用户名: 密码: 验证码:
基于光子晶体的结构色纤维制备及其显色性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大自然中的许多材料,如蛋白石、蝴蝶翅膀和孔雀羽毛,可显示出独特绚丽的色彩,这种依靠光与物体表面周期性纳米结构的相互作用而产生的色彩,被称为“结构色”,而这种表面结构我们称之为“光子晶体”。众所周知,传统染料的制备和染色过程对人类和环境会造成严重的负面影响。如果将光子晶体的制备与纤维的染色相结合,势必能够制备出一种光子染料,并获得无污染的染色过程。实现以上设想必须研究两个重要过程,一是制备类似大自然中的结构显色材料;二是如何有效地将这些材料与纤维或织物结合,模拟或设计一条纤维染色的工艺路线。本论文以构筑结构色纤维为主要研究内容,以调控其反射光谱范围和构筑速度为主要研究手段,通过Stober法、乳液聚合法、溶剂热法、共沉淀法分别制备了二氧化硅(Si02)、聚甲基丙烯酸甲酯(PMMA)、四氧化三铁(Fe3O4@C和ZnO)、硫化锌(ZnS)胶体球,并用来构筑三维光子晶体,深入探讨了毛细管力、电场力、磁场力对结构色光谱范围和形成时间的影响,并对结构色纤维在颜色传感器领域的应用进行了探索。
     在平面薄膜表面制备结构色,一般采用传统重力沉积的方式,这种方法沉积速度慢、耗时长,大大降低了制备结构色的效率;如果要在弧形的纤维表面制备一层结构色,由于沉降方向和距离的差异,这种方法并不适用;在宏观开放空间条件下采用热蒸发诱导胶体球自组装制备的三维光子晶体表面缺陷较多,质量仍有待提高。本文采用微空间中热蒸发诱导胶体球自组装的方式在玻璃纤维表面制备了三维光子晶体结构,使得玻璃纤维在自然光的照射下显示结构色,在组装过程中,整个系统中毛细管力起主导作用。以Stober法制备了粒径可控的Si02胶体球,制备的胶体球具有单分散性好、表面电荷多的特点,能较好地分散于高纯水与乙醇的混合溶剂中;通过调节热蒸发温度和混合溶剂的比例,在纤维表面可以得到从单层到多层的胶体晶体层,Si02胶体球在纤维表面呈现面心立方结构,并获得长程有序的结构。通过光纤光谱测试,结构色纤维的反射光范围为473nm~528nm。
     由于玻璃纤维缺乏柔韧性,作为具有独特结构色性能的纤维在实际应用中有很大的局限性,而织物所用的高分子纤维克服了这一劣势。本文借助微空间中热蒸发自组装的方法在尼龙(PA)纤维的表面制备Si02球和PMMA球组装的胶体晶体结构,使得纤维在自然光的照射下显示结构色,并在此基础上研究了胶体晶体纤维对溶剂的颜色响应特性。研究发现Si02胶体球组装纤维显示蓝、绿、红色,对应的反射光谱波长分别为493nm、534nm、682nm(对应胶体球粒径分别为:215nm、240nm、295nm);探讨了PMMA胶体球组装的PA纤维对乙醇水溶液的颜色响应特性,结果显示随着乙醇百分含量增加,光谱反射峰从521nm到566nm逐渐移动。制备的结构色纤维可通过简单的光学显微镜观察到颜色响应性,可作为一种微型裸眼传感器使用。
     虽然通过毛细管力组装胶体球在组装方式上有很大的优势,但是组装时间仍然是几十分钟级别,如果寻找一种外场响应组装的方式,或许能够大大降低组装的时间,提高制备结构色纤维的效率。本文以电泳沉积的方式将PMMA胶体球组装在碳纤维的表面,形成圆柱状的纤维结构。通过施加一定的电压和改变电泳时间,得到覆盖可见光波长范围的结构色碳纤维,将组装胶体晶体的时间由几十分钟提高到几十秒钟;设计了连续电泳装置,并在纤维表面连续沉积PMMA胶体球,制备了长程的结构色纤维。由于该装置具有连续沉积的特点,或许会成为工业上生产结构色纤维可借鉴的便捷手段。
     带电荷的胶体球能在电场的作用下发生自组装,那么利用磁性胶体球是否也能得到结构色纤维呢。本文先用溶剂热法制备了Fe3O4@C磁性颗粒,研究了磁性颗粒在外磁场的诱导下可以沿着磁力线方向有序排列,同时还保持它们的链间距不会改变,其在液体中的组装可形成磁响应的布拉格反射器;其次基于微流体的空间限域效应,将磁场控制、光聚合相结合制备了反射波长为450nm、520nm、640nm的蓝绿红结构色纤维。结构色纤维具有良好的机械性能,纤维与聚合物之间有一定的化学键合作用,其断裂应力大于原来纤维,为128.9cN。
     本文还利用溶剂热法制备了ZnO及Ni掺杂的ZnO胶体球,研究了ZnO的形貌变化,结果表明随着Ni掺杂浓度的提高,Zn1-xNixO粒径逐渐降低,最终形成片状结构组装的纳米球;以共沉淀法制备了ZnS和ZnS@SiO2胶体球,发现通过低温法制备的ZnS球平均粒径为450nm;提出用高折射率的ZnS@SiO2胶体球组装电场可控结构色纤维的新思路,以此为基础可以设计基于纤维的结构色微器件。
Many materials in nature, such as opal, butterfly wings and peacock feathers, show the unique and brilliant colors. The color called "structural color" depends on the interaction of light with periodic surface of nano-structures, and the surface structure is named for photonic crystals. When light waves are modulated by periodic structures, photonic band gap will also appear. If energy could not land in a photonic band gap, it will not be able to continue to spread. Generally speaking, the color of the reflected light will change with the gap in different positions, so there are bright colors. As we all know, various important problems have been discovered in the process of coloration, including an increase in the amount of environmental pollution by the dye industry. Ways of utilizing strong structural color effects may be explored to solve this problem.To achieve the above ideas, two important processes must be studied, one is the preparation of structural colored dyes similar to the materials in the nature; the other is how to efficiently combine these with fiber or fabric combination, and design a fiber dyeing process.In this thesis, in order to prepare the structurally colored fiber with a rapid self-assmbled speed and good optical properties, SiO2PMMA, Fe3O4@C, ZnO and ZnS spheres have been prepared through the stober method, emulsion polymerization, solvothermal and coprecipitation method, respectively. The capillary force, electric field force and magnetic field force have been employed to assemble the colloidal spheres for photonic crystals on the fiber. The application of structurally colored fiber in the field of color sensor is also explored.
