quadrupole interactions.
     5. Charge compensation for the luminescence of Eu3+ in Sr2 CeO4 and ZnB2O4
     For the first system (Eu3+ doped Sr2CeO4), the phosphors can strongly absorb UV (broad band peaking at 276nm and overlapping 254nm) which is coupled well with the emission of low pressure mercury vapor (LPMV) lamps. In our experiments, the optimal doping concentration of Eu3+ in Sr2CeO4 is ascertained(x=0.13). All four charge compensators can enhance the red emission of Eu3+, but they do not significantly change the shape and positions of excitation and emission spectra in the same host lattices. The introduction of Li+, Na+ and K+ at Sr2+ site, Al3+ at Ce4+ site can enhance the luminescent of red emission by 1.3,1.6,2.1 and 1.4 times respectively. The investigation in this paper indicates that Eu3+ heavy doped Sr2CeO4 phosphors with charge compensation are potential candidates of red emitting phosphors for LPMV lamps or ascending AlxGa1-xN-based UV LEDs.
     For the second system (Eu3+ doped ZnB2O4) the results of XRD analysis show that all the prepared samples can be indexed to pure phase ZnB2O4. The excitation and emission spectra of samples show that Eu3+ doped ZnB2O4 can strongly absorb 393nm UV light which is coupled well with the emission of currently used InGaN-based near UV LEDs and emit red light with good color purity. Employed four charge compensation approaches can not only improve the crystallinity but also enhance the red emission of phosphors. Different charge compensation approaches do not affect the shape and position of excitation and emission spectra. The compensation effect of Li+ is the optimal followed by Na+, K+ and self-compensation. They can enhance the red emission intensity of Eu3+ by 4.4,3.7,3.4 and 2.2 times, respectively. Morphology analysis of samples with a scanning electronic microscope indicates that prepared samples are inhomogeneous and the introduction of charge compensators improves the crystallinity and increases the mean particle size of phosphors.
     When an ion as a luminescent center replaces another one which has the different valency(such as the substitution of Eu3+ for Sr2+, Ca2+, Ba2+ or Zn2+), the substitution content will be restricted. On this condition, charge compensation is an effective method for the enhancement of luminescence intensity. If just charge balance is taken into consideration, selected compensating ion should own less positive charges than replace ion when luminescent center ion has more positive charges than replaced ion, vice versa. Luminescent center ion and compensating ion may replace the same ion in the host. They can also replace the different ions. However, it is deficient to take just charge balance into consideration. When a charge compensator is selected, two other aspects should also be thought. One is the equilibrium of mole number which requires that one ion can only replace one. The other is volume balance. If luminescent center ion is bigger than replaced ion, the compensating ion should own a smaller radius than replaced ion by it, vice versa.
引文
[1]J.E. Geusic. YAG lasers:present and future [J].1969 annual meeting of the Optical Soc. America,1969:7.
    [2]T.Y. Tien, E.F. Gibbons, R.G. Delosh, et al. Ce3+ activated Y3Al5O12 and some of its solid-solutions [J]. J. Electrochem. Soc.,1973,120(2):278-282.
    [3]G.N. Pirogova, V.E. Kritskaya, N.A. Anisimov, et al. Effect of radiation on the optical properties of aluminium yttrium garnets [J]. Inorg. Mater.,1975,11(10): 1554-15577|1812-1817.
    [4]A.G. Rozno, V.V. Gromov, A.V. Romanov, et al. Electrical conductivity of cerium-doped yttrium aluminium garnet irradiated with gamma rays [J]. Soviet Phys.,1976,18(8): 1430-1431|2449-2451.
    [5]P. Schlotter, R. Schmidt, J. Schneider. Luminescence conversion of blue light emitting diodes [J]. Appl. Phys. A:Mater. Sci. Process,1997,64(4):417-418.
    [6]P. Schlotter, J. Baur, C. Hielscher, et al. Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs [J]. Mater. Sci. Eng., B,1999,59(1-3):390-394.
    [7]U. Kaufmann, M. Kunzer, et al. Single Chip White LEDs [J]. Phys. Status Solidi A,2002, 192(2):246-253.
    [8]A. Ikesue, T. Kinoshita, K. Kamata, et al. Fabrication and optical-properties of high-performance polycrystalline Nd-YAG ceramics for solid state lasers [J]. J. Am. Ceram. Soc.,1995,78(4):1033-1040.
    [9]T.Y. Fan. Heat-generation in Nd-YAG and Yb-YAG [J]. IEEE J. Quantum Electron., 1993,29(6):1457-1459.
    [10]A. Ikesue, I. Furusato, K. Kamata. Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method [J]. J. Am. Ceram. Soc.,1995,78(1):225-228.
    [11]J.N. Kabalin. Laser prostatectomy performed with a right-angle firing neodymium-YAG laser fiber at 40 watts power setting [J]. J. Urology,1993,150(1):95-99.
    [12]R. Sattmann, V. Sturm, R. Noll. Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd-YAG laser-pulses [J]. J. Phys. D:Appl. Phys.,1995,28(10): 2181-2187.
    [13]J.C. Javitt, J.M. Tielsch, J.K. Canner, et al. National outcomes of cataract-extraction-increased risk of retinal complications associated with Nd-YAG laser capsulotomy [J]. Ophthalmology,1992,99(10):1487-1498.
