用户名: 密码: 验证码:
微通道内表面的微/纳米结构构筑及功能化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控技术作为当今世界上最前沿的科技领域之一,凭借其高通量、低消耗的技术优势,在生命科学和工业合成等领域显示出了巨大的应用前景。微通道作为微流控芯片的重要组成部分,在该领域发展的初期,其内表面只是一个提供微空间的纯表面,而随着微流控技术的发展,尤其是微流控芯片在生物检测方面各种各样的具体应用,势必要求对微通道内表面进行必要的改性以满足不同的需求。与简单地在内表面制备一层功能膜相比,对微通道的内表面进行几何结构修饰,即在微通道内表面上构筑一些精细的微/纳米结构,并在这些微/纳米结构上再嫁接功能基团或分子,显然能够使微通道内表面具有更多的功能,是促进微通道内表面器件化和微流控技术进步的一个重要研究方向。目前在开放的微通道表面上构筑微/纳米结构的微细加工(microfabrication)技术主要有刻蚀技术、光刻法、软光刻法、LIGA技术等,然而这些方法都难以在细长的、几乎封闭的微通道内使用,而且开放微通道的封接过程势必会造成对已形成的微/纳米结构的破坏。鉴于此,本文用湿化学的方法在几乎封闭的石英毛细管微通道中构筑特定的微/纳米结构,并对已构筑的微/纳米结构进行表面改性赋予所设计的微流控器件特定的功能,成功设计出了微通道式光催化用微反应器和微蛋白分子富集器。将一维纳米材料的微/纳米结构直接集成到封闭的微通道中,避免了微通道传统微/纳米结构修饰过程中因封接带来的破坏,而且利用一维纳米材料器件化的最新研究成果,大大扩展了微流控器件的功能化设计。
     利用湿化学的方法,借助纳米技术将ZnO纳米棒阵列和分布密度可控的ZnO纳米棒花状簇集成到了石英毛细管微流控通道的内表面上。利用NaOH和Zn(AC)2·2H2O的乙醇溶液在微通道内表面上制备了一层ZnO晶种膜;利用反相微乳液法和高温去乳化作用引起的晶粒团聚,在微通道内表面上得到了分散可控的ZnO晶种。晶种在基底上的分散性对于晶体的生长及最终形貌非常重要。在完全覆盖有一层ZnO晶种膜的微通道内表面上实现了ZnO纳米棒阵列的垂直生长;在分散可控的ZnO晶种基础上实现了分布密度可控的ZnO纳米棒花状簇的生长。研究发现,水与表面活性剂的摩尔比值w是影响晶种分散和纳米棒分布密度的主要因素,通过改变w值的大小改变了水滴的大小进而改变了颗粒大小,然后借助毛细管通道内表面对于不同尺寸纳米颗粒的粘附力不同,有效地调控了晶种的分散密度。随着w值的增加,晶种的分散密度增大,得到的纳米棒的分布也越稠密,反之亦然。实验结果为仅有微小出入口的密封的长微通道的功能化改性或图案化设计提供了一种新的方法。
     在ZnO纳米棒阵列的基础上,在微通道的内表面上制备了Pt/ZnO, TiO2/ZnO, ZnO@ZnS等纳米棒阵列,并将这些纳米棒阵列修饰的微通道作为光催化用微反应器。以光催化降解MB溶液和4-氯苯酚溶液为例,考察了这些基于纳米棒阵列的微通道式反应器的光催化性能:
     (a)基于ZnO纳米棒阵列的微通道式反应器用于光催化降解5 ppm的MB溶液,当停留时间(residence time, RT)为100s时,其对MB溶液的降解率为100%,在该停留时间下连续光催化使用180 h其对MB的降解率仍在80%以上
     (b)基于分布密度可控的ZnO纳米棒花状簇的微通道式反应器用于光催化降解5 ppm的MB溶液,当停留时间大于110 s时,三根毛细管对MB的降解率都接近于100%,而在较短的停留时间(RT=25~110 s)下,毛细管M(含有中密度ZnO)较H(含有高密度ZnO)较和L(含有低密度ZnO)表现出了更强的光催化活性,表明微通道内表面上纳米棒的分布密度确实能够影响到所设计的微器件的性能。
     (c)基于Pt/ZnO纳米棒阵列的微通道式反应器用于光催化降解5 ppm的MB溶液,当停留时间大于35 s时,可将MB溶液完全降解。贵金属Pt作为光生电子捕获器,有效地提高了界面电荷传递效率。
     (d)基于TiO2/ZnO纳米棒阵列的微通道式反应器用于光催化降解5 ppm的MB溶液,由于TiO2和ZnO两种半导体之间的耦合作用降低了光致电子与空穴的复合,该反应器表现出了比纯的ZnO纳米棒阵列更强的光催化活性。对于不同TiO2溶胶包覆次数的TiO2/ZnO纳米棒阵列修饰的微通道的光催化活性,TiO2/ZnO-3(包覆次数为3次)表现出了最强的光催化活性。当停留时间为20s时,可将MB溶液完全降解,而且在该停留时间下,连续重复使用100 h后其对MB的降解率仍在90%以上。
     (e)基于ZnO@ZnS核壳结构纳米棒阵列的微通道式反应器用于光催化降解10 ppm的MB溶液和10ppm 4-氯苯酚溶液,当停留时间为120 s时,可将MB溶液完全降解,对4-氯苯酚溶液的降解率也达到了78%。
     通过光催化活性比较,基于TiO2/ZnO纳米棒阵列的微通道式反应器表现出了最强的光催化活性,且在连续重复使用时,纳米棒阵列均表现出了良好的稳定性和耐流体冲刷性。
     利用连续流动的方式,通过控制Ti02溶胶的输送时间,在预制有ZnO纳米棒阵列的微通道内表面上得到了不同包覆程度的TiO2/ZnO纳米棒阵列。设计了基于TiO2/ZnO纳米棒阵列修饰的微通道的微流控器件,用于从蛋白酶解产物中选择性富集磷酸肽。以自动、连续流动的操作模式实现了蛋白酶解产物的注入、磷酸肽的富集和洗脱,且器件具有很好的选择性、灵敏性和持久性。停留时间30s富集的磷酸肽的量已足够用于MALDI-TOF MS分析。对于磷酸肽的洗脱来说,合适的停留时间为60s。鉴于该微流控器件的耐用性和连续流动的操作模式,或许会成为从大体积复杂的临床样品中高通量、选择性富集磷酸肽的一种经济有效的方法。同样,也可作为在做质谱分析前对磷酸肽进行快速和选择性富集的一种便捷手段。
     利用微通道内表面上预制的ZnO纳米棒阵列作为锌源和原位模板,硫代乙酰胺则作为硫源,通过原位合成的方法在微通道内表面上得到了排列有序的ZnO@ZnS核壳结构纳米棒阵列,继续向微通道中输送巯基乙酸钠(sodium thioglycollate, ST)溶液可以得到ST-ZnO@ZnS纳米棒阵列,接着输送新鲜制备的Ag溶胶即制备出了载银Ag-ST-ZnO@ZnS纳米棒阵列。ST-ZnO@ZnS纳米棒阵列修饰的微通道对于溶液中的牛血清蛋白(bovine serum albumin, BSA)分子具有很强的吸附性,而且表现出了良好的耐用性。利用Ag-ST-ZnO@ZnS纳米棒阵列修饰微通道实现了溶液中痕量BSA分子的富集,并利用表面增强拉曼光谱(surface-enhanced Raman scattering, SERS)检测出了所富集到的BSA。基于核壳结构纳米棒阵列的微通道器件,不仅实现了从大体积生物样品中连续高通量分离蛋白,而且对于痕量蛋白的富集及检测也提出了一种简便的方法。
As one of the most advanced areas of science and technology, microfluidic technology have found many applications in various fields, ranging from life sciences to industrial chemical synthesis due to their unique advantages such as high-throughput and low-consumption. Microchannel, as an important component of microfluidic device, was just pure inner surface supplied as microspace at the early stage. However, with the development of microfluidic technology and the increasing demands for complex and improved structural functionalities of microfluidic systems for specific biological applications, modification of the inner wall of microchannels (IWMs) is necessary. Geometry modification of the microchannel is constructing specific fine micro/nano structures on the IWM. Compared with simply coating a layer of functional film on the IWMs, fabrication of micro/nanostructures perpendicular to the IWM and further grating functional groups or molecules on them can not only make the microchannel possess more functionalities, but also be considered as an important research direction promoting the microfluidic technology advancement. Various micro/nanofabrication techniques such as etching, lithography and soft lithography have been used for manufacturing micro/nanostructures to physically modify microchannel. But most of these methods are not flexible enough and are difficult to apply to a closed system such as a long microcapillary with small inlet and outlet. Moreover, the sealing process of the opened microchannel will be bound to cause damage to the formed micro/nanostructure. In this paper, a wet chemical route was used to fabricate specific micro/nanostructures on the IWM. Certain surface modifications were carried out to functionalize the constructed micro/nanostructures, and thus microchannel-based photocatalysis microreactor and micro protein enrichment device were successfully designed. Incorporating one-dimensional (1D) nanomaterials into the closed microchannel and utilizing the latest research achievements of micro/nanodevices comprising of 1D nanomaterials will open up a new way to modify and functionalize the microchannels.