     Generally, traditional gravity sedimentation is employed for preparation of the structurally colored films on the plane surface. However, this method shows slow deposition rate and time-consuming, which greatly reduce the efficiency of preparation of structural color. Especially it is not applicable for the cuving surface of the fiber. In the open space, three dimensional photonic crystals usually show a lot of surface defects prepared by thermal evaporation self-assembly method.In second chapter, structurally colored fiber was fabricated by an isothermal heating evaporation-induced self-assembly method.Under ambient white light illumination, the fibers appear colored due to optical reflectance, which is determined by the lattice constants of the photonic crystals. SiO2with180nm,215nm and240nm in diameter were prepared by the stober method. The colloidal spheres show good monodispersity and massive surface charges, which can be dispersed in water and ethanol. By adjusting the thermal evaporation temperature and the ratio in mixed solvents, colloidal crystal layers are tunable from monolayer to multilayer. SiO2colloidal spheres exhibit a face-centered cubic structure on the surface of the fiber with a long-range order. Through the fiber spectroscopy and optical microscope test, structure color fiber displays structural colors from473nm to528nm.
     Due to the lack of flexibility of glass fiber, it is limited as a colored fiber in the practical application, while the polymer fiber can overcome this disadvantage. In the third chapter, SiO2and PMMA spheres were assembled on nylon (PA) fiber by the thermal evaporation method in micro-space. The fiber displays the diffraction color in natural light. And on the basis of abovementioned researches, we explore the response characteristics of fiber to the solvent with different concentrations. The study found the fiber shows red, blue, green color with reflected spectra for493nm,534nm,682nm, respectively (corresponding colloidal spheres size:215nm,240nm,295nm). The response characteristics on PMMA colloidal spheres assembled PA fiber to the ethanol solution show that spectral reflectance peaks shift gradually from521nm to566nm with the increase of ethanol content. The fiber can be as a naked eye sensor with a valuable application.
     Although there are a lot of advantages using capillary force assembled colloidal spheres on the fiber, the process has still needed a lot of minutes. One promising way is to introduce an external field-stimuli photonic structure onto the fiber. In the fourth chapter, structurally colored fiber was fabricated by an electrophoretic deposition method on carbon fiber. The fiber structures look like cylindrical. By applying a voltage and changing electrophoresis time, these fibers exhibit structural colors with reflectance spectra stretch-tunable in the range of visible light. The assembly time of colloidal crystal is improved from a few minutes to tens of seconds. We further developed a horizontal and continuous process to fabricate long range structurally colored fiber. Given the advantages of the device, it may be as a reference of fiber dyeing in the industry.
     Colloidal spheres with charges can be assembled in the electric field.The magnetic colloid spheres may be also getting colored fiber under the magnetic field.In the fifth chapter, we firstly have prepared Fe3O4@C magnetic particles using solvothermal method. The magnetic particles can be ordered in the direction of magnetic force lines under an external magnetic field. A bragg reflector has been fabricated by assemble the magnetic chains in the acetone. By emulsifying magnetic particles, and combining a micro-fluidic system with magnetic self-assembly and photopolymerization, we have synthesized a magnetochromatic fiber film with fixed structure colors. The structurally colored fiber shows good mechanical properties due to a chemical bonding between fiber and polymer, and the fracture stress is128.9cN and overmatchs the original fiber.
     ZnO and Ni doped ZnO colloidal spheres were prepared by solvothermal method. We studied the morphology changes of ZnO spheres by controlling the Ni2+doping concentrations. The results show that the size of Zn1-xNixO decreased with increasing Ni doping concentration, eventually forming nanoparticles assembled by nano-sheet. ZnS and ZnS@SiO2colloidal spheres were prepared by the coprecipitation method in a low temperature. ZnS spheres are uniform with an average diameter of450nm.A new idea of structurally colored fiber controllable with electric field is presented.We think the periodic structures can be changed through the electrophoretic force, and then color performance of colloidal crystals can be adjusted by changing the electric field. The imagination may serve as a way for a display micro-device based on structurally colored fiber.
引文
[1]E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett.1987,58,2059-2062.
    [2]S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett.1987,58,2486-2489.
    [3]A.C. Arsenault, D.P. Puzzo, I. Manners, GA. Ozin, Photonic-crystal full-colour displays, Nat. Photonics,2007,1,468-472.
    [4]S.H. Kim, J.M. Lim, S.K. Lee, C.J. Heo, S.M. Yang, Biofunctional colloids and their assemblies, Soft Matter,2010,6,1092-1110.
    [5]N.C. Tansil, Y. Li, C.P. Teng, S.Y. Zhang, K.Y. Win, X. Chen, X.Y. Liu, M.Y. Han, Intrinsically colored and luminescent silk, Adv. Mater.,2011,23,1463-1466.
    [6]N.C. Tansil, L.D. Koh, M.Y. Han, Functional silk:colored and luminescent, Adv. Mater.,2012,24,1388-1397.
    [7]M. Asano et al, Fiber structure and textile using same, USA Patent, No 6326094.
    [8]B. Gauvreau, N. Guo, K. Schicker, K. Stoeffler, F. Boismenu, A.Ajji, R. Wingfield, C. Dubois, M. Skorobogatiy, Color-changing and color-tunable photonic bandgap fiber textiles, Opt. Express,2008,16,15677-15693.