    [14]M. Veith, S. Mathur, A. Kareiva, et al. Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12 via different sol-gel methods [J]. J. Mater. Chem., 1999,9(12):3069-3079.
    [15]C. Pfistner, R. Weber, H.P. Weber, et al. Thermal beam distortions in end-pumped Nd-YAG, Nd-GSGG, and Nd-YLF rods [J]. IEEE J. Quantum Electron.,1994,30(7): 1605-1615.
    [16]T.T. Kajava, A.L. Gaeta. Q switching of a diode-pumped Nd:YAG laser with GaAs [J]. Opt. Lett.,1996,21(16):1244-1246.
    [17]W. Koechner, D.K. Rice. Effect of birefringence on performance of linearly polarized YAG-Nd lasers [J]. IEEE J. Quantum Electron.,1970, QE 6(9):557-566.
    [18]V. Lupei, A. Lupei, C. Tiseanu, et al. High-resolution optical spectroscopy of YAG-Nd-a test for structural and distribution models [J]. Phys. Rev. B:Condens. Matter Mater. Phys., 1995,51(1):8-17.
    [19]F.W. Ostermay. GaAs1-xPx diode pumped YAG-Nd lasers [J]. Appl. Phys. Lett.,1971, 18(3):93-96.
    [20]N. Guerassimova, N. Gamier, C. Dujardin, et al. X-ray-excited charge transfer luminescence in YAG:Yb and YbAG [J]. J. Lumin.,2001,94:11-14.
    [21]H.B. Yin, P.Z. Deng, F.X. Gan. Defects in YAG:Yb crystals [J]. J. Appl. Phys.,1998, 83(7):3825-3828.
    [22]P. Antonini, G. Bressi, G. Carugno, et al. Scintillation properties of YAG:Yb crystals [J]. Nucl. Instrum. Methods Phys. Res., Sect. A,2001,460(2-3):469-471.
    [23]S.B. Ubizskii, A.O. Matkovskii, S.S. Melnyk, et al. Optical properties of epitaxial YAG: Yb films [J]. Phys. Status Solidi A,2004,201(4):791-797.
    [24]J. Wang, J.B. Cheng, Z.L. Lin. Technology study of 7.6cm YAG projection tube [J]. Acta Electronica Sinica,2002,30(2):255-257.
    [25]K. Yamamoto, T. Tanji, M. Hibino, et al. Improvement of light collection efficiency of lens-coupled YAG screen TV system for a high-voltage electron microscope [J]. Microsc. Res. Techniq.,2000,49(6):596-604.
    [26]J.B. Cheng, K.C. Qi, Q.H. Wang, et al. A kind of electrovacuo glass in YAG display tube [J]. Display Devices and Systems Ⅱ,1998,3560:227-232.
    [27]H.S. Yang, Y.S. Kim. Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors [J]. J. Lumin.,2008,128(10):1570-1576.
    [28]孔丽,甘树才,洪广言,张吉林.Pr3+或Sm3+掺杂YAG:Ce的发光特性及其荧光寿命[J].发光学报.2007,28(3):393-396.
    [29]S. Mukherjee, V. Sudarsan, R.K. Vatsa, et al. Luminescence studies on lanthanide ions (Eu3+, Dy3+ and Tb3+) doped YAG:Ce nano-phosphors [J]. J. Lumin.,2009,129(1):69-72.
    [30]H.S. Jang, W. Bin Im, D.C. Lee, et al. Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs [J]. J. Lumin.,2007,126(2):371-377.
    [31]Y.X. Pan, W. Wang, G.K. Liu, et al. Correlation between structure variation and luminescence red shift in YAG:Ce [J]. J. Alloys Compd.,2009,488(2):638-642.
    [32]L. Kong, S.C. Gan, G.Y. Hong, J.L. Zhang. Relationship between Crystal Structure and Luminescence Properties of (Y0.96-xLnxCe0.04)3Al5O12(Ln=Gd, La, Lu)Phosphors [J]. J. Rare Earths,2007,25(6):692-696.
    [33]K. Zhang, W.B. Hu, Y.T. Wu, et al. Photoluminescence investigations of ((Y1-xLnx)3Al5O12:Ce(Ln3+=Gd3+, La3+) nanophosphors [J]. Phys. B (Amsterdam, Neth.), 2008,403:1678-1681.
    [34]M.A. Belen, P.J. Luis, Z. Barandiaran, et al. Structural effects and 4f-5d transition shifts induced by La codoping in Ce-doped yttrium aluminum garnet:First-principles study [J]. Phys. Rev. B:Condens. Matter Mater. Phys.,2010,82(6):064114.
    [35]张书生,庄卫东,赵春雷等.助熔剂对Y3Al5O12:Ce荧光粉性能的影响[J].《中国稀土学报》2002,20(6):605-607.
    [36]Y.X. Pan, M.M. Wu, Q. Su. Tailored photoluminescence of YAG:Ce phosphor through various methods [J]. J. Phys. Chem. Solids,2004,65:845-850.
    [37]姚光庆,段洁菲,任敏,于海东,林建华YAG:Ce蓝光转换材料的合成和发光性质研究[J].发光学报,2001,22:21-23.