     ZnO nanorod arrays and distribution-tunable ZnO nanorod flowers were fabricated on the IWMs through a wet chemical route. A layer of ZnO seed film well covered on the IWM was prepared using the ethanol solutions of NaOH and Zn(AC)2·2H2O as the reactants; clusters of ZnO crystal seeds with different densities on the IWM were formed via the reverse microemulison method in which the dispersity of the micelles, the high temperature demulsification technique and the particle agglomeration all contributed to the formation. The dispersing density of crystal seeds on a substrate is of crucial importance to the selective growth and ultimate shape and morphology of crystal. So, on the IWM well covered with ZnO seed film, perpendicular growth of ZnO nanorod arrays were obtained, while on the IWM with well dispersed ZnO seed clusters, distribution density controllable ZnO nanorod flowers were fabricated. It was found that the molar ratio of water to surfactant denoted as w is an important factor which determines the dispersion of ZnO seeds and the distribution of ZnO nanorod flowers. By changing the value of w, the size of the water droplets was changed and so was the size of the particles. Also because of the different adhesion forces of the microchannel to particles with different sizes, the density of the clusters of crystal seeds was well tailored, and thus the distribution density of the final ZnO nanorod arrays was controlled. As the value of w increased, the density of the crystal seeds became bigger and the distribution of the nanorods denser. The results provide a simple, original and versatile route to generate a nano-patterned substrate in quasi closed microspace.
     On the base of ZnO nanorod arrays, Pt/ZnO, TiO2/ZnO and ZnO@ZnS nanorod arrays were also fabricated on the IWM. These nanorod arrays modified microchannels were used as photocatalysis microreactors. Methylene blue (MB) and 4-chlorobenzene were chosen as model compounds to evaluate the photocatalytic activity of the microreactors.
     (a) The microreactor based on ZnO nanorod arrays modified microchannel was used to photocatalyze 5 ppm MB solution. The results show that at the residence time (RT) of 100 s, the photodegradation rate of MB was over 100%and when it was repeatedly used for 180 h, the photocatalytic efficiency was still more than 80%.
     (b) The microreactor based on distribution-tunable ZnO nanorod flowers modified microchannel was used to photocatalyze 5 ppm MB solution. When RT increased to more than 110 s, the photodegradation rates of MB were close to 100%for all three microreactors. However, when RT was between 25 and 110 s, microreactor M (with medium-density ZnO) showed higher photocatalytic performance than microreactor H (with high-density ZnO) and microreactor L (with medium-density ZnO), which means that the distribution density of ZnO nanorod flowers could indeed affect the performance of the as-designed microfluidic device.
     (c) The microreactor based on Pt/ZnO nanorod arrays modified microchannel was used to photocatalyze 5 ppm MB solution. With RT of 35 s, the MB solution could be completely decomposed. The Pt noble metal here acts as a sink for photoinduced charge carriers, promoting interfacial charge-transfer processes.
     (d) The microreactor based on TiO2/ZnO nanorod arrays modified microchannel was used to photocatalyze 5 ppm MB solution. Compared with pure ZnO nanorod arrays, the relatively more superior photocatalytic activity of the ZnO/TiO2 nanorod-modified microreactor was attributed to the combination of two semiconductors decreasing the recombination rate of photoinduced electrons and holes. Microreactor based on TiO2/ZnO-3 (TiO2 sol coating three times) showed the highest photocatalytic activity among all the microreactors based on TiO2/ZnO nanorod arrays with different TiO2 sol coating circles. For the microreactor based on TiO2/ZnO-3, RT= 20 s was sufficient to completely photodegrade MB molecules and when it was repeatedly used for 100 h, the photocatalytic efficiency of the microreactor was still more than 90%.
     (e) The microreactor based on ZnO@ZnS core-shell nanorod arrays modified microchannel was used to photocatalyze 10 ppm MB solution and 10 ppm 4-chlorophenol solution. With RT of 120 s, the photodegradation rates of MB and 4-chlorophenol were 100%and 78%, respectively.
     It is obvious that the microreactor based on TiO2/ZnO nanorod arrays displayed the highest photocatalytic activity among all the microreactors based on different nanorod arrays modified microchannels. Meanwhile, all the nanorod arrays showed strong washing resistance and desirable stability during the continuously recycling in photocatalysis.
     A continuous-flow method was used to prepare TiO2/ZnO nanorod arrays on IWMs with different coating thicknesses. This was achieved by controlling the flow duration of a TiO2 sol in a microchannel containing preformed ZnO nanorod arrays as the supports for the immobilization of TiO2. A novel lab-on-a-chip device based on the microchannel modified with ZnO/TiO2 was designed to selectively bind and capture phosphorpeptides (PPs) from tryptic digests. This protocol allowed uninterrupted PP introduction, capture and enrichment by an automatic and continuous-flow operating mode through the microchannel. It showed great selectivity, sensitivity and durability for the enrichment of PPs from tryptic protein digests. Amounts of PPs sufficient for MALDI-MS analysis could be enriched with a RT of just 30 s. A RT of 60 s was determined to be appropriate for eluting the conjugated PPs from the CM. In view of its high durability and continuous-flow operation, this lab-on-a-chip device may achieve cost-effective, high-throughput PP enrichment from large volumes of complex clinical samples. It will also work as a convenient platform for the rapid and specific capture of PPs prior to MS analysis.
     Highly-ordered ZnO@ZnS core-shell nanorod arrays were fabricated on the IWMs through an in situ conversion method with preformed ZnO nanorod arrays as the template and thioacetamide as the sulfur source. When the ZnO@ZnS nanord arrays exposed to sodium thioglycollate (ST) solution, ST-ZnO@ZnS nanorod arrays were generated on the IWC. By driving the fresh prepared Ag colloidal to the microchannel with ST-capped ZnO@ZnS nanorod arrays, Ag-loaded ST-capped ZnO@ZnS nanorod arrays on the IWC were simply obtained. The microfluidic device based on the nanorod arrays modified capillary microchannel was utilized as a novel biomolecule trapping device. Bovine serum albumin (BSA) was chosen as a model albumin to test the capture ability of the device to target protein. The microfluidic device based on ST-ZnO@ZnS nanorod arrays displayed high capture ability to BSA and high performance durability in the continuous trapping of BSA. The microfluidic device based on Ag-ST-ZnO@ZnS nanorod arrays on the IWC was also successfully applied to concentrate trace amount of BSA and the vibrational bands in the SERS results confirmed the trapped BSA. The device based on core-shell nanorod arrays on the IWC not only realized the continuous high-throughput separation of proteins from large volume complex biological matrices, but also put forward a new route to concentrate and detect trace amount of protein.
引文
1. Manz, A.; Graber, N.; Widmer, H. M., Miniaturized total chemical analysis systems:A novel concept for chemical sensing. Sensors and Actuators B: Chemical 1990,1 (1),244-248.
    2. Dittrich, P. S.; Tachikawa, K.; Manz, A., Micro total analysis systems. Latest advancements and trends. Analytical Chemistry 2006,78 (12),3887-3907.
    3. Kirby, B. J.; Wheeler, A. R.; Zare, R. N.; Fruetel, J. A.; Shepodd, T. J., Programmable modification of cell adhesion and zeta potential in silica microchips. Lab on a Chip 2003,3 (1),5-10.
    4. Tremsin, A. S.; Vallerga, J. V; Siegmund, O. H. W.; Beetz, C. P.; Boerstler, R. W., Thermal dependence of electrical characteristics of micromachined silica microchannel plates. Review of Scientific Instruments 2004,75 (4), 1068-1072.
    5. Prakash, S.; Long, T. M.; Selby, J. C; Moore, J. S.; Shannon, M. A., "Click" modification of silica surfaces and glass microfluidic channels. Analytical Chemistry 2007,79(4),1661-1667.
    6. Kartalov, E. P.; Anderson, W. F.; Scherer, A., The analytical approach to polydimethylsiloxane microfluidic technology and its biological applications. Journal ofNanoscience and Nanotechnology 2006,6 (8),2265-2277.
    7. Sikanen, T.; Heikkila, L.; Tuornikoski, S.; Ketola, R. A.; Kostiainen, R.; Franssila, S.; Kotiaho, T., Performance of SU-8 microchips as separation devices and comparison with glass microchips. Analytical Chemistry 2007,79 (16),6255-6263.
    8. Fiorini, G. S.; Lorenz, R. M; Kuo, J. S.; Chiu, D. T., Rapid prototyping of thermoset polyester microfluidic devices. Analytical Chemistry 2004,76 (16), 4697-4704.
    9. Vilares, R.; Hunter, C; Ugarte, I.; Aranburu, I.; Berganzo, J.; Elizalde, J.; Fernandez, L. J., Fabrication and testing of a SU-8 thermal flow sensor. Sensors and Actuators B-Chemical 147 (2),411-417.
    10. Henares, T. G; Mizutani, F.; Hisamoto, H., Current development in microfluidic immunosensing chip. Analytica Chimica Acta 2008,611 (1), 17-30.