    [9]K.Q. Zhang, Structural colored fibers based on photonic crystal structures by colloidal assembly, J. Fiber Bioeng. Inform.,2010,2,214-218.
    [10]维多利亚芬利,颜色的故事,2008,4-10.
    [11]宋心远,新型纤维及织物染整,中国纺织出版社.2006,117-118.
    [12]Y.J. Zhao, Z.Y. Xie, H.C. Gu, C. Zhu, Z.Z. Gu, Bio-inspired variable structural color materials, Chem. Soc. Rev.,2012,41,3297-3317.
    [13]S. Kinoshita, S. Yoshioka, J. Miyazaki, Physics of structural colors, Rep. Prog. Phys.,2008,71,076401.
    [14]Y.Y. Diao, X.Y. Liu, Mysterious coloring:structural origin of color mixing for two breeds of Papilio butterflies, Opt. Express,2011,19,9232-9241.
    [15]M.A. Steindorfer, V. Schmidt, M. Belegratis, Barbara Stadlober, J.R. Krenn, Detailed simulation of structural color generation inspired by the Morpho butterfly, Opt. Express,2012,20,21486-21494.
    [16]A.D. Pris, Y. Utturkar, C. Surman, W.G.Morris, A. Vert, S. Zalyubovskiy, T. Deng, Helen T. Ghiradella, R.A.Potyrailo, Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures, Nat. Photonics,2012,6, 195-200.
    [17]M. Kolle, P.M. S. Cunha, M.R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J.J. Baumberg, U. Steiner, Mimicking the colourful wing scale structure of the Papilio blumei butterfly, Nat. Nanotechnol.,2010,5,511-515.
    [18]K. Chung, S. Yu, C. Heo, J.W. Shim, S.M. Yang, M.G.Han, H.S. Lee, Y.W. Jin, Sang Y. Lee,N. Park, J.H. Shin, Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings, Adv. Mater.,2012,24,2375-2379.
    [19]O. Deparis, M. Rassart, C. Vandenbem, V. Welch, J.P. Vigneron, S. Lucas, Structurally tuned iridescent surfaces inspired, New J. Phys.,2008,10,013032.
    [20]P. Vukusic, B. Hallam, J. Noyes, Brilliant whiteness in ultrathin beetle scales, Science,2007,315,348.
    [21]J.Y. Sun, B. Bhushan, Structure and mechanical properties of beetle wings:a review, RSC Adv.,2012,2,12606-12623.
    [22]A.E. Seago, P. Brady, J.P. Vigneron, T.D. Schultz, Gold bugs and beyond:a review of iridescence and structural colour mechanisms in beetles (Coleoptera), J. R. Soc. Interface,2009,6, S165-S184.
    [23]F. Marlow, Muldarisnur, P. Sharifi, R. Brinkmann, C. Mendive, Opals:Status and Prospects, Angew. Chem. Int. Ed.,2009,48,6212-6233.
    [24]D.J. Norris, E.G.Arlinghaus, L.L. Meng, R. Heiny, L.E. Scriven, Opaline photonic crystals:how does self-assembly work, Adv. Mater.,2004,16, 1393-1399.
    [25]Z.B. Hu, X.H. Lu, J. Gao, Hydrogel opals, Adv. Mater.,2001,13,1708-1712.
    [26]R. Yoshida, Self-oscillating gels driven by the belousov-zhabotinsky reaction as novel smart materials, Adv. Mater.,2010,22,3463-3483.
    [27]X.X. Zhu, Q.H. Zhang, Y.G.Li, H.Z. Wang, Redispersible and water-soluble LaF3:Ce,Tb nanocrystals via a microfluidic reactor with temperature steps, J. Mater. Chem.,2008,18,5060-5062.
    [28]Y.X. Gu, Q.H. Zhang, Y.G Li, H.Z. Wang, Nitridation from core-shell oxides for tunable luminescence of BaSi2O2N2:Eu2+ LED phosphors, J. Mater. Chem.,2010, 20,6050-6056.
    [29]Y.X. Gu, Q.H. Zhang, Y.G.Li, H.Z. Wang, CaSi2O2N2:Eu nanofiber mat based on electrospinning:facile synthesis, uniform arrangement, and application in white LEDs, J. Mater. Chem.,2011,21,17790-17797.
    [30]李家文,生物结构色机理及仿生构色研究,中国科学技术大学博士学士论文,2011.张骜,电泳沉积法制备结构色纤维,苏州大学硕士学位论文,2012.
    [31]李乙洲.生物结构色及人工构色研究,复旦大学博士论文,2005.
    [32]徐海松,颜色技术原理及在印染中的应用,印染,2005,18,39-43.
    [33]邓立儿,一维光子晶体的理论计算及三维反蛋白石结构的研究,上海交通大学博士学位论文,2010。
    [34]G.Freymann, V. Kitaev, B.V. Lotsch, G.A. Ozin, Bottom-up assembly of photonic crystals, Chem. Soc. Rev.2013, DOI:10.1039/c2cs35309a.
    [35]J. D. Joannopoulos, S. G.Johnson, J. N. Winn and R. D. Meade, Photonic crystals:molding the flow of light, Princeton University Press,2008.
    [36]B.V. Lotsch, GA. Ozin, Clay bragg stack optical sensors, Adv. Mater.,2008,20, 4079-4084.
    [37]祁建霞,光子晶体及其应用.西安邮电学院学报,2007,12,138-141.
    [38]R.V. Nair, R. Vijaya, Photonic crystal sensors:An overview, Prog. Quant. Electron.,2010,34,89-134.
    [39]B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage and J. Aizenberg, Assembly of large-area, highly ordered, crack-free inverse opal films, Proc. Natl. Acad. Sci. U.S.A.,2010,107,10354-10359.
    [40]Y. Zhang, J. Wang, Y. Huang, Y.L. Song, L. Jiang, Fabrication of functional colloidal photonic crystals based on well-designed latex particles, J. Mater. Chem.,2011,21,14113-14126.