    [38]J.G. LI, J.H. Lee, T. MORI, Y. Yajima, S. Takenouchi, T. Ikegami. Crystal Phase and Sinterability of Wet-Chemically Derived YAG Powders [J]. J. Ceram. Soc. Jpn.,2000, 108(5):439-444.
    [39]李江,潘裕柏,张俊计等.共沉淀法制备钇铝(YAG)石榴石纳米粉体[J].硅酸盐学报,2003.31(5):490-493.
    [40]王宏志,高濂.共沉淀法制备纳米粉体[J].无机材料学报,2001.16(4):630-634.
    [41]B. Damien, B.C. Genevieve, M. Rachid. Structural and optical characterizations of YAG: Eu3+ elaborated by the sol-gel process [J]. Opt. Mater.,2004,26:101-105.
    [42]R.A. Rodriguez-Rojas, E. De la Rosa-Cruz, L.A. Diaz-Torres, et al. Preparation, photo-and thermo-luminescence characterization of Tb3+ and Ce+ doped nanocrystalline Y3Al5O12 exposed to UV-irradiation [J]. Opt. Mater.,2004,25(3):285-293.
    [43]I. Masashi, O. Hiroyuki, K. Hiroshi, et al. Synthesis of Yttrium Aluminum Garnet by the Glycothermal Method [J]. J. Am. Ceram. Soc.,1991,74(6):1452-1454.
    [44]张旭东,刘宏,何文等.溶剂热法合成YAG晶粒的形成过程[J].硅酸盐学报,2004,32(3):226-229.
    [45]李强,高濂,严东升YAG:Ce3+微粉的制备及光谱性能[J].无机材料学报,1997,4(12):575-578.
    [46]M.B. Kakade, S. Ramanathan, P.V. Ravindran. Yttrium aluminum garnet powders by nitrate decomposition and nitrate-urea solution combustion reactions-a comparative study [J]. Journal of Alloys and Compounds 2003,350(1-2):123-129.
    [47]戚发鑫,王海波,朱宪忠.喷雾热解法制备球形YAG:Ce3+荧光粉研究[J].中国稀土学报,2005,(5):31-33.
    [48]R.A. Rodriguez, E. De la Rosa, R. Melendrez, et al. Thermoluminescence characterization of nanocrystalline and single Y3Al5O12 crystal exposed to beta-irradiation for dosimetric applications [J]. Opt. Mater.,2005,27(7):1240-1244.
    [49]V.B. Glushkova, V.A. Krzhizhanovskaya, O.N. Egorova, et al. Mechanism of YAG Synthesized by the Solid-state Reaction Method [J]. Inorg. Mater.,1983,19:80-84.
    [50]Y.X. Pan, M.M. Wu, Q. Su. Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor [J]. Mater. Sci. Eng. B,2004,106:251-256.
    [51]G.D. Xia, S.M. Zhou, J.J. Zhang, J. Xu. Structural and optical properties of YAG:Ce3+ phosphors by sol-gel combustion method [J]. J. Cryst. Growth,2005,279:357-362.
    [52]H.M.H. Fadlalla, C.C. Tang, S.Y. Wei, X.X. Ding. Preparation and properties of nanocrystalline powders in (Y1-xCex)Al5O12 system [J]. J. Lumin.,2008,128:1655-1659.
    [53]P. Vladimir, G. Larisa, M. Donats, C. Tadeusz. Luminescence of cerium doped YAG nanopowders [J]. Radiat. Meas.,2007,42:679-682.
    [54]黄朝红,张庆礼,周东方,王爱华,殷绍唐,施朝淑Ce3+:YAG单晶闪烁体的激发和特性[J].人工晶体学报,2003,32(4):295-299.
    [55]沈雷军,赵增祺,万作波,周永勃,李波,张国斌Y3Al5O12:Ce3+的合成及真空紫外发光性质[J].发光学报,2008,29(2):269-273.
    [56]Z.W. Pei, Q. Su, J.Y. Zhang. The valence change from RE3+ to RE2+ in SrB4O7:RE prepared in air and the spectral properties of RE2+[J]. J. Alloys Compd.,1993,198:51-53.
    [57]苏锵,曾庆华,裴治武.在空气下制备掺二价稀土的硼酸盐及二价稀土离子(RE2+ =Sm, Eu, Tm, Yb)的光谱特征[J].无机化学学报,2000,16(2):293-298.
    [58]Q. Su, H.B. Liang, T.D. Hu, Y. Tao, T. Liu. Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+[J]. J. Alloys Compd.,2002, 344:132-136.
    [59]苏锵,李成宇,王静,李娟,张彦立,郭崇峰,吕玉华.掺稀土离子的电子俘获材料[J].发光学报,2005,26(2):143-148.
    [60]R. Sakai, T. Katsumata, S. Komuro, T. Morikawa. Effect of composition on the phosphorescence from BaAl2O4:Eu2+, Dy3+ crystals [J]. J. Lumin.,1999,85:149-154.
    [61]Z.X. Yuan, C.K. Chang, D.L. Mao, W.J. Ying. Effect of composition on the luminescent properties of Sr4Al14O25:Eu2+, Dy3+ phosphors [J]. J. Alloys Compd.,2004,377:268-271.