    11. Kaneno, J.; Kohama, R.; Miyazaki, M.; Uehara, M.; Kanno, K.; Fujii, M.; Shimizu, H.; Maeda, H., A simple method for surface modification of microchannels. New Journal of Chemistry 2003,27 (12),1765-1768.
    12. Yoshiki, H.; Mitsui, T., TiO2 thin film coating on a capillary inner surface using atmospheric-pressure microplasma. Surface and Coatings Technology 2008,202 (22-23),5266-5270.
    13. Wang, H. X.; Meng, S.; Guo, K.; Liu, Y.; Yang, P. Y; Zhong, W.; Liu, B. H., Microfluidic immunosensor based on stable antibody-patterned surface in PMMA microchip. Electrochemistry Communications 2008,10 (3),447-450.
    14. Zhou, M. Y; Xie, R.; Yu, Y. L.; Chen, G; Ju, X. J.; Yang, L. H.; Liang, B.; Chu, L. Y, Effects of surface wettability and roughness of microchannel on flow behaviors of thermo-responsive microspheres therein during the phase transition. Journal of Colloid and Interface Science 2009,336 (1),162-170.
    15. Baytekin, H. T.; Wirth, T.; Gross, T.; Treu, D.; Sahre, M.; Theisen, J.; Schmidt, M.; Unger, W. E. S., Determination of wettability of surface-modified hot-embossed polycarbonate wafers used in microfluidic device fabrication via XPS and ToF-SIMS. Surface and Interface Analysis 2008,40 (3-4),358-363.
    16. Huang, W. F.; Liu, Q. S.; Li, Y, Capillary filling flows inside patterned-surface microchannels. Chemical Engineering& Technology 2006, 29 (6),716-723.
    17. Hendy, S. C; Jasperse, M.; Burnell, J., Effect of patterned slip on micro-and nanofluidic flows. Physical Review E 2005,72 (1).
    18. Sultana, S.; Matsui, J.; Mitsuishi, M.; Miyashita, T., Flow behavior in surface-modified microchannels with polymer nanosheets. Thin Solid Films 2009,518 (2),606-609.
    19. Liu, J. K.; Pan, T.; Woolley, A. T.; Lee, M. L, Surface-modified poly(methyl methacrylate) capillary electrophoresis microchips for protein and peptide analysis. Analytical Chemistry 2004,76(23),6948-6955.
    20. Haas-Santo, K.; Gorke, O.; Pfeifer, P.; Schubert, K., Catalyst coatings for microstructure reactors. Chimia 2002,56 (11),605-610.
    21. Ismagilov, I. Z.; Michurin, E. M.; Sukhova, O. B.; Tsykoza, L. T.; Marus, E.; Kerzhentsev, M. A.; Ismagilov, Z. R.; Zagoruiko, A. N.; Rebrov, E. V.; De Croon, M; Schouten, J. C, Oxidation of organic compounds in a microstructured catalytic reactor. Chemical Engineering Journal 2008,135, S57-S65.
    22. Cao, E.; Firth, S.; McMillan, P. F.; Gavriilidis, A., Application of microfabricated reactors for operando Raman studies of catalytic oxidation of methanol to formaldehyde on silver. Catalysis Today 2007,126 (1-2), 119-126.
    23. Mori, N.; Sidokmai, W.; Egashira, Y.; Ueyama, K., Area-controlled CVD using catalytic reaction. Journal of Chemical Engineering of Japan 1999,32 (3),268-273.
    24. Wang, H. Z.; Ii, X. Y.; Nakamura, H.; Miyazaki, M.; Maeda, H., Continuous particle self-arrangement in a long microcapillary. Advanced Materials 2002, 14(22),1662-1666.
    25. Li, X. Y; Wang, H. Z.; Inoue, K.; Uehara, M.; Nakamura, H.; Miyazaki, M.; Abe, E.; Maeda, H., Modified micro-space using self-organized nanoparticles for reduction of methylene blue. Chemical Communications 2003, (8), 964-965.
    26. Wang, A. J.; Xu, J. J.; Zhang, Q.; Chen, H. Y, The use of poly(dimethylsiloxane) surface modification with gold nanoparticles for the microchip electrophoresis. Talanta 2006,69 (1),210-215.
    27. Wang, A. J.; Xu, J. J.; Chen, H. Y., Proteins modification of poly(dimethylsiloxane) microfluidic channels for the enhanced microchip electrophoresis. Journal of Chromatography A 2006,1107 (1-2),257-264.
    28. Thorslund, S.; Sanchez, J.; Larsson, R.; Nikolajeff, F.; Bergquist, J., Functionality and stability of heparin immobilized onto poly(dimethylsiloxane). Colloids and Surfaces B-Biointerfaces 2005,45 (2), 76-81.
    29. Zhang, Q.; Xu, J. J.; Chen, H. Y., Patterning microbeads inside poly(dimethylsiloxane) microfluidic channels and its application for immobilized microfluidic enzyme reactors. Electrophoresis 2006,27 (24), 4943.4951.
    30. Liu, J. K.; Lee, M. L., Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis. Electrophoresis 2006,27(18),3533-3546.
    31. Chen, H. Y; Elkasabi, Y; Lahann, J., Surface modification of confined microgeometries via vapor-deposited polymer coatings. Journal of the American Chemical Society 2006,128 (1),374-380.
    32. Honda, T.; Miyazaki, M.; Nakamura, H.; Maeda, H., Facile preparation of an enzyme-immobilized microreactor using a cross-linking enzyme membrane on a microchannel surface. Advanced Synthesis& Catalysis 2006,348 (15), 2163-2171.
    33. Honda, T.; Miyazaki, M.; Yamaguchi, Y; Nakamura, H.; Maeda, H., Integrated microreaction system for optical resolution of racemic amino acids. Lab on a Chip 2007,7 (3),366-372.
    34. Fan, H. Z.; Chen, G, Fiber-packed channel bioreactor for microfluidic protein digestion. Proteomics 2007,7 (19),3445-3449.
    35. Lee, N. Y; Lim, J. R.; Kim, Y. S., Selective patterning and immobilization of biomolecules within precisely-defined micro-reservoirs. Biosensors and Bioelectronics 2006,21 (11),2188-2193.
    36. Stachowiak, T. B.; Mair, D. A.; Holden, T. G; Lee, L. J.; Svec, F.; Frechet, J. M. J., Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photo grafting. Journal of Separation-Science 2007,30 (7),1088-1093.
    37. Qi, H.; Chen, T.; Yao, L. Y.; Zuo, T. C, Hydrophilicity modification of poly(methyl methacrylate) by excimer laser ablation and irradiation. Microfluidics andNanofluidics 2008,5 (1),139-143.
    38. Bodas, D.; Khan-Malek, C, Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment-An SEM investigation. Sensors and Actuators B-Chemical 2007,123 (1),368-373.
    39. Kim, S. H.; Yang, Y; Kim, M.; Nam, S. W.; Lee, K. M.; Lee, N. Y; Kim, Y. S.; Park, S., Simple route to hydrophilic microfluidic chip fabrication using an ultraviolet (UV)-cured polymer. Advanced Functional Materials 2007,17 (17), 3493-3498.
    40. Kawakatsu, T.; Tragardh, G; Tragardh, C; Nakajima, M.; Oda, N.; Yonemoto, T., The effect of the hydrophobicity of microchannels and components in water and oil phases on droplet formation in microchannel water-in-oil emulsification. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2001,179 (1),29-37.
    41. Miyaki, K.; Zeng, H. L.; Nakagama, T.; Uchiyama, K., Steady surface modification of polydimethylsiloxane microchannel and its application in simultaneous analysis of homocysteine and glutathione in human serum. Journal of Chromatography A 2007,1166(1-2),201-206.
    42. Sui, G D.; Wang, J. Y; Lee, C. C; Lu, W. X.; Lee, S. P.; Leyton, J. V.; Wu, A. M.; Tseng, H. R., Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels. Analytical Chemistry 2006,78 (15),5543-5551.
    43. Zhao, B.; Moore, J. S.; Beebe, D. J., Surface-directed liquid flow inside microchannels. Science 2001,291 (5506),1023-1026.
    44. Lee, G. B.; Lin, C. H.; Lee, K. H.; Lin, Y. F., On the surface modification of microchannels for microcapillary electrophoresis chips. Electrophoresis 2005, 26 (24),4616-4624.
    45. Barz, D. P. J.; Zadeh, H. F.; Ehrhard, P., Laminar flow and mass transport in a twice-folded microchannel. Aiche Journal 2008,54 (2),381-393.
    46. Meier, M.; Lucchetta, E. M.; Ismagilov, R. F., Chemical stimulation of the Arabidopsis thaliana root using multi-laminar flow on a microfluidic chip. Lab on a Chip 2010,10 (16),2147-2153.
    47. Wang, H. Z.; Iovenitti, P.; Harvey, E.; Syed, M.; Deam, R., Mixing of liquids using obstacles in microchannels. Biomems and Smart Nanostructures 2001, 4590,204-212.