    [41]P. Ni, P. Dong, B. Cheng, X. Li, D. Zhang, Synthetic SiO2 opals, Adv. Mater., 2001,13,437-441.
    [42]M. Egen, R. Zentel, Tuning the properties of photonic films from polymer beads by chemistry, Chem. Mater.,2002,14 2176-2183.
    [43]J. Luo, D. Qu, A. Tikhonov, J. Bohn, S.A. Asher, Monodisperse, high refractive index, highly charged ZnS colloids self assemble into crystalline colloidal arrays, J. Colloid Interf. Sci.,2010,345,131-137.
    [44]J.E.G.J. Wijnhoven, W.L. Vos. Preparation of photonic crystals made of air spheres in titania. Science,1998,281,802-804.
    [45]Y.A. Vlasov, X.Z. Bo, J.C. Sturm. On-chip natural assembly of silicon photonic bandgap crystals. Nature,2001,414,289-293.
    [46]A. Blanco, E. Chomski, S. Grabtchak. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micormetres, Nature, 2000,405,437-439.
    [47]林旭彬,赵玉周,李静,胡巧燕,江绍基,蔡志岗,李宝军.反蛋白石结构光子晶体制备技术,人工晶体学报,2004,33,1022-1030.
    [48]Y.F. Zhao, M. Wei, J. Lu, Z.L. Wang, X. Duan. Biotemplated hierarchical nanostructure of layered double hydroxides with improved photocatalysis performance, ACS Nano.,2009,3,4009-4016.
    [49]M. Sadakane, T. Horiuchi, N. Kato, C. Takahashi, W. Ueda. Facile preparation of three-dimensionally ordered macroporous alumina, iron oxide, chromium oxide, manganese Oxide, and their mixed-metal oxides with high porosity, Chem. Mater.,2007,19,5779-5785.
    [50]N.C. Strandwitz, Y. Nonoguchi, S.W. Boettcher, G.D. Stucky. In situ photopolymerization of pyrrole in mesoporous TiO2, Langmuir,2010,26, 5319-5322.
    [51]Y. Maeda, R. Yoshida. Fabrication of micropatterned thermosensitive gel with highly-ordered honeycomb surface and inverse opal structure, Biomed Microdevices,2009,11,809-815.
    [52]Z.Y. Wang, A. Stein. Morphology control of carbon, silica, and carbon/silica nanocomposites:from 3D ordered macro-/mesoporous monoliths to shaped mesoporous particles, Chem. Mater.,2008,20,1029-1040.
    [53]GV. Prakash. Fabrication and characterization of CdSe photonic structures from self-assembled templates, Mater. Lett.,2006,60,1744-1747.
    [54]S.L. Kuai. A comparative study of inverted-opal titania photonic crystals made from polymer and silica colloidal crystal templates, J. Appl. Phys.,2004.96, 5982-5986.
    [55]E.S. Kwak, W. Lee, N.G.Park. Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells, Adv. Funct. Mater.,2009,19,1093-1099.
    [56]丁涛,刘占芳,宋恺,三维光子晶体的制备,化学进展,2008,20,1284-1293.
    [57]D. Xia, Z. Ku, S.C. Lee, S. J. Brueck, Nanostructures and functional materials fabricated by interferometric lithography, Adv. Mater.,2011,23,147-179.
    [58]A. Radke, T. Gissibl, T. Klotzbucher, P.V. Braun, H. Giessen, Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating, Adv. Mater.,2011,23,3018-3021.
    [59]J.P. Ge, Y. D. Yin, Magnetically responsive colloidal photonic Crystals, J. Mater. Chem.,2008,18,5041-5045.
    [60]J.P. Ge, L. He, J. Goebl, Y. D. Yin, Assembly of magnetically tunable photonic crystals in nonpolar solvents, J. Am. Chem. Soc.,2009,131,3484-3486.
    [61]J.P. Ge, Y. D. Yin, Magnetically tunable colloidal photonic structures in alkanol solutions, Adv. Mater.,2008,20,3485-3491.
    [62]J.P. Ge, Y.X. Hu, M. Biasini, C. Dong, J.H, Guo, W.P. Beyermann, Y. D. Yin, One-step synthesis of highly water-soluble magnetite colloidal nanocrystals, Chem. Eur. J.,2007,13,7153-7161.
    [63]J.P. Ge, Y.X. Hu, M. Biasini, W.P. Beyermann, Y. D. Yin, Superparamagnetic magnetite colloidal nanocrystal clusters, Angew. Chem. Int. Ed.,2007,46, 4342-4345.
    [64]H. Kim, J.P. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. D. Yin, S. Kwon, Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal, Nat. Photonics,2009,3,534-540.
    [65]H. Lee, J. Kim, H. Kim, J. Kim, S. Kwon, Colour-barcoded magnetic microparticles for multiplexed bioassays, Nat. Mater.,2010,9,745-749.
    [66]R.Y. Xuan, J.P. Ge, Invisible photonic prints shown by water, J. Mater. Chem., 2012,22,367-372.
    [67]J. Liu, Y.W. Mao, J.P. Ge, The magnetic assembly of polymer colloids in a ferrofluid and its display, applications, Nanoscale,2012,4,1598-1605.
    [68]M. Heim, S. Reculusa, S. Ravaine, A. Kuhn, Engineering of complex macroporous materials through controlled electrodeposition in colloidal superstructures, Adv. Funct. Mater.,2012,22,538-545.
    [69]D. Colonna, S. Colodrero, H. Lindstrom, A. Carlo, H. Miguez, Introducing structural colour in DSCs by using photonic crystals:interplay between conversion efficiency and optical properties, Energy Environ. Sci,2012,5, 8238-8243.
    [70]Y.J. Lu, H.W. Xia, G.Z. Zhang, C. Wu, Electrically tunable block copolymer photonic crystals with a full color display, J. Mater. Chem.,2009,19,5952-5955.
    [71]K. Hwang, D. Kwak, C. Kang, D. Kim. Y. Ahn, Y. Kang, Electrically tunable hysteretic photonic gels for nonvolatile display pixels, Angew. Chem. Int. Ed., 2011,50,6311-6314.