    [62]R. Chen, Y.H. Wang, Y.H. Hu, Z.F. Hu, C. Liu. Modification on luminescent properties of SrAl2O4:Eu2+, Dy3+ phosphor by Yb3+ ions doping [J]. J. Lumin.,2008,128:1180-1184.
    [63]柳成,王银海,胡义华,陈仁,廖峰.不同结构稀土掺杂铝酸锶的合成与发光性能研究[J].功能材料,2007,38(12):1952-1955.
    [64]A.J.J. Bos. Theory of thermoluminescence [J]. Radiat. Meas.,2006,41:S45-S56.
    [65]刘波,施朝淑,魏亚光,吴灿,李裕熊,胡关钦,沈定中.掺Y对PbWO4闪烁体的热释光影响[J].物理学报,2000,49(10):2078-2082.
    [66]刘波,施朝淑,周东方,戚泽明,胡关钦,汤洪高.掺Gd3+, Y3+对PbWO4低温热释光的影响[J].物理学报,2001,50(8):1627-1631.
    [67]张纯祥,唐强,罗达玲CaSO4:Eu磷光体的热释光特性研究[J].物理学报,2002,51(12):2881-2886.
    [68]张纯祥,林理彬,梁宝鎏,唐强,李德卉,罗达玲α-Al2O3单晶的热释光和光释光特性[J].物理学报,2004,53(1):291-295.
    [69]李成宇,苏锵,邱建荣.稀土元素掺杂长余辉发光材料研究的最新进展[J].发光学报,2003,24(1):19-27.
    [70]罗昔贤,于晶杰,林广旭,肖志强,段锦霞,肖志国.长余辉发光材料研究进展[J].发光学报,2002,23(5):497-502.
    [71]苏丽伟,游达,程海英,江风益.Si衬底功率型GaN基绿光LED性能[J].光学学报, 2009,29(4):1066-1069.
    [72]吴海彬,何素梅,王昌铃.导致单管型白光发光二极管快速光衰的实验研究[J].光学学报,2009,29(5):1363-1367.
    [73]林岳,叶烈武,刘文杰,吕毅军.二分法优化计算LED光源相关色温[J].光学学报,2009,29(10):2791-2794.
    [74]孔丽,甘树才,洪广言,尤洪鹏,张吉林YAG:Ce体系中稀土离子掺杂对Ce3+的光谱性能的影响[J].高等学校化学学报.2008,29(4):673-676.
    [75]S.H. Zhou, Z.L. Fu, J.J. Zhang, et al. Spectral properties of rare-earth ions in nanocrystalline YAG:Re (Re=Ce3+, Pr3+, Tb3+) [J]. J. Lumin.,2006,118(2):179-185.
    [76]P. Dorenbos.5d-level energies of Ce3+ and the crystalline environment. IV. Aluminates and "simple" oxides [J]. J. Lumin.,2002,99(3):283-299.
    [77]C.F. Guo, Q. Tang, C.X. Zhang, et al. Thermoluminescent properties of Eu2+ and RE3+ co-doped phosphors CaGa2S4:Eu2+, RE3+(RE=Ln, excluding Pm, Eu and Lu) [J]. J. Lumin., 2007,126(2):333-338.
    [78]R.D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Cryst.,1976, A32:751-767.
    [79]X.J. Wang, D.D. Jia, W.M. Yen. Mn2+ activated green, yellow, and red long persistent phosphors [J]. J. Lumin.,2003,102:34-37.
    [80]A.A. Bol, A. Meijerink. Long-lived Mn2+ emission in nanocrystalline ZnS:Mn2+[J]. Phys. Rev. B:Condens. Matter Mater. Phys.,1998,58(24):15997-16000.
    [81]M. Morita, D. Rau, H. Fujii, et al. Photoluminescence of CdS:Mn2+ and Eu3+ nanoparticles dispersed in zirconia sol-gel films [J]. J. Lumin.,2000,87-9:478-481.
    [82]Y.H. Won, H.S. Jang, W.B. Im, et al. Tunable full-color-emitting La0.827Al11.9O19.09:Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes [J]. Appl. Phys. Lett., 2006,89(23):231909.
    [83]M.A. Noginov, G.B. Loutts, M. Warren. Spectroscopic studies of Mn3+ and Mn2+ ions in YAlO3 [J]. J. Opt. Soc. Am. B,1999,16(3):475-483.
    [84]T. Justel, H. Lade, W. Mayr, et al. Thermoluminescence spectroscopy of Eu2+ and Mn2+ doped BaMgAl10O17 [J]. J. Lumin.,2003,101(3):195-210.
    [85]J. Lin, D.U. Sanger, M. Mennig, et al. Sol-gel deposition and characterization of Mn2+-doped silicate phosphor films [J]. Thin Solid Films,2000,360(1-2):39-45.
    [86]J.S. Kim, RE. Jeon, J.C. Choi, et al. Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor [J]. Appl. Phys. Lett.,2004, 84(15):2931-2933.
    [87]Y.Y. Liu, Z.S. Zou, X.L. Liang, et al. Energy Transfer and Photoluminescence of Zinc Phlsphate Glasses Co-Doped with Tb3+ and Mn2+[J]. J. Am. Ceram. Soc,2010,93(7): 1891-1893.
    [88]P.I. Paulose, G. Jose, V. Thomas, et al. Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass [J]. J. Phys. Chem. Solids,2003,64(5):841-846.