    48. Ansari, M. A.; Kim, K. Y., Application of the radial basis neural network to optimization of a micromixer. Chemical Engineering& Technology 2007,30 (7),962-966.
    49. Griffini, G; Gavriilidis, A., Effect of microchannel plate design on fluid flow uniformity at low flow rates. Chemical Engineering& Technology 2007,30 (3),395-406.
    50. Nagrath, S.; Sequist, L. V.; Maheswaran, S.; Bell, D. W.; Irimia, D.; Ulkus, L.; Smith, M. R.; Kwak, E. L.; Digumarthy, S.; Muzikansky, A.; Ryan, P.; Balis, U. J.; Tompkins, R. G; Haber, D. A.; Toner, M., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007,450 (7173),1235-U10.
    51. Park, M. C; Hur, J. Y; Kwon, K. W.; Park, S. H.; Suh, K. Y, Pumpless, selective docking of yeast cells inside a microfluidic channel induced by receding meniscus. Lab on a Chip 2006,6 (8),988-994.
    52. Liu, W. T.; Zhu, L.; Qin, Q. W.; Zhang, Q.; Feng, H. H.; Ang, S., Microfluidic device as a new platform for immunofluorescent detection of viruses. Lab on a Chip 2005,5 (11),1327-1330.
    53. Kaji, N.; Tezuka, Y; Takamura, Y; Ueda, M.; Nishimoto, T.; Nakanishi, H.; Horiike, Y; Baba, Y, Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field. Analytical Chemistry 2004,76 (1), 15-22.
    54. Choi, S.; Song, S.; Choi, C; Park, J. K., Continuous blood cell separation by hydrophoretic filtration. Lab on a Chip 2007,7 (11),1532-1538.
    55. Kwon, K. W.; Choi, S. S.; Lee, S. H.; Kim, B.; Lee, S. N.; Park, M. C; Kim, P.; Hwang, S. Y.; Suh, K. Y., Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference. Lab on a Chip 2007,7 (11),1461-1468.
    56. Chen, H. Y; Lahann, J., Fabrication of discontinuous surface patterns within microfluidic channels using photodefinable vapor-based polymer coatings. Analytical Chemistry 2005,77 (21),6909-6914.
    57. Chen, H. Y; Lahann, J., Vapor-assisted micropatterning in replica structures:A solventless approach towards topologically and chemically designable surfaces. Advanced Materials 2007,19 (22),3801.
    58. Kim, S. M.; Lee, S. H.; Suh, K. Y, Cell research with physically modified microfluidic channels:A review. Lab on a Chip 2008,8 (7),1015-1023.
    59. Dietrich, T. R.; Ehrfeld, W.; Lacher, M.; Kramer, M.; Speit, B., Fabrication technologies for microsystems utilizing photoetchable glass. Microelectronic Engineering 1996,30 (1-4),497-504.
    60. Gu, Z.; Tang, Y, Enzyme-assisted photolithography for spatial functionalization of hydrogels. Lab on a Chip 10 (15),1946-1951.
    61. Lee, J. M.; Park, S.; Kim, G, Multichannel silicon WDM ring filters fabricated with DUV lithography. Optics Communications 2008,281 (17),4302-4306.
    62. George, S. A.; Naulleau, P. P.; Rekawa, S.; Gullikson, E.; Kemp, C. D., Estimating the out-of-band radiation flare levels for extreme ultraviolet lithography. Journal of Micro-Nanolithography, MEMS and MOEMs 2009,8 (4),041502.
    63. Innocenzi, P.; Kidchob, T.; Costacurta, S.; Falcaro, P.; Marmiroli, B.; Cacho-Nerin, F.; Amenitsch, H., Patterning block copolymer thin films by deep X-ray lithography. Soft Matter 2010,6 (14),3172-3176.
    64. Taylor, Z. R.; Patel, K.; Spain, T. G.; Keay, J. C; Jernigen, J. D.; Sanchez, E. S.; Grady, B. P.; Johnson, M. B.; Schmidtke, D. W., Fabrication of protein dot arrays via particle lithography. Langmuir 2009,25 (18),10932-10938.
    65. Oh, S. R., Thick single-layer positive photoresist mold and poly(dimethylsiloxane) (PDMS) dry etching for the fabrication of a glass-PDMS-glass microfluidic device. Journal of Micromechanics and Microengineering 2008,18(11),115025.
    66. No, K. Y.; Kim, G. D.; Kim, G M., Fabrication of suspended micro-structures using diffsuser lithography on negative photoresist. Journal of Mechanical Science and Technology 2008,22 (9),1765-1771.
    67. Zhao, X. M.; Xia, Y. N.; Whitesides, G M., Soft lithographic methods for nano-fabrication. Journal of Materials Chemistry 1997,7(7),1069-1074.
    68. Whitesides, G M.; Stroock, A. D., Flexible methods for microfluidics. Physics Today 2001,54 (6),42-48.
    69. Xia, Y. N.; Whitesides, G M., Soft lithography. Annual Review of Materials Science 1998,28,153-184.
    70. Xia, Y. N.; Whitesides, G. M., Soft lithography. Angewandte Chemie-InternationalEdition 1998,37(5),551-575.
    71. Hwang, H.; Kang, G; Yeon, J. H.; Nam, Y.; Park, J. K., Direct rapid prototyping of PDMS from a photomask film for micropatterning of biomolecules and cells. Lab on a Chip 2009,9(1),167-170.
    72. Lewis, C. L.; Choi, C. H.; Lin, Y; Lee, C. S.; Yi, H., Fabrication of uniform DNA-conjugated hydrogel microparticles via replica molding for facile nucleic acid hybridization assays. Analytical Chemistry 2010,82 (13), 5851-5858.
    73. Simms, R.; Dubinsky, S.; Yudin, A.; Kumacheva, E., A method for fabricating microfluidic electrochemical reactors. Lab on a Chip 2009,9 (16),2395-2397.
    74. Kauffman, J. F.; Gilliam, S. J.; Martin, R. S., Chemical imaging of pharmaceutical materials:Fabrication of micropatterned resolution targets. Analytical Chemistry 2008,80 (15),5706-5712.
    75. Lawrence, J. R.; Turnbull, G. A.; Samuel, I. D. W., Polymer laser fabricated by a simple micromolding process. Applied Physics Letters 2003,82 (23), 4023-4025.
    76. Lee, N. Y.; Lim, J. R.; Lee, M. J.; Kim, J. B.; Jo, S. J.; Baik, H. K.; Kim, Y. S., Hydrophilic composite elastomeric mold for high-resolution soft lithography. Langmuir 2006,22 (21),9018-9022.
    77. Fernandez-Sanchez, C; Cadarso, V. J.; Darder, M.; Dominguez, C; Llobera, A., Patterning high-aspect-ratio sol-gel structures by microtransfer molding. Chemistry of Materials 2008,20 (8),2662-2668.
    78. Lee, J. H.; Kim, C. H.; Ho, K. M.; Constant, K., Two-polymer microtransfer molding for highly layered microstructures. Advanced Materials 2005,17 (20), 2481-2485.
    79. Verpoorte, E.; De Rooij, N.F., Microfluidics meets MEMS. Proceedings of the Ieee 2003,91 (6),930-953.
    80. Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M., Single-nanowire electrically driven lasers. Nature 2003,421 (6920),241-245.
    81. Wang, Z. L., Science and technology of oxide nanostructures. Nanoscience& Nanotechnology 2006,3 (6),5-12.
    82. Iijima, S., Helical microtubules of graphitic carbon. Nature 1991,354 (7), 56-58.
    83. Huang, M. H.; Wu, Y; Feick, H.; Tran, N.; Weber, E.; Yang, P. D, Catalytic growth of zinc oxide nanowires by vapor transport. Advanced Materials 2001, 13(2),113-116.
    84. Park, W. I.; Kim, D. H.; Jung, S. W.; Yi, G. C, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Applied Physics Letters 2002,80 (22),4232-4234.
    85. Park, W. I.; Yi, G. C; Kim, M. Y; Pennycook, S. J., ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Advanced Materials 2002,14 (24),1841-1843.
    86. Okada, T.; Kawashima, K.; Nakata, Y, Nano-wire pig-tailed ZnO nano-rods synthesized by laser ablation. Thin Solid Films 2006,506,274-277.
    87. Park, Y. S.; Park, C. M; Park, C. J.; Cho, H. Y.; Lee, S. J.; Kang, T. W.; Lee, S. H.; Oh, J. E.; Yoo, K. H.; Son, M. S., Electron trap level in a GaN nanorod p-n junction grown by molecular-beam epitaxy. Applied Physics Letters 2006,88 (19),192104.
    88. Liu, R.; Vertegel, A. A.; Bohannan, E. W.; Sorenson, T. A.; Switzer, J. A., Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold. Chemistry of Materials 2001,13 (2),508-512.
    89. Biswas, S.; Kar, S.; Ghoshal, T.; Ashok, V. D.; Chakrabarti, S.; Chaudhuri, S., Fabrication of GaN nanowires and nanoribbons by a catalyst assisted vapor-liquid-solid process. Materials Research Bulletin 2007,42 (3),428-436.