    [72]Q.F. Yan, L. Teh, Q. Shao, C. C. Wong, Y.M. Chiang, Layer transfer approach to opaline hetero photonic crystals, Langmuir,2008,24,1796-1800.
    [73]Y. Ahn, E Kim, J. Hyon, C. Kang, Y. Kang, Photoresponsive block copolymer photonic gels with widely tunable photosensitivity by counter-ions, Adv. Mater., 2012,24,OP127-OP130.
    [74]Y. Lu, C. Meng, H. Xia, G. Zhang, C. Wu, Fast electrically driven photonic crystal based on charged block copolymer, J. Mater. Chem. C, DOI: 10.1039/c2tc00747a.
    [75]I. Pavlichenko, A.T. Exner, M. Guehl, P. Lugli, G.Scarpa, B.V. Lotsch, Humidity-enhanced thermally tunable TiO2/SiO2 bragg stacks, J. Phys. Chem. C, 2012,116,298-305.
    [76]J.B. Han, Y.B. Dou, M. Wei, D.G.Evans, X. Duan, Tunable/switchable one-dimensional photonic crystals based on a multilayer architecture of layered double hydroxides and titanium dioxide, RSC Adv.,2012,2,10488-10491.
    [77]N.V. Dziomkina, M.A. Hemenius, G.J. Vancso, Symmetry control of polymer colloidal monolayers and crystals by electrophoretic deposition onto patterned surfaces, Adv. Mater.,2005,17,237-240.
    [78]N. Zhou, A. Zhang, L. Shi, K.Q. Zhang, Fabrication of structurally-colored fibers with axial core-shell structure via electrophoretic deposition and their optical properties, ACS Macro Lett.,2013,2,116-120.
    [79]K. Cheng, Q.W. Chen, Z.D. Wu, M.S. Wang, H. Wang, Colloids of superparamagnetic shell:synthesis and self-assembly into 3D colloidal crystals with anomalous optical properties, CrystEngComm,2011,13,5394-5400.
    [80]J.T. Zhang, L.L. Wang, D.N. Lamont, S.S. Velankar, S.A. Asher, Fabrication of large-area two-dimensional colloidal crystals, Angew. Chem. Int. Ed.,2012,51, 6117-6120.
    [81]M.G.Han, C.G.Shin, S.J. Jeo, H.S. Shim, C.J. H.H. Jin, J.W. Kim, Y. Lee, Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band, Adv. Mater.,2012,24,6438-6444.
    [82]A.J.C. Kuehne, M.C. Gather, J. Sprakel, Monodisperse conjugated polymer particles by suzuki-miyaura dispersion polymerization, Nat. Commun.,2012,3, 1088.
    [83]D. Antonioli, S. Deregibus, G.Panzarasa, K. Sparnacci, M. Laus, L. Berti, L. Frezza, M. Gambini, L. Boarino, E. Enrico, D. Comoretto, PTFE-PMMA core-shell colloidal particles as building blocks for self-assembled opals: synthesis, properties and optical response, Polym. Int.,2012,61,1294-1301.
    [84]C. Deleuze, B. Sarrat, F. Ehrenfeld, S. Perquis, C. Derail, L. Billon, Photonic properties of hybrid colloidal crystals fabricated by a rapid dip-coating process, Phys. Chem. Chem. Phys.,2011,13,10681-10689.
    [85]A. Mihi,. Zhang, P.V. Braun, Transfer of preformed three-dimensional photonic crystals onto dye-sensitized solar cells, Angew. Chem. Int. Ed.,2011,50, 5712-5715.
    [86]C. Li, B.V. Lotsch, Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing, Chem. Commun.,2012,48,6169-6171.
    [87]J.Y. Wang, Y. Cao, Y. Feng, F. Yin, J.P. Gao, Multiresponsive inverse-opal hydrogels, Adv. Mater.,2007,19,3865-3871.
    [88]J. Shin, P.V. Braun, W. Lee, Fast response photonic crystal pH sensor based on template photo-polymerized hydrogel inverse opal, Sensor. Actuat. B,2010,150, 183-190.
    [89]G.Wu, Y. Jiang, D. Xu, H. Tang, X. Liang, G.T. Li, Thermoresponsive inverse opal films fabricated with liquid-crystal elastomers and nematic liquid crystals, Langmuir,2011,27,1505-1509.
    [90]S.H. Kim, S.J. Jeon, G.R. Yi, C.J. Heo, J.H. Choi, S.M. Yang, Optofluidic assembly of colloidal photonic crystals with controlled sizes, shapes, and structures, Adv. Mater.,2008,20,1649-1655.
    [91]S.H. Kim, J.M. Lim, S.K. Lee, C.J. Heo, S.M. Yang, Biofunctional colloids and their assemblies, Soft Matter,2010,6,1092.
    [92]S.H. Kim, S.J. Jeon, W.C. Jeong, H.S. Park, S.M. Yang, Optofluidic synthesis of electroresponsive photonic janus balls with isotropic structural colors. Adv. Mater.,2008,20,4129-4134.
    [93]Z.H. Shen, Y. Zhu, L.M. Wu, B. You, J. Zi, Fabrication of robust crystal balls from the electrospray of soft polymer spheres/silica dispersion, Langmuir,2010, 26,6604-6609.
    [94]Y.J. Zhao, X.W. Zhao, J. Hu, M. Xu, W.J. Zhao, L.G.Sun, C. Zhu, H. Xu, Z.Z. Gu, Encoded porous beads for label-free multiplex detection of tumor markers. Adv. Mater.,2009,21,569-572.
    [95]S.H. Kim, J.W. Shim, S.M. Yang, Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays, Angew. Chem. Int. Ed.,2011,50,1171-1174.
    [96]张骜,袁伟,周宁,张克勤,结构生色及其染整应用,印染,2012,(16),46-48.
    [97]纪惠军,范雪荣,新型活性染料及染色技术,针织工业,2009,(3),47-50.