    [89]C.F. Guo, L. Luan, Y. Xu, et al. White light-generation phosphor Ba2Ca(BO3)2:Ce3+, Mn2+ for light-emitting diodes [J]. J. Electrochem. Soc.,2008,155(11):J310-J314.
    [90]Y.H. Chen, C.S. Shi, W.Z. Yan, et al. Energy transfer between Pr3+ and Mn2+ in SrB4O7: Pr, Mn [J]. Appl. Phys. Lett.,2006,88(6):061906.
    [91]M. Kottaisamy, P. Thiyagarajan, J. Mishra, et al. Color tuning of Y3Al5O12:Ce phosphor and their blend for white LEDs [J]. Mater. Res. Bull.,2008,43(7):1657-1663.
    [92]K. Zhang, H. Liu, Y. Wu, et al. Synthesis of (Y, Gd)3Al5O12:Ce nanophosphor by co-precipitation method and its luminescence behavior [J]. J. Mater. Sci.,2007,42: 9200-9204.
    [93]J.D. Kmetec, T.S. Kubo, T.J. Kane. Laser performance of diode-pumped thulium-doped Y3Al5O12, (Y, Lu)3Al5O12, and Lu3Al5O12 crystals [J]. Opt. Lett.,1994,19(3):186-188.
    [94]P.Y. Jia, J. Lin, X.M. Han, M. Yu. Pechini sol-gel deposition and luminescence properties of Y3Al5-xGaxO12:Ln3+(Ln3+=Eu3+, Ce3+, Tb3+; 0    [95]M. Gervais, S. LeFloch, N. Gautier, et al. Crystallization of Y3Al5O12 garnet from deep undercooled melt effect of the Al-Ga substitution [J]. Mater. Sci. Eng., B,1997,45(1-3): 108-113.
    [96]A. Katelnikovas, H. Bettentrup, D. Uhlich, et al. Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors [J]. J. Lumin.,2009,129(11):1356-1361.
    [97]Y. Kuru, E.O. Savasir, S.Z. Nergiz, et al. Enhanced co-solubilities of Ca and Si in YAG (Y3Al5O12) [J]. Phys. Status Solidi C,2008,5(10):3383-3386.
    [98]L.Y. Zhou, W.C.H. Choy, J.X. Shi, et al. A novel green emitting phosphor Ca1.5Y1.5Al3.5Si1.5O12:Tb3+[J]. Mater. Chem. Phys.,2006,100(2-3):372-374.
    [99]J.A. Hodges. Temperature-dependent EPR measurements of Mn2+ in diamagnetic garnets [J]. J. Phys. Chem. Solids,1974,35(10):1385-1392.
    [100]J. Wang, S.B. Wang, Q. Su. Synthesis, photoluminescence and thermostimulated-luminescence properties of novel red long-lasting phosphorescent materials beta-Zn3(PO4)2:Mn2+, M3+(M=A1 and Ga) [J]. J. Mater. Chem.,2004,14(16): 2569-2574.
    [101]J. Lin, D.U. Sanger, M. Mennig, et al. Sol-gel deposition and characterization of Mn2+ -doped silicate phosphor films [J]. Thin Solid Films,2000,360(1-2):39-45.
    [102]L. Lin, M. Yin, C.S. Shi, et al. Luminescence properties of a new red long-lasting phosphor:Mg2Si04:Dy3+, Mn2+[J]. J. Alloys Compd.,2008,455(1-2):327-330.
    [103]C.Y. Li, Q. Su, S.B. Wang. Multi-color long-lasting phosphorescence in Mn2+-doped ZnO-B2O3-SiO2 glass-ceramics [J]. Mater. Res. Bull.,2002,37(8):1443-1449.
    [104]V. Singh, R.P.S. Chakradhar, J.L. Rao, et al. Mn2+ activated MgSrAl10O17 green-emitting phosphor-A luminescence and EPR study [J]. J. Lumin.2008,128(9): 1474-1478.
    [105]R.R. Wills, J.A. Cunningham, J.M. Wimmer, et al. Stability of silicon yttrium oxynitrides [J]. J. Am. Ceram. Soc.,1976,59(5-6):269-270.
    [106]L. Lin, M. Yin, C. Shi, et al. Luminescence properties of a new red long-lasting phosphor:Mg2Si04:Dy3+, Mn2+[J]. J. Alloys Compd.2008,455(1-2):327-330.
    [107]C.J. Duan, A.C.A. Delsing, H.T. Hintzen. Red emission from Mn2+ on a tetrahedral site in MgSiN2 [J]. J. Lumin.2009,129(6):645-649.
    [108]Y. Zorenko, V. Gorbenko, T. Voznyak, et al. Luminescence of Mn2+ ions in Tb3Al5O12 garnet [J]. J. Lumin.2010,130(3):380-386.
    [109]K. Petermann, G. Huber. Broad-band fluorescence of transition-metal doped garnets and tungstates [J]. J. Lumin.,1984,31-2(Dec):71-77.
    [110]S. Kuck, S. Hartung, S. Hurling, et al. Optical transitions in Mn3+-doped garnets [J]. Phys. Rev. B:Condens. Matter Mater. Phys.,1998,57(4):2203-2216.