    90. Yang, Z. X.; Xia, Y. D.; Mokaya, R., Aligned N-doped carbon nanotube bundles prepared via CVD using zeolite substrates. Chemistry of Materials 2005,17(17),4502-4508.
    91. Liao, X.; Zhang, X., Zinc oxide nanostructures and their core-shell luminescence properties. Journal of Physical Chemistry C 2007,111 (26), 9081-9085.
    92. Bekermann, D.; Gasparotto, A.; Barreca, D.; Devi, A.; Fischer, R. A.; Kete, M.; Stangar, U. L.; Lebedev, O. I.; Maccato, C.; Tondello, E.; Van Tendeloo, G., ZnO nanorod arrays by plasma-enhanced CVD for light-activated functional applications. Chemphyschem 2010,11 (11),2337-2340.
    93. Wohlfart, A.; Devi, A.; Maile, E.; Fischer, R. A., Morphology controlled growth of arrays of GaN nanopillars and randomly distributed GaN nanowires on sapphire using (N3)2Ga[(CH2)3NMe2] as a single molecule precursor. Chemical Communications 2002, (9),998-999.
    94. Hersee, S. D.; Sun, X. Y.; Wang, X., The controlled growth of GaN nanowires. Nano Letters 2006,6 (8),1808-1811.
    95. Fuge, G. M; Holmes, T. M. S.; Ashfold, M. N. R., Ultrathin aligned ZnO nanorod arrays grown by a novel diffusive pulsed laser deposition method. Chemical Physics Letters 2009,479 (1-3),125-127.
    96. Tien, L. C; Pearton, S. J.; Norton, D. P.; Ren, F., Synthesis and characterization of single crystalline SnO2 nanorods by high-pressure pulsed laser deposition. Applied Physics A-Materials Science& Processing 2008,91 (1),29-32.
    97. Savu, R.; Joanni, E., Low-temperature, self-nucleated growth of indium-tin oxide nanostructures by pulsed laser deposition on amorphous substrates. Scripta Materialia 2006,55 (11),979-981.
    98. Yan, J. F.; Lu, Y. M.; Liang, H. W.; Liu, Y C; Li, B. H.; Fan, X. W.; Zhou, J. M., Growth and properties of ZnO nanotubes grown on Si(111) substrate by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth 2005,280 (1-2),206-211.
    99. Wu, K. M.; Pan, Y; Liu, C, InGaN nanorod arrays grown by molecular beam epitaxy:Growth mechanism structural and optical properties. Applied Surface Science 2009,255 (13-14),6705-6709.
    100. Tian, Z. R. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; McDermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. F., Complex and oriented ZnO nanostructures. Nature Materials 2003,2 (12),821-826.
    101. Vayssieres, L., Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials 2003,15 (5),464-466.
    102. Shi, L. A.; Xu, Y M.; Li, Q. A., Controlled fabrication of SnO2 arrays of well-aligned nanotubes and nanowires. Nanoscale 2010,2 (10),2104-2108.
    103. Manseki, K.; Yanagida, S. In, Photosensitized luminescent lanthanide (Ⅲ) clusters encapsulated with polyphenyisilsesquioxane, Nanki Shirahama, JAPAN, Oct 17-20,2006, pp 23-25.
    104. Chun, J. Y; Lee, J. W., Various synthetic methods for one-dimensional semiconductor nanowires/nanorods and their applications in photovoltaic devices. European Journal of Inorganic Chemistry 2010, (27),4251-4263.
    105. Cao, M. H.; Hu, C. W.; Wang, Y H.; Guo, Y H.; Guo, C. X.; Wang, E. B., A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods. Chemical Communications 2003, (15),1884-1885.
    106. Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P., Colloidal nanocrystal shape and size control:The case of cobalt. Science 2001,291 (5511),2115-2117.
    107. Lan, W. J.; Yu, S. H.; Qian, H. S.; Wan, Y., Dispersibility, stabilization, and chemical stability of ultrathin tellurium nanowires in acetone:Morphology change, crystallization, and transformation into TeO2 in different solvents. Langmuir 2007,23 (6),3409-3417.
    108. Zhang, H.; Yang, D. R.; Ma, X. Y; Ji, Y. J.; Li, S. Z.; Que, D. L., Self-assembly of CdS:from nanoparticles to nanorods and arrayed nanorod bundles. Materials Chemistry and Physics 2005,93 (1),65-69.
    109. Rorvik, P. M.; Almli, A.; van Helvoort, A. T. J.; Holmestad, R.; Tybell, T.; Grande, T.; Einarsrud, M. A., PbTiO3 nanorod arrays grown by self-assembly of nanocrystals. Nanotechnology 2008,19 (22),225605.
    110. Xia, H. B.; Narayanan, J.; Cheng, D. M.; Xiao, C. Y; Liu, X. Y; Chan, H. S. O., Formation of ordered arrays of oriented polyaniline nanoparticle nanorods. Journal of Physical Chemistry B 2005,109 (26),12677-12684.
    111. Morin, S. A.; Amos, F. F.; Jin, S., Biomimetic assembly of zinc oxide nanorods onto flexible polymers. Journal of the American Chemical Society 2007,129(45),13776-13777.
    112. Sounart, T. L; Liu, J.; Voigt, J. A.; Hsu, J. W. P.; Spoerke, E. D.; Tian, Z.; Jiang, Y. B., Sequential nucleation and growth of complex nanostructured films. Advanced Functional Materials 2006,16 (3),335-344.
    113. Huang, Y; Duan, X. F.; Wei, Q. Q.; Lieber, C. M., Directed assembly of one-dimensional nanostructures into functional networks. Science 2001,291 (5504),630-633.
    114. Wang, Z. L., Zinc oxide nanostructures:growth, properties and applications. Journal of Physics-Condensed Matter 2004,16 (25), R829-R858.
    115. Law, M.; Greene, L. E.; Johnson, J. C; Saykally, R.; Yang, P. D., Nanowire dye-sensitized solar cells. Nature Materials 2005,4 (6),455-459.
    116. Wang, Z. L., Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Applied Physics A-Materials Science& Processing 2007,88 (1),7-15.
    117. Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L., Direct-current nanogenerator driven by ultrasonic waves. Science 2007,316 (5821),102-105.
    118. Wang, Z. L.; Song, J. H., Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006,312 (5771),242-246.
    119. Zhu, G. A.; Yang, R. S.; Wang, S. H.; Wang, Z. L., Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Letters 2010,10 (8), 3151-3155.
    120. Xu, S.; Qin, Y.; Xu, C; Wei, Y. G; Yang, R. S.; Wang, Z. L., Self-powered nanowire devices. Nature Nanotechnology 2010,5 (5),366-373.
    121. Xu, C; Wang, X. D.; Wang, Z. L., Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. Journal of the American Chemical Society 2009,131 (16),5866-5872.
    122. Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S., Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Letters 2007,7(6),1793-1798.
    123. Park, J.; Bauer, S.; Schmuki, P.; von der Mark, K., Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Letters 2009,9 (9),3157-3164.
    124. Park, J.; Bauer, S.; Schlegel, K. A.; Neukam, F. W; von der Mark, K.; Schmuki, P., TiO2 nanotube surfaces:15 nm-An optimal length scale of surface topography for cell adhesion and differentiation. Small 2009,5 (6), 666-671.
    125. Brammer, K. S.; Oh, S. H.; Gallagher, J. O.; Jin, S. H., Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Letters 2008,8 (3), 786-793.
    126. Worz, O.; Jackel, K. P.; Richter, T.; Wolf, A., Microreactors-A new efficient tool for reactor development. Chemical Engineering& Technology 2001,24 (2),138-142.
    127. Geyer, K.; Codee, J. D. C; Seeberger, P. H., Microreactors as tools for synthetic chemists-The chemists'round-bottomed flask of the 21st century? Chemistry-a European Journal 2006,12 (33),8434-8442.
    128. Roberge, D. M.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B., Microreactor technology:A revolution for the fine chemical and pharmaceutical industries? Chemical Engineering& Technology 2005,28 (3), 318-323.
    129. Abdallah, R.; Meille, V.; Shaw, J.; Wenn, D.; de Bellefon, C, Gas-liquid and gas-liquid-solid catalysis in a mesh microreactor. Chemical Communications 2004, (4),372-373.
    130. Fuse, S.; Tanabe, N.; Yoshida, M.; Yoshida, H.; Doi, T.; Takahashi, T., Continuous-flow synthesis of vitamin D3. Chemical Communications 2010, 46 (46),8722-8724.
    131. Kikutani, Y.; Horiuchi, T.; Uchiyama, K.; Hisamoto, H.; Tokeshi, M.; Kitamori, T., Glass microchip with three-dimensional microchannel network for 2×2 parallel synthesis. Lab on a Chip 2002,2 (4),188-192.
    132. Gunther, A.; Jensen, K. F., Multiphase microfluidics:from flow characteristics to chemical and materials synthesis. Lab on a Chip 2006,6 (12),1487-1503.
    133. Thorsen, T.; Roberts, R. W.; Arnold, F. H.; Quake, S. R., Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters 2001,86(18),4163-4166.