    [98]宋心远,生态颜色和生态染色,印染,2001,27,51-53.
    [99]于范芹,回归反射织物的现状与发展前景,印染,2005,31,43-50.
    [100]R. Won, Photonic-bandgap fibre-colour-tunable textiles, Nat. Photonics,2008,2, 650.
    [101]H. Qu, B. Ung, M. Roze, M. Skorobogatiy, All photonic bandgap fiber spectroscopic system for detection of refractive index changes in aqueous analytes, Sensor. Actuat. B,2012,161,235-243.
    [102]H.B. Ni, M. Wang, W. Chen, Sol-gel co-assembly of hollow cylindrical inverse opals and inverse opal columns, Opt. Express,2011,19,25900-25910.
    [103]J.H. Moon, G.R. Yi, S.M. Yang, Fabrication of hollow colloidal crystal cylinders and their inverted polymeric replicas, J. Colloid Interf. Sci.,2005,287,173-177.
    [104]J.H. Moon, S. Kim, G.R. Yi, Y.H. Lee, S.M. Yang, Fabrication of ordered macroporous cylinders by colloidal templating in microcapillaries, Langmuir, 2004,20,2033-2035.
    [105]S.H. Kim, H. Hwang, S.M. Yang, Fabrication of robust optical fibers by controlling film drainage of colloids in capillaries, Angew. Chem. Int. Ed.,2012, 51,3601-3605.
    [106]C.H. Lai, Y.L. Yang, L.Y. Chen, Y.J. Huang, J.Y. Chen, P.W. Wu, Y.T. Cheng, Y.T. Huang, Effect of crystallinity on the optical reflectance of cylindrical colloidal crystals, J. Electrochem. Soc.,2011,158, p37-p40.
    [1]R. Won, Photonic-bandgap fibre-colour-tunable textiles, Nat. photonics,2008,2, 650.
    [2]F. Li, D.P. Josephson, A. Stein, Colloidal assembly:the road from particles to colloidal molecules and crystals, Angew. Chem. Int. Ed.,2010,49,2-31.
    [3]S.H. Kim, S.Y. Lee, S.M. Yang, G.R. Yi, Self-assembled colloidal structures for photonics, NPG Asia Mater.,2011,3,25-33.
    [4]E. Redel, C. Huai, M. Renner, G. Freymann, GA. Ozin, Hierarchical nanoparticle bragg mirrors:tandem and gradient architectures, Small,2011,7, No.24, 3465-3471.
    [5]C.D. Sorrell, M.J. Serpe, Reflection Order selectivity of color-tunable poly(N-isopropylacrylamide) microgel based etalons, Adv. Mater.,2011,23, 4088-4092.
    [6]S.H. Kim, S.J. Jeon, G.R. Yi, C.J. Heo, J.H. Choi, S.M. Yang, Optofluidic assembly of colloidal photonic crystals with controlled sizes, shapes, and structures, Adv. Mater.,2008,20,1649-1655.
    [7]S.H. Kim, J.M. Lim, S.K. Lee, C.J. Heo, S.M. Yang, Biofunctional colloids and their assemblies, Soft Matter,2010,6,1092.
    [8]S.H. Kim, S.J. Jeon, W.C. Jeong, H. S. Park, S.M. Yang, Optofluidic synthesis of electroresponsive photonic janus balls with isotropic structural colors, Adv. Mater.,2008,20,4129-4134.
    [9]Y.J. Zhao, X.W. Zhao, J. Hu, M. Xu, WJ. Zhao, L.G.Sun, C. Zhu, H. Xu, Z.Z. Gu, Encoded porous beads for label-free multiplex detection of tumor markers, Adv. Mater.,2009,21,569-572.
    [10]H. Z. Wang, X. Y. Li, H. Nakamura, M. Miyazaki, H. Maeda, Continuous particle self-arrangement in a long microcapillary, Adv. Mater.,2002,14,1662-1666.
    [11]Z. Y. He, Y. G.Li, Q. H. Zhang, H. Z. Wang, Capillary microchannel-based microreactors with highly durable ZnO/TiO2 nanorod arrays for rapid, high efficiency and continuous-flow photocatalysis, Appl. Catal. B-Environ.,2010,93, 376-382.
    [12]S. Marre, K.F. Jensen, Synthesis of micro and nanostructures in microfluidic systems, Chem. Soc. Rev.,2010,39,1183-1202.
    [13]A.B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, W.T.S. Huck, Microdroplets in microfluidics:An evolving platform for discoveries in chemistry and biology, Angew. Chem. Int. Ed..2010,49, 5846-5868.
    [14]骆广生,王凯,吕阳成,徐建鸿,邵华伟,微反应器研究最新进展,现代化工,2009,29,27-30.
    [15]F. Marlow, Muldarisnur, P. Sharifi, R. Brinkmann, C. Mendive, Opals:Status and prospects, Angew. Chem. Int. Ed.,2009,48,6212-6233.
    [16]W. Stober, A. Fink and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci.,1968,26,62-69.
    [1]段廷蕊,李海华,孟子晖,刘烽,都明君,光子晶体应用于化学及生物传感器的研究进展,化学通报,2009,298-305.
    [2]M. Egen, R. Voss, B. Griesebock, R. Zentel, Heterostructures of polymer photonic crystal films, Chem. Mater.,2003,15,3786-3792.
    [3]B. Kolaric, S. Desprez, F. Brau, P. Damman, Design of curved photonic crystal using swelling induced instabilities, J. Mater. Chem.,2012,22,16205-16208.
    [4]Y. Takeoka, Angle-independent structural coloured amorphous arrays, J. Mater. Chem.,2012,22,23299-23309.
    [5]C.I. Aguirre, E. Reguera, A. Stein, Colloidal photonic crystal pigments with low angle dependence, ACS Appl. Mater. Inter.,2010,11,3257-3262.
    [6]I. Lee, D. Kim, J. Kal, H. Baek, D. Kwak, D. Go, E. Kim, C. Kang, J. Chung, Y. Jang, S. Ji, J. Joo, Y. Kang, Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle independency, Adv. Mater.,2011,22, 4973-4977.