    [111]A. Vandie, A.C.H.I. Leenaers, W.F. Vanderweg, et al. A search for luminescence of the trivalent manganese ion in solid aluminates [J]. Mater. Res. Bull.,1987,22(6):781-788.
    [112]O. Nijs, J.M.W. Verweij, G. Blasse. A divalent manganese garnet with red luminescence [J]. Mater. Chem. Phys.,1992,30(3):199-203.
    [113]A. Nag, T.R.N. Kutty. Photoluminescence due to efficient energy transfer from Ce3+ to Tb3+ and Mn2+ in Sr3Al10SiO20 [J].Mater. Chem. Phys.,2005,91(2-3):524-531.
    [114]X.G. Zhang, M.L. Gong. Photoluminescence properties and energy-transfer of thermal-stable Ce3+, Mn2+ codoped barium strontium lithium silicate red phosphors [J]. J. Alloys Compd.,2011,509(6):2850-2855.
    [115]Z.D. Hao, J.H. Zhang, X. Zhang, et al. White light emitting diode by using alpha-Ca2P2O7:Eu2+, Mn2+ phosphor [J]. Appl. Phys. Lett.,2007,90(26):261113.
    [116]T. Nishida, T. Ban, N. Kobayashi. High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors [J]. Appl. Phys. Lett.,2003,82(22):3817-3819.
    [117]H.S. Jang, D.Y. Jeon. Yellow-emitting Sr3Si05:Ce3+, Li+ phosphor for white-light-emitting diodes and yellow-light-emitting diodes [J]. Appl. Phys. Lett.,2007, 90(4):41906-1-3.
    [118]J.H. Yum, S.Y. Seo, S. Lee, et al. Y3Al5O12:Ce0.05 phosphor coatings on gallium nitride for white light emitting diodes [J]. J. Electrochem. Soc.,2003,150(2):H47-H52.
    [119]D. Haranath, H. Chander, P. Sharma, et al. Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes [J]. Appl. Phys. Lett.,2006,89(17):173118.
    [120]J.K. Sheu, S.J. Chang, C.H. Kuo, et al. White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors [J]. IEEE Photonics Tech. Lett.,2003,15(1):18-20.
    [121]N. Lakshminarasimhan, U.V. Varadaraju. White-light generation in SrSiO4:Eu2+, Ce3+ under near-UV excitation-A novel phosphor for solid-state lighting [J]. J. Electrochem. Soc., 2005,152(9):H152-H156.
    [122]G. Lakshminarayana, R. Yang, J.R. Qiu, et al. White light emission from Sm3+/Tb3+ codoped oxyfluoride aluminosilicate glasses under UV light excitation [J]. J. Phys. D:Appl. Phys.,2009,42(1):015414.
    [123]C.K. Jayasankar, V. Venkatramu, S.S. Babu, et al. Luminescence properties of Dy3+ ions in a variety of borate and fluoroborate glasses containing lithium, zinc, and lead [J]. J. Alloys Compd.,2004,374(1-2):22-26.
    [124]Z.L. Xiu, Z.S. Yang, M.K. Lu, et al. Synthesis, structural and luminescence properties of Dy3+-doped YPO4 nanocrystals [J]. Opt. Mater.,2006,29(4):431-434.
    [125]W.Y Jia, A. Perez-Andujar, I. Rivera. Energy transfer between Bi3+ and Pr3+ in doped CaTiO3 [J]. J. Electrochem. Soc.,2003,150(7):H161-H164.
    [126]W.J. Park, M.K. Jung, S.J. Im, et al. Photoluminescence characteristics of energy transfer between Bi3+ and Eu3+ in LnVO(4):Eu, Bi(Ln=Y, La, Gd) [J]. Colloids Surf., A, 2008,313:373-377.
    [127]J.H. Hong, Z.G. Zhang, C.J. Cong, et al. Energy transfer from Bi3+ sensitizing the luminescence of Eu3+ in clusters embedded into sol-gel silica glasses [J]. J. Non-Cryst. Solids,2007,353(24-25):2431-2435.
    [128]G.D. Xia, S.M. Zhou, J.J. Zhang, et al. Solution combustion synthesis, structure and luminescence of Y3Al5O12:Tb3+ phosphors [J]. J. Alloys. Compd.,2006,421(1-2):294-297.
    [129]H.M.H. Fadlalla, C.C. Tang, A. Elsanousi, et al. Solution-combustion synthesis of Tb3+-doped Y3Al5O12 nanoparticles [J]. J. Lumin.,2009,129(4):401-405.
    [130]D.L. Dexter. A Theory of Sensitized Luminescence in Solids [J]. J. Chem. Phys.,1953, 21(5):836-850.
    [131]Y. Zorenko, V. Gorbenko, T. Voznyak, et al. Luminescence of Bi3+ ions in Y3Al5O12:Bi single crystalline films [J]. Radiat. Meas.2007,42:882-886.
    [132]A.A. Setlur, A.M. Srivastava. The nature of Bi3+ luminescence in garnet host [J]. Opt. Mater.,2006,29:410-415.
    [133]L.H. Tian. J. Rare Earths. Luminescence characteristics of Ca4YO(BO3)3 doped with Bi3+, Dy3+ and Pr3+ ions [J].2010,28(1):37-39.