    134. Anna, S. L.; Bontoux, N.; Stone, H. A., Formation of dispersions using "flow focusing" in microchannels. Applied Physics Letters 2003,82 (3),364-366.
    135. Kuhn, P.; Wilson, K.; Patch, M. G; Stevens, R. C, The genesis of high-throughput structure-based drug discovery using protein crystallography. Current Opinion in Chemical Biology 2002,6 (5),704-710.
    136. Tawfik, D. S.; Griffiths, A. D., Man-made cell-like compartments for molecular evolution. Nature Biotechnology 1998,16 (7),652-656.
    137. Zheng, B.; Roach, L. S.; Ismagilov, R. F., Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. Journal of the American Chemical Society2003,125 (37),11170-11171.
    138. Song, H.; Tice, J. D.; Ismagilov, R. F., A microfluidic system for controlling reaction networks in time. Angewandte Chemie-International Edition 2003,42 (7),768-772.
    139. Curcio, M.; Roeraade, J., Continuous segmented-flow polymerase chain reaction for high-throughput miniaturized DNA amplification. Analytical Chemistry 2003,75 (1),1-7.
    140. Song, H.; Ismagilov, R. F., Millisecond kinetics on a microfluidic chip using nanoliters of reagents. Journal of the American Chemical Society 2003,125 (47),14613-14619.
    141. Gunther, A.; Khan, S. A.; Thalmann, M.; Trachsel, F.; Jensen, K. F., Transport and reaction in microscale segmented gas-liquid flow. Lab on a Chip 2004,4 (4),278-286.
    142. Shestopalov, I.; Tice, J. D.; Ismagilov, R. F., Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab on a Chip 2004,4 (4),316-321.
    143. Garstecki, P.; Gitlin, I.; DiLuzio, W.; Whitesides, G M.; Kumacheva, E.; Stone, H. A., Formation of monodisperse bubbles in a microfluidic flow-focusing device. Applied Physics Letters 2004,85 (13),2649-2651.
    144. Hashimoto, M.; Garstecki, P.; Whitesides, G. M., Synthesis of composite emulsions and complex foams with the use of microfluidic flow-focusing devices. Small 2007, 3 (10),1792-1802.
    145. Ahn, Y. C; Jung, W. G; Chen, Z. P., Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel. Lab on a Chip 2008,8(1),125-133.
    146. Hofmann, O.; Che, D. P.; Cruickshank, K. A.; Muller, U. R., Adaptation of capillary isoelectric focusing to microchannels on a glass chip. Analytical Chemistry 1999,71 (3),678-686.
    147. Hansen, C. L.; Skordalakes, E.; Berger, J. M.; Quake, S. R., A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proceedings of the National Academy of Sciences of the United States of America 2002,99 (26),16531-16536.
    148. Zheng, B.; Tice, J. D.; Roach, L. S.; Ismagilov, R. F., A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angewandte Chemie-International Edition 2004,43 (19),2508-2511.
    149. Li, L.; Mustafi, D.; Fu, Q.; Tereshko, V.; Chen, D. L. L.; Tice, J. D.; Ismagilov, R. F., Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proceedings of the National Academy of Sciences of the United States of America 2006,103 (51),19243-19248.
    150. Meyvantsson, I.; Beebe, D. J., Cell culture models in microfluidic systems. Annual Review of Analytical Chemistry 2008,1 (1),423-449.
    151. Lau, A. Y; Hung, P. J.; Wu, A. R.; Lee, L. P., Open-access microfluidic patch-clamp array with raised lateral cell trapping sites. Lab on a Chip 2006,6 (12),1510-1515.
    152. Zhou, Z. M.; Liu, D. Y.; Zhong, R. T.; Dai, Z. P.; Wu, D. P.; Wang, H.; Du, Y. G; Xia, Z. N.; Zhang, L. P.; Mei, X. D.; Lin, B. C, Determination of SARS-coronavirus by a microfluidic chip system. Electrophoresis 2004,25 (17),3032-3039.
    153. Liu, D. Y; Zhou, X. M.; Zhong, R. T.; Ye, N. N.; Chang, G. H.; Xiong, W.; Mei, X. D.; Lin, B. C, Analysis of multiplex PCR fragments with PMMA microchip. Talanta 2006,68 (3),616-622.
    154. Marcy, Y; Ouverney, C; Bik, E. M.; Losekann, T.; Ivanova, N.; Martin, H. G; Szeto, E.; Platt, D.; Hugenholtz, P.; Relman, D. A.; Quake, S. R., Dissecting biological "dark matter" with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proceedings of the National Academy of Sciences of the United States of America 2007,104 (29), 11889-11894.
    1. Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M., Directed assembly of one-dimensional nanostructures into functional networks. Science 2001,291 (5504),630-633.
    2. Wang, Z. L., Zinc oxide nanostructures:growth, properties and applications. Journal of Physics-Condensed Matter 2004,16(25), R829-R858.
    3. Cheng, A. J.; Tzeng, Y. H.; Zhou, Y; Park, M.; Wu, T. H.; Shannon, C; Wang, D.; Lee, W. W, Thermal chemical vapor deposition growth of zinc oxide nanostructures for dye-sensitized solar cell fabrication. Applied Physics Letters 2008,92 (9).
    4. Huh, P.; Yan, F.; Li, L.; Kim, M.; Mosurkal, R.; Samuelson, L. A.; Kumar, J., Simple fabrication of zinc oxide nanostructures. Journal of Materials Chemistry 2008,18 (6),637-639.
    5. Pu, X. P.; Zhang, D. F.; Jia, L. P.; Su, C. H., Synthesis of zinc oxide nanostructures with controlled morphologies using a simple sonochemical method. Journal of the American Ceramic Society 2007,90 (12),4076-4078.
    6. Liao, X.; Zhang, X., Zinc oxide nanostructures and their core-shell luminescence properties. Journal of Physical Chemistry C 2007,111 (26), 9081-9085.
    7. Song, R. Q.; Xu, A. W.; Deng, B.; Li, Q.; Chen, G. Y, From layered basic zinc acetate nanobelts to hierarchical zinc oxide nanostructures and porous zinc oxide nanobelts. Advanced Functional Materials 2007,17 (2),296-306.
    8. Park, J. W; Kim, J. K.; Suh, K. Y, Fabrication of zinc oxide nanostructures using solvent-assisted capillary lithography. Nanotechnology 2006,17 (10), 2631-2635.
    9. Wang, Z. L.; Song, J. H., Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006,312 (5771),242-246.
    10. Zhou, Q. F.; Sharp, C; Cannata, J. M.; Shung, K. K.; Feng, G. H.; Kim, E. S., Self-focused high frequency ultrasonic transducers based on ZnO piezoelectric films. Applied Physics Letters 2007,90 (11).
    11. Kong, X. Y.; Wang, Z. L., Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Letters 2003,3 (12),1625-1631.
    12. Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L., Direct-current nanogenerator driven by ultrasonic waves. Science 2007,316(5821),102-105.
    13. Johnson, J. C; Yan, H. Q.; Yang, P. D.; Saykally, R. J., Optical cavity effects in ZnO nanowire lasers and waveguides. Journal of Physical Chemistry B 2003,107(34),8816-8828.
    14. Law, M.; Greene, L. E.; Johnson, J. C; Saykally, R.; Yang, P. D., Nanowire dye-sensitized solar cells. Nature Materials 2005,4 (6),455-459.
    15. Vayssieres, L., Growth of arrayed nanorods and nano wires of ZnO from aqueous solutions. Advanced Materials 2003,15 (5),464-466.
    16. Huang, M. H.; Wu, Y; Feick, H.; Tran, N.; Weber, E.; Yang, P. D., Catalytic growth of zinc oxide nanowires by vapor transport. Advanced Materials 2001, 13(2),113-116.
    17. Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C; Zhang, Y F.; Saykally, R. J.; Yang. P. D., Low-temperature wafer-scale production of ZnO nanowire arrays. Angewandte Chemie-International Edition 2003,42 (26), 3031-3034.
    18. Wang, X. D.; Song, J. H.; Wang, Z. L., Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. Journal of Materials Chemistry 2007,17 (8),711-720.
    19. Yan, H. Q.; He, R. R.; Johnson, J.; Law, M.; Saykally, R. J.; Yang, P. D., Dendritic nanowire ultraviolet laser array. Journal of the American Chemical Society 2003,125 (16),4728-4729.
    20. Qiu, Y. F.; Yang, S. H., ZnO nanotetrapods:Controlled vapor-phase synthesis and application for humidity sensing. Advanced Functional Materials 2007, 17(8),1345-1352.
    21. Park, W. I.; Kim, D. H.; Jung, S. W; Yi, G C, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Applied Physics Letters 2002,80 (22),4232-4234.
    22. Patrito, N.; McLachlan, J. M.; Faria, S. N.; Chan, J.; Norton, P. R., A novel metal-protected plasma treatment for the robust bonding of polydimethylsiloxane. Lab on a Chip 2007,7(12),1813-1818.
    23. Okada, T.; Kawashima, K.; Nakata, Y, Nano-wire pig-tailed ZnO nano-rods synthesized by laser ablation. Thin Solid Films 2006,506,274-277.