    [7]S.H. Kim, J.W. Shim, S.M. Yang, Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays, Angew. Chem. Int. Ed.,2011,50,1171-1174.
    [8]H. Hwang, S.H. Kim, S.M. Yang, Microfluidic fabrication of SERS-active microspheres for molecular detection, Lab Chip,2011,11,87-92.
    [9]H. Z. Wang, X. Y. Li, H. Nakamura, M.Miyazaki and H.Maeda, Continuous particle self-arrangement in a long microcapillary. Adv. Mater.,2002,14, 1662-1666.
    [10]C.H. Lai, Y.L. Yang, L.Y. Chen, Y.J. Huang, J.Y.Chen, P.W. Wu, Y.T. Cheng, Ya.T. Huang, Effect of crystallinity on the optical reflectance of cylindrical colloidal crystals, J. Electrochem. Soc.,2011,158, P37-P40.
    [11]H.T. Yan, Z.Q. Zhen, X.Y. Zhao, Z.X. Tang, X.Z. Li, Colloidal photonic crystal self-assembled onto the side of an optical fiber:fabrication and characterization. Opt. Eng.,2010,063401.
    [12]郭文华,基于曲面基底组装胶体晶体及其有序多孔膜的研究,南京师范大学博士论文,2012.
    [1]T. S. Shim, S. H. Kim, J. Y. Sim, J.M. Lim, S.M. Yang, Dynamic modulation of photonic bandgaps in crystalline colloidal arrays under electric field, Adv.Mater., 2010,22,4494-49498.
    [2]Y.J. Zhao, Z.Y. Xie, H.C. Gu, C. Zhu, Z.Z. Gu, Bio-inspired variable structural color materials, Chem. Soc. Rev.,2012,41,3297-3317.
    [3]K.W. Song, R. Costi, V. Bulovic, Electrophoretic deposition of CdSe/ZnS quantum dots for light-emitting devices, Adv. Mater.,2013,25,1420-1423.
    [4]N.V. Dziomkina, M.A. Hempenius, G.J. Vancso, Symmetry control of polymer colloidal monolayers and crystals by electrophoretic deposition onto patterned surfaces, Adv.mater.,2005,17,237-240.
    [5]M. Leunissen, H. Vutukuri, A. Blaaderen, Directing colloidal self-assembly with biaxial electric fields, Adv. Mater.,2009,21,3116-3120.
    [6]R. C. Hayward, D. A. Saville & I. A. Aksay, Electrophoretic assembly of colloidal crystals with optically tunable micropatterns, Nature,2000,404,56-59.
    [7]N. Zhou, A. Zhang, L. Shi, K.Q. Zhang, Fabrication of structurally-colored fibers with axial core-shell structure via electrophoretic deposition and their optical properties, ACS Macro Lett.,2013,2,116-120.
    [8]C.H. Lai, Y.L. Yang, L.Y. Chen, Y.J. Huang, J.Y. Chen, P.W. Wu, Y.T. Cheng, Ya.T. Huang, Effect of crystallinity on the optical reflectance of cylindrical colloidal crystals, J. Electrochem. Soc.,2011,158, P37-P40.
    [9]A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, G.A. Ragoisha, Electrophoretic deposition of latex-based 3D colloidal photonic crystals:a technique for rapid production of high-quality opals, Chem. Mater.,2000,12, 2721-2726.
    [10]Y.J. Huang, C.H. Lai, P.W. Wu, Fabrication of large-area colloidal crystals by electrophoretic deposition in vertical arrangement, Electrochem. Solid. ST,2008, 11, P20-P22.
    [11]M. Egen, R. Voss, B. Griesebock, R. Zentel, Heterostructures of polymer photonic crystal films, Chem. Mater.,2003,15,3786-3792.
    [12]G. Freymann, V. Kitaev, B.V. Lotsch G.A. Ozin, Bottom-up assembly of photonic crystals, Chem. Soc. Rev.,2013,42,2528-2554.
    [13]C.D. Petruczok, K.K. Gleason, Initiated chemical vapor deposition-based method for patterning polymer and metal microstructures on curved substrates, Adv. Mater.,2012,24,6445-6450.
    [14]B. Kolaric, S. Desprez, F. Brau, P. Damman, Design of curved photonic crystal using swelling induced instabilities, J. Mater. Chem.,2012,22,16205-16208.
    [15]C.H. Lai, Y.J. Huang, P.W. Wu, L.Y. Chen, Rapid fabrication of cylindrical colloidal crystals and their inverse opals, J. Electrochem. Soc.,2010,157, P23-P27.
    [16]Z.H. Shen, Y. Zhu, L.M. Wu, B. You, J. Zi, Fabrication of robust crystal balls from the electrospray of soft polymer spheres/silica dispersion, Langmuir,2010, 26,6604-6609.
    [17]L. Urbina, Kasper Baert, Branko Kolaric, J. Moreno, K. Clays, Linear and nonlinear optical properties of colloidal photonic crystals, Chem. Rev.,2012,112, 2268-2285.
    [18]H. Bai, R. Sun, J. Ju, X. Yao, Y.M. Zheng, L. Jiang, Large-scale fabrication of bioinspired fibers for directional water collection, Small,2011,7,3429-3433.
    [19]M. Holgado, F. Garcia-Santamaria, A. Blanco, M. Ibisate, A. Cintas, H. Miguez. C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, C. Lopez, Electrophoretic deposition to control artificial opal growth, Langmuir,1999,15, 4701-4704.
    [1]H. Deng, X.L. Li, Q. Peng, X. Wang, J.P. Chen, YD. Li, Monodisperse magnetic single-crystal ferrite microspheres, Angew. Chem. Int. Ed.,2005,44,2782-2785.
    [2]P. Tierno, Magnetically reconfigurable colloidal patterns arranged from arrays of self-assembled microscopic dimmers, Soft Matter,2012,8,11443-11446.