    [134]Z.P. Ci, Y.H Wang, J.C. Zhang. A novel yellow emitting phosphor Dy3+, Bi3+co-doped YVO4 potentially for white light emitting diodes [J]. Chin. Phys. B,2010,19(5):057803.
    [135]G. Blasse. Energy transfer in oxidic phosphors [J]. Philips Research Reports,1969, 24(2):131-144.
    [136]G. Blasse, A. Bril. Characteristic luminescence, Ⅲ. Energy transfer and efficiency [J]. Philips Technical Review,1970,31(10):324-332.
    [137]G. Blasse, G.J. Dirksen. Long-range energy transfer from Gd3+ to Pr3+[J], J. Solid State Chem.,1988,73(2):599-602.
    [138]P.I. Paulose, G. Jose, V. Thomas, et al. Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass [J]. J. Phys. Chem. Solids,2003,64(5):841-846.
    [139]W.J. Yang, T.M. Chen. Ce3+/Eu2+ codoped Ba2ZnS3:A blue radiation-converting phosphor for white light-emitting diodes. Appl. Phys. Lett.,2007,90(17):171908.
    [140]Z.F, Mu, Y.H. Hu, Y.H. Wang, H.Y. Wu, C.J. Fu, F.W. Kang. The structure and luminescence properties of long afterglow phosphor Y3-xMnxAl5-xSixO12 [J]. J. Lumin.,2011, 131(4):676-681.
    [141]Z.F, Mu, Y.H. Hu, H.Y. Wu, C.J. Fu, F.W. Kang. The structure and luminescence properties of a novel orange emitting phosphor Y3MnA:Al5-2xSixO12 [J]. Phys. B (Amsterdam, Neth.),2011,406(4):864-868.
    [142]S.F. Zhou, N. Jiang, B.T. Wu, J.H. Hao, J.R. Qiu. Ligand-Driven Wavelength-Tunable and Ultra-Broadband Infrared Luminescence in Single-Ion-Doped Transparent Hybrid Materials [J]. Adv. Funct. Mater.,2009,19(13):2081-2088.
    [143]S.F. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J.R. Qiu, K. Hirao. Simultaneous Tailoring of Phase Evolution and Dopant Distribution in the Glassy Phase for Controllable Luminescence [J]. J. Am. Chem. Soc., 2010,132(50):17945-17952.
    [144]E. Danielson, M. Devenney, D.M. Giaquinta, et al. A rare-earth phosphor containing one-dimensional chains identified through combinatorial methods [J]. Science,1998, 279(5352):837-839.
    [145]Y.D. Jiang, F.L. Zhang, C.J. Summers, Z.L. Wang. Synthesis and properties of Sr2CeO4 blue emission powder phosphor for field emission displays [J]. Appl. Phys. Lett.,1999, 74(12):1677-1679.
    [146]C.H. Park, C.H. Kim, C.H. Pyun, et al. Luminescence of Sr2Ce04 [J]. J. Lumin.,2000, 87-9:1062-1064.
    [147]Y.X. Tang, H.P. Guo, Q.Z. Qin. Photoluminescence of Sr2Ce04 phosphors prepared by microwave calcination and pulsed laser deposition [J]. Solid State Commun.,2002, 121(6-7):351-356.
    [148]A. Nag, T.R.N. Kutty. Photoluminescence of Sr2-xLnxCeO4+x/2(Ln=Eu, Sm or Yb) prepared by a wet chemical method [J]. J. Mater. Chem.,2003,13(2):370-376.
    [149]X.M. Liu, Y. Luo, J. Lin. Synthesis and characterization of spherical Sr2CeO4 phosphors by spray pyrolysis for field emission displays [J]. J. Cryst. Growth,2006,290: 266-271.
    [150]R. Ghildiyal, P. Page, K.V.R. Murthy. Synthesis and characterization of Sr2Ce04 phosphor:Positive features of sol-gel technique [J]. J. Lumin.,2007,124(2):217-220.
    [151]C.H. Hsu, C.L. Liaw, C.H. Lu, Luminescence properties of sol-gel derived Sr2(Ce1-xSnx)O4 blue phosphors [J]. J. Alloys Compd.,2010,489(2):445-450.
    [152]符史流,柴飞,陈洁,张汉焱.Ce4+离子在Ca2Sn04一维结构基质中的电荷迁移光谱研究[J].物理学报,2008,57(5):3254-3259.
    [153]L. Zhang, G.Y. Hong, X.L. Sun. The luminescence of the phosphor Sr2Zr04 with one-dimensional chains structure [J]. Chin. Chem. Lett.,1999,10(9):799-802.
    [154]Y. Hinatsu, M. Wakeshima, N. Edelstein, I. Craig. Electron paramagnetic resonance spectrum of Pr4+ in Sr2CeO4 [J]. J. Solid State Chem.,1999,144(1):20-24.
    [155]T. Hirai, Y. Kawamura. Preparation of Sr2Ce04 blue phosphor particles and rare earth(Eu, Ho, Tm, or Er)-doped Sr2Ce04 phosphor particles, using an emulsion liquid membrane system [J]. J. Phys. Chem. B,2004,108(34):12763-12769.
    [156]T. Hirai, Y. Kawamura. Preparation of Sr2Ce04:Eu3+, Dy3+ white luminescence phosphor particles and thin films by using an emulsion liquid membrane system [J]. J. Phys. Chem. B,2005,109(12):5569-5573.