    24. Okada, T.; Agung, B. H.; Nakata, Y., ZnO nano-rods synthesized by nano-particle-assisted pulsed-laser deposition. Applied Physics A-Materials Science& Processing 2004,79 (4-6),1417-1419.
    25. Liu, R.; Vertegel, A. A.; Bohannan, E. W.; Sorenson, T. A.; Switzer, J. A., Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold. Chemistry of Materials 2001,13 (2),508-512.
    26. Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G; Yang, P. D., General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Letters 2005,5 (7),1231-1236.
    27. Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. E., Three-dimensional array of highly oriented crystalline ZnO micro tubes. Chemistry of Materials 2001,13 (12),4395-4398.
    28. Vayssieres, L; Hagfeldt, A.; Lindquist, S. E., Purpose-built metal oxide nanomaterials. The emergence of a new generation of smart materials. Pure and Applied Chemistry 2000,72 (1-2),47-52.
    29. Morin, S. A.; Amos, F. F.; Jin, S., Biomimetic assembly of zinc oxide nanorods onto flexible polymers. Journal of the American Chemical Society 2007,129(45),13776-13777.
    30. Sounart, T. L.; Liu, J.; Voigt, J. A.; Hsu, J. W. P.; Spoerke, E. D.; Tian, Z.; Jiang, Y. B., Sequential nucleation and growth of complex nanostructured films, advanced functional materials 2006,16(3),335-344.
    31. Yu, H. D.; Zhang, Z. P.; Han, M. Y; Hao, X. T.; Zhu, F. R., A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. Journal of the American Chemical Society 2005, 127 (8),2378-2379.
    32. Liu, Y.; Chu, Y.; Li, L. L.; Dong, L. H.; Zhuo, Y. J., Controlled fabrication of highly oriented ZnO microrod/microtube arrays on a zinc substrate and their photoluminescence properties. Chemistry-a European Journal 2007,13 (23), 6667-6673.
    33. Pinna, N.; Weiss, K.; Sack-Kongehl, H.; Vogel, W.; Urban, J.; Pileni, M. P, Triangular CdS nanocrystals:Synthesis, characterization, and stability. Langmuir 2001,17 (26),7982-7987.
    34. Lemyre, J. L.; Ritcey, A. M., Synthesis of lanthanide fluoride nanoparticles of varying shape and size. Chemistry of Materials 2005,17 (11),3040-3043.
    35. Pileni, M. P., The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Materials 2003,2 (3),145-150.
    36. Vayssieres, L., An aqueous solution approach to advanced metal oxide arrays on substrates. Applied Physics a-Materials Science& Processing 2007,89 (1), 1-8.
    37. Pileni, M. P., Reverse micelles as microreactors. Journal of Physical Chemistry 1993,97(27),6961-6973.
    38. Zarur, A. J.; Ying, J. Y, Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature 2000,403 (6765),65-67.
    39. Lee, Y; Lee, J.; Bae, C. J.; Park, J. G; Noh, H. J.; Park, J. H.; Hyeon, T, Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Advanced Functional Materials 2005,15 (3),503-509.
    1. Zhang, Q. H.; Gao, L.; Guo, J. K., Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied Catalysis B-Environmental 2000,26 (3),207-215.
    2. Hong, R. Y.; Li, J. H.; Chen, L. L.; Liu, D. Q.; Li, H. Z.; Zheng, Y; Ding, J., Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technology 2009,189 (3),426-432.
    3. Huo, Y. N.; Jin, Y; Zhu, J.; Li, H. X., Highly active TiO2-x-yNxFy visible photocatalyst prepared under supercritical conditions in NH4F/EtOH fluid. Applied Catalysis B-Environmental 2009,89 (3-4),543-550.
    4. Cao, G. X.; Li, Y G; Zhang, Q. H.; Wang, H. Z., Enhanced visible light-driven photocatalytic performance of La-Doped TiO2-xFx. Journal of the American Ceramic Society 2010,93 (1),25-27.
    5. Hu, X. L.; Li, G. S.; Yu, J. C, Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 2010,26 (5),3031-3039.
    6. Hofstadlert, K.; Bauer, R.; Novallc, S.; Heisler, O., New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers:Photomineralization of 4-chlorophenol. Environmental Science and Technology 1994,28,670-674.
    7. Rodriguez, P.; Meille, V; Pallier, S.; Al Sawah, M. A., Deposition and characterisation of TiO2 coatings on various supports for structured (photo)catalytic reactors. Applied Catalysis A-General 2009,360 (2),154-162.
    8. Dunlop, P. S. M.; Galdi, A.; McMurray, T. A.; Hamilton, J. W. J.; Rizzo, L.; Byrne, J. A., Comparison of photocatalytic activities of commercial titanium dioxide powders immobilised on glass substrates. Journal of Advanced Oxidation Technologies 2010,13 (1),99-106.
    9. Khataee, A. R.; Pons, M. N.; Zahraa, O., Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation:Influence of dye molecular structure. Journal of Hazardous Materials 2009,168 (1),451-457.
    10. Sarantopoulos, C; Gleizes, A. N.; Maury, F., Chemical vapor deposition and characterization of nitrogen doped TiO2 thin films on glass substrates. Thin Solid Films 2009,518 (4),1299-1303.
    11. Avciata, O.; Sahin, F.; Erden, I.; Avciata, U., Hydrothermal preparation and characterization of nanocrystalline TiO2 powder and its photocatalytic degradation of alizarin salt dye under UV-light. Asian Journal of Chemistry 2010,22 (4),2953-2958.
    12. Cantaragiu, A. M.; Cojocaru, P.; Magagnin, L.; Carac, G; Gheorghies, C., Electrophoretic synthesis and characterization of bioactive HAp/TiO2 thin films coated on stainless steel. Journal of Optoelectronics and Advanced Materials 2010,12(4),913-918.
    13. Valova, E.; Georgieva, J.; Armyanov, S.; Sotiropoulos, S.; Hubin, A.; Baert, K.; Raes, M., Morphology, structure and photoelectrocatalytic activity of TiO2/WO3 coatings obtained by pulsed electrodeposition onto stainless steel. Journal of the Electrochemical Society 2010,157 (5), D309-D315.
    14. Horikoshi, S.; Watanabe, N.; Onishi, H.; Hidaka, H.; Serpone, N., Photodecomposition of a nonylphenol polyethoxylate surfactant in a cylindrical photoreactor with TiO2 immobilized fiberglass cloth. Applied Catalysis B-Environmental 2002,37(2),117-129.
    15. Piscopo, A.; Robert, D.; Marzolin, C; Weber, J. V., TiO2 supported on glass fiber for the photocatalytic degradation of benzamide. Journal of Materials Science Letters 2000,19 (8),683-684.
    16. Nicola J. Peilland; Hoffmann, M. R., Development and optimization of a TiO2-coated fiber-optic cable photocatalytic degradation of 4-chlorophenol. Environmental Science and Technology 1995,29,2974-2981.
    17. Peill, N. J.; Hoffmann, M. R., Chemical and physical characterization of a TiO2-coated fiber optic cable reactor. Environmental Science& Technology 1996,30 (9),2806-2812.
    18. Danion, A.; Disdier, J.; Guillard, C.; Jaffrezic-Renault, N., Malic acid photocatalytic degradation using a TiO2-coated optical fiber reactor. Journal of Photochemistry and Photobiology A-Chemistry 2007,190 (1),135-140.
    19. Engel-Herbert, R.; Jalan, B.; Cagnon, J.; Stemmer, S., Microstructure of epitaxial rutile TiO2 films grown by molecular beam epitaxy on r-plane Al2O3. Journal of Crystal Growth 2009,312 (1),149-153.
    20. Shin, H. J.; Kim, B. H.; Seo, H. S.; Kim, C. S.; Kook, J. K.; Lim, G. T.; Cho, D. L.; Kim, D.; Ohk, S. H.; Ko, Y. M., Degradation of cochlodinium polykrikoides using photocatalytic reactor with TiO2-coated alumina. Biotechnology and Bioprocess Engineering 2009,14 (4),531-535.
    21. Grzechulska-Damszel, J., Removal of organic impurities from water using a reactor with photoactive refill. International Journal of Photoenergy 2009, 2009,304712-304717.
    22. Grzechulska-Damszel, J.; Morawski, A. W., Water purification using a novel reactor with the photoactive refill. Polish Journal of Chemical Technology 2009, 11(1),61-63.
    23. Grzechulska-Damszel, J.; Tomaszewska, M., Application of reactor with the photoactive refill for decomposition of organic pollutants in water.2009; pp 1176-1179.
    24. Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W., Environmental applications of semiconductor photocatalysis. Chemical Reviews 1995,95(1),69-96.
    25. Liao, S. J.; Huang, D. G.; Yu, D. H.; Su, Y. L.; Yuan, G. Q., Preparation and characterization of ZnO/TiO2, SO42-/ZnO/TiO2 photocatalyst and their photocatalysis. Journal of Photochemistry and Photobiology A-Chemistry 2004, 168(1-2),7-13.