    [3]J. Kim, S.E. Choi, H. Lee, S. Kwon, Magnetochromatic microactuators for a micropixellated color-changing surface, Adv. Mater.,2013,25,1415-1419.
    [4]C.M. Cheng, F.J. Xu, H.C. Gu, Facile synthesis and morphology evolution of magnetic iron oxide nanoparticles in different polyol processes, New J. Chem., 2011,35,1072-1079.
    [5]B. Luo, X.J. Song, F. Zhang, A. Xia, W.L. Yang, J.H. Hu, C.C. Wang, Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters, Langmuir,2010, 26,1674-1679.
    [6]王辉,磁性Fe3O4_C核壳纳米粒子的合成、组装和应用,中国科学技术大学博士论文,2011.
    [7]J.P. Ge, Y.D. Yin, Responsive photonic crystals, Angew. Chem. Int. Ed.,2011,50, 1492-1522.
    [8]J.P. Ge, L. He, J. Goebl, YD. Yin, Assembly of magnetically tunable photonic crystals in nonpolar solvents, J. Am. Chem. Soc.,2009,131,3484-3486.
    [9]X.L. Xu, G.Friedman, K.D. Humfeld, S.A. Majetich, S.A. Asher, Superparamagnetic photonic crystals, Adv. Mater.,2001,13,1681-1684.
    [10]I.Y Goon, L.M. H. Lai, M. Lim, P. Munroe, J.J. Gooding, R. Amal, Fabrication and dispersion of gold-shell-protected magnetite nanoparticles:systematic control using polyethyleneimine, Chem. Mater.,2009,21,673-681.
    [11]J.P. Ge, Y.D. Yin, Magnetically tunable colloidal photonic structures in alkanol solutions, Adv. Mater.,2008,20,3485-3491.
    [12]H. Wang, Y.B. Sun, Q.W. Chen, YF. Yu, K. Cheng, Synthesis of carbon-encapsulated superparamagnetic colloidal nanoparticles with magnetic-responsive photonic crystal property, Dalton Trans.,2010,39, 9565-9569.
    [13]H. Wang, Q.W. Chen, L.X. Sun, H.P. Qi, X. Yang, S. Zhou, J. Xiong, Magnetic-field-induced formation of one-dimensional magnetite nanochains, Langmuir,2009,25,7135-7139.
    [14]H. Wang, Y.F. Yu, Q.W. Chen, K. Cheng, Carboxyl-functionalized nanoparticles with magnetic core and mesopore carbon shell as adsorbents for the removal of heavy metal ions from aqueous solution, Dalton Trans.,2011,40,559.563.
    [15]Y.W. Mao, J. Liu, J.P. Ge, Tuning the transmittance of colloidal solution by changing the orientation of Ag nanoplates in ferrofluid, Langmuir,2012,28, 13112-13117.
    [16]R.Y. Xuan, J.P. Ge, Invisible photonic prints shown by water, J. Mater. Chem., 2012,22,367-372.
    [17]H.B. Hu, J. Tang, H. Zhong, Z. Xi, C.L. Chen, Q.W. Chen, Invisible photonic printing:computer designing graphics, UV printing and shown by a magnetic field, Sci. Rep. DOI:10.1038/srep01484.
    [18]H.B. Hu, Q.W. Chen, J. Tang, X.Y. Hu, X.H. Zhou, Photonic anti-counterfeiting using structural colors derived from magnetic responsive photonic crystals with double photonic bandgap heterostructures, J. Mater. Chem.,2012,22, 11048-11053.
    [19]A.B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, W.S. Huck, Microdroplets in Microfluidics:An Evolving Platform for Discoveries in Chemistry and Biology, Angew. Chem. Int. Ed.2010,49, 5846-5868.
    [1]B. Hatton, L. Mishchenko, S. Davis, K.H. Sandhage, J. Aizenberg, Assembly of large-area, highly ordered, crack-free inverse opal films, PNAS,2010,107, 10354-10359.
    [2]李珩,王京霞,王荣明,宋延林,三维胶体光子晶体对光的调控与应用研究,化学进展,2011,23,1060-1068.
    [3]L. Cademartiri, K.J. M. Bishop, P.W. Snyder, GA. Ozin, Using shape for self-assembly, Philos. T. R. SOC. A,2012,370,2824-2847.
    [4]孙志强,杨柏,功能性有序微结构的制备及潜在应用,2011,41,183-194.
    [5]J.H. Moon, S. Yang, Chemical aspects of three-dimensional photonic crystals, Chem. Rev.,2010,110,547-574.
    [6]M. Maldovan, A.M. Urbas, N. Yufa, W.C. Carter, E.L. Thomas, Photonic properties of bicontinuous cubic microphases, Phys. Rev. B,2002,65,165123.
    [7]D.N. Sharp, A.J. Turberfield, R.G. Denning, Holographic photonic crystals with diamond symmetry, Phys. Rev. B,2003,68,205102.
    [8]J.J. Wijnhoven, W.L. Vos, Preparation of photonic crystals made of air spheres in titania, Science,1998,281,802-804.
    [9]M.G. Han, C.G. Shin, S.J. Jeo, H.S. Shim, C.J. H.H. Jin, J.W. Kim, Y. Lee, Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band, Adv. Mater.,2012,24,6438-6444.
    [10]Z.F. Liu, Q.H. Zhang, GY. Shi, Y.G.Li, H.Z. Wang, Solvothermal synthesis and magneto-optical properties of Zn1-xNixO hierarchical microspheres. J. Magn. Magn. Mater.,2011.323.1022-1026.
    [11]L.J. Matienzo, L.I. Yin, S.O. Grim, W.E. Swartz, X-Ray photoelectron spectroscopy of nickel compounds, Inorg. Chem.,1973,12,2762-2769.
    [12]C.P. Li, A. Proctor, D.M. Hercules, Curve fitting analysis of ESCA Ni 2p spectra of nickel-oxygen compounds and Ni/Al2O3 catalysts, Appl. Spectrosc.,1984,38, 880-886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700