    [157]X.Z. Xiao, B. Yan. Sr2Ce04:Eu3+ and Sr2Ce04:5mol% Eu3+,3mol% Dy3+ microphosphors:Wet chemistry synthesis from hybrid precursor and photoluminescence properties [J]. J. Phys. Chem. Solids.,2008,69(7):1665-1668.
    [158]C.X. Zhang, J.S. Shi, X.J. Yang, L.D. Lu, X. Wang. Preparation, characterization and luminescence of Sm3+ or Eu3+ doped Sr2CeO4 by a modified sol-gel method [J]. J. Rare Earths,2010,28(4):513-518.
    [159]P. Page, and K.V.R. Murthy. Luminescence associated with Eu3+ in two host lattices [J]. Philos. Mag. Lett.,2010,90(9):653-662.
    [160]R. Sankar, G.V.S. Rao. Eu3+ luminescence, Ce4+→Eu3+ energy transfer, and white-red light generation in Sr2Ce04 [J]. J. Electrochem. Soc.,2000,147(7):2773-2779.
    [161]符史流,尹涛,丁球科,赵韦人.Eu3+掺杂的Sr2Ce04发光材料的光致发光研究[J].物理学报,2006,55(9):4940-4945.
    [162]N. Perea-Lopez, J.A. Gonzalez-Ortega, G.A. Hirata. Electroluminescence from Eu3+ doped Sr2Ce04 nanocrystalline thin films [J]. Opt. Mater.,2006,29(1):43-46.
    [163]O. Viagin, A. Masalov, I. Ganina, Y. Malyukin. Mechanism of energy transfer in Sr2Ce04:Eu3+phosphor [J]. Opt. Mater.,2009,31(12):1808-1810.
    [164]M. Iwaya, S. Terao, T. Sano, S. Takanami, T. Ukai, R. Nakamura, S. Kamiyama, H. Amano, I. Akasaki. High-efficiency GaN/AlxGa1-xN multi-quantum-well light emitter grown on low-dislocation density AlxGa1-xN [J]. Phys. Status Solidi A,2001,188(1): 117-120.
    [165]V.D. Khalilev, N.V. Suzdal. Crystallization capacity of ZnB2O4-NaPO3 glasses [J]. Glass and Ceram.,2004,61(5-6):145-147.
    [166]P.X. Yan, J.Z. Liu, J. Wang, Z.G. Wu. Overgrowing single crystalline ZnB2O4 on multiwall carbon nanotubes:Straightening the curly tubes [J]. Appl. Phys. Lett.,2004, 85(20):4747-4749.
    [167]J.R. Kim, D.W. Kim, I.S. Cho, B.S. Kim, J.S. An, K.S. Hong. Low temperature sintering and microwave dielectric properties of Ba3Ti5Nb602g with ZnO-B2O3 glass additions for LTCC applications [J]. J. Eur. Ceram. Soc.,2007,27(8-9):3075-3079.
    [168]L.X. Pang, H. Wang, D. Zhou, H.F. Zhou, X. Yao. Low-temperature firing and microwave dielectric properties of Ca[(Li1/3Nb2/3)0.8Ti0.2]O3 delta ceramics with ZnB2O4 glass addition [J]. Int. J. Appl. Ceram. Technol.,2008,5(4):341-346.
    [169]M. Wu, X.B. He, Z.S. Shen, X.H. Qu. Preparation, crystallization, and wetting of ZnO-Al2O3-B2O3-SiO2 glass-ceramics for sealing to Kovar [J]. Int. J. Miner. Metall. Mater., 2009,16(5):586-591.
    [170]J. Li, C.X. Zhang, Q. Tang, Y.L. Zhang, J.Q, Hao, Q. Su, S.B. Wang. Synthesis, photoluminescence, thermoluminescence and dosimetry properties of novel phosphor Zn(BO2)2:Tb [J]. J. Phys. Chem. Solids,2007,68(2):143-147.
    [171]J. Li, C.X. Zhang, Q. Tang, J.Q, Hao, Y.L. Zhang, Q. Su, S.B. Wang. Photoluminescence and thermoluminescence properties of dysprosium doped zinc metaborate phosphors [J]. J. Rare Earths,2008,26(2):203-206.
    [172]Y.H. Zheng, Y.N. Qu, Y.M. Tian, C.G. Rong, Z.C. Wang, S.L. Li, X. Chen, Y.J. Ma. Effect of Eu3+-doped on the luminescence properties of zinc borate nanoparticles [J]. Colloids Surf., A,2009,349(1-3):19-22.
    [173]W.R. Liu, C.C. Lin, Y.C. Chiu, Y.T. Yeh, S.M. Jang, R.S. Liu. ZnB2O4:Bi3+, Eu3+:a highly efficient, red-emitting phosphor [J]. Opt. Express,2010,18(3):2946-2951.
    [174]M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H.J. Zhang, Y.C. Han. Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography [J]. Chem. Mater.,2002,14(5):2224-2231.
    [175]毕只初,J. Kossanyi. Pr2O3、Sm2O3、Eu2O3及Dy2O3掺杂SrTiO3的发光光谱[J].光谱学与光谱分析,1992,12(2):21-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700