    26. Law, M.; Greene, L. E.; Radenovic, A.; Kuykendall, T.; Liphardt, J.; Yang, P. D., ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. Journal of Physical Chemistry B 2006,110 (45),22652-22663.
    27. Banerjee, S.; Mohapatra, S. K.; Das, P. P.; Misra, M., Synthesis of coupled semiconductor by filling 1D TiO2 nano tubes with CdS. Chemistry of Materials 2008,20 (21),6784-6791.
    28. Wang, H. H.; Baek, S.; Lee, J.; Lim, S., High photocatalytic activity of silver-loaded ZnO-SnO2 coupled catalysts. Chemical Engineering Journal 2009,146(3),355-361.
    29. Wang, X. T.; He, Z.; Zhong, S. H., Preparation and photo absorption property of coupled semiconductor NiO-TiO2. Journal of Inorganic Materials 2009,24 (2), 215-220.
    30. Rebrov, E. V.; Berenguer-Murcia, A.; Johnson, B. F. G; Schouten, J. C, Gold supported on mesoporous titania thin films for application in microstructured reactors in low-temperature water-gas shift reaction. Catalysis Today 2008,138 (3-4),210-215.
    31. Wu, J. J.; Tseng, C. H., Photocatalytic properties of nc-Au/ZnO nanorod composites. Applied Catalysis B-Environmental 2006,66 (1-2),51-57.
    32. Lin, Y. C; Lee, H. S., Effects of TiO2 coating dosage and operational parameters on a TiO2/Ag photocatalysis system for decolorizing Procion red MX-5B. Journal of Hazardous Materials 2010,179 (1-3),462-470.
    33. Marci, G; Augugliaro, V.; Lopez-Munoz, M. J.; Martin, C; Palmisano, L. Rives, V.; Schiavello, M.; Tilley, R. J. D.; Venezia, A. M., Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems.1. Surface and bulk characterization. Journal of Physical Chemistry B 2001,105(5),1026-1032.
    34. Marci, G; Augugliaro, V.; Lopez-Munoz, M. J.; Martin, C; Palmisano, L. Rives, V.; Schiavello, M.; Tilley, R. J. D.; Venezia, A. M., Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems.2. Surface, bulk characterization, and 4-nitrophenol photodegradation in liquid-solid regime. Journal of Physical Chemistry B 2001,105 (5), 1033-1040.
    35. Chen, D.; Zhang, H.; Hu, S.; Li, J. H., Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO-TiO2 nanocomposites. Journal of Physical Chemistry C2008,112 (1),117-122.
    36. Greene, L. E.; Law, M.; Yuhas, B. D.; Yang, P. D., ZnO-TiO2 core-shell nanorod/P3HT solar cells. Journal of Physical Chemistry C 2007,111 (50), 18451-18456.
    37. Mane, R. S.; Lee, W. J.; Pathan, H. M.; Han, S. H., Nanocrystalline TiO2/ZnO thin films:Fabrication and application to dye-sensitized solar cells. Journal of Physical Chemistry B 2005,109 (51),24254-24259.
    38. Subramanian, V.; Wolf, E. E.; Kamat, P. V, Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. Journal of the American Chemical Society 2004,126 (15),4943-4950.
    39. Subramanian, V.; Wolf, E.; Kamat, P. V., Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? Journal of Physical Chemistry B 2001, 105(46),11439-11446.
    40. Subramanian, V.; Wolf, E. E.; Kamat, P. V., Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and fermi-level equilibration. Journal of Physical Chemistry B 2003,107 (30), 7479.7485.
    41. Zeng, H. B.; Liu, P. S.; Cai, W. P.; Yang, S. K.; Xu, X. X., Controllable Pt/ZnO Porous Nanocages with Improved Photocatalytic Activity. Journal of Physical Chemistry C2008,112 (49),19620-19624.
    42. Tan, T.; Li, Y; Liu, Y; Wang, B.; Song, X. M; Li, E.; Wang, H.; Yan, H., Two-step, preparation of Ag/tetrapod-like ZnO with photocatalytic activity by thermal evaporation and spluttering. Materials Chemistry and Physics 2008, 111 (2-3),305-308.
    43. Geyer, K.; Codee, J. D. C; Seeberger, P. H., Microreactors as tools for synthetic chemists-The chemists'round-bottomed flask of the 21st century? Chemistry-a European Journal 2006,12 (33),8434-8442.
    44. Watts, P.; Wiles, C, Recent advances in synthetic micro reaction technology. Chemical Communications 2007, (5),443-467.
    45. Takei, G; Kitamori, T.; Kim, H. B., Photocatalytic redox-combined synthesis of L-pipecolinic acid with a titania-modified microchannel chip. Catalysis Communications 2005,6 (5),357-360.
    46. Shore, G; Organ, M. G, Diels-Alder cycloadditions by microwave-assisted, continuous flow organic synthesis (MACOS):the role of metal films in the flow tube. Chemical Communications 2008, (7),838-840.
    47. Wiles, C; Watts, P., Continuous flow reactors, a tool for the modern synthetic chemist. European Journal of Organic Chemistry 2008, (10),1655-1671.
    48. Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T., Greener approaches to organic synthesis using microreactor technology. Chemical Reviews 2007,107(6),2300-2318.
    49. Brivio, M.; Verboom, W; Reinhoudt, D. N., Miniaturized continuous flow reaction vessels:influence on chemical reactions. Lab on a Chip 2006,6 (3), 329-344.
    50. Murphy, M. W.; Kim, P. S. G; Zhou, X.; Zhou, J.; Coulliard, M.; Botton, G. A.; Sham, T. K., Biaxial ZnO-ZnS nanoribbon heterostructures. Journal of Physical Chemistry C 2009,113 (12),4755-4757.
    51. Kosmulski, M., The significance of the difference in the point of zero charge between rutile and anatase. Advances in Colloid and Interface Science 2002,99 (3),255-264.
    52. Akyol, A.; Yatmaz, H. C; Bayramoglu, M., Photocatalytic decolorization of remazol red RR in aqueous ZnO suspensions. Applied Catalysis B-Environmental 2004,54 (1),19-24.
    53. Jiang, Z. J.; Liu, C. Y., Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere. Journal of Physical Chemistry B 2003,107 (45),12411-12415.
    54. Yogi, C; Kojima, K.; Wada, N.; Tokumoto, H.; Takai, T.; Mizoguchi, T.; Tamiaki, H., Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film. Thin Solid Films 2008,516 (17),5881-5884.
    55. Cheikhou, K.; Tzedakis, T., Electrochemical microreactor for chiral syntheses using the cofactor NADH. Aiche Journal 2008,54 (5),1365-1376.
    56. Panda, S. K.; Dev, A.; Chaudhuri, S., Fabrication and luminescent properties of c-axis oriented ZnO-ZnS core-shell and ZnS nanorod arrays by sulfidation of aligned ZnO nanorod arrays. Journal of Physical Chemistry C2007,111 (13), 5039-5043.
    57. Li, Y. Z.; Zhang, H.; Guo, Z. M.; Han, J. J.; Zhao, X. J.; Zhao, Q. N.; Kim, S. J., Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO2 photocatalyst. Langmuir 2008,24 (15),8351-8357.
    58. Gorska, P.; Zaleska, A.; Hupka, J., Photodegradation of phenol by UV/TiO2 and Vis/N,C-TiO2 processes:Comparative mechanistic and kinetic studies. Separation and Purification Technology 2009,68(1),90-96.
    59. Sounart, T. L.; Liu, J.; Voigt, J. A.; Hsu, J. W. P.; Spoerke, E. D.; Tian, Z.; Jiang, Y. B., Sequential nucleation and growth of complex nanostructured films. Advanced Functional Materials 2006,16(3),335-344.
    60. Liu, Z.; Zhang, X.; Nishimoto, S.; Jin, M.; Tryk, D. A.; Murakami, T.; Fujishima, A., Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. Journal of Physical Chemistry C 2008,112 (1),253-259.
    61. Serpone, N.; Maruthamuthu, P.; Pichat, P.; Pelizzetti, E.; Hidaka, H., Exploiting the interparticle electron-transfer process in the photocatalyzed oxidation of phenol,2-chlorophenol and pentachlorophenol-chemical evidence for electron and hole transfer between coupled semiconductors. Journal of Photochemistry and Photobiology A-Chemistry 1995,85 (3),247-255.
    1. Graves, J. D.; Krebs, E. G, Protein phosphorylation and signal transduction. Pharmacology& Therapeutics 1999,82 (2-3),111-121.
    2. Michael J. Hubbard, P. C, On target with a new mechanism for the regulation of protein phosphorylation. Trends in Biochemical Sciences 1993,18 (5), 172-177.
    3. Collins, M. O.; Yu, L.; Choudhary, J. S., Analysis of protein phosphorylation on a proteome-scale. Proteomics 2007,7 (16),2751-2768.
    4. Mann, M.; Jensen, O. N., Proteomic analysis of post-translational modifications. Nature Biotechnology 2003,21 (3),255-261.
    5. Garcia, B. A.; Shabanowitz, J.; Hunt, D. F., Analysis of protein phosphorylation by mass spectrometry. Methods 2005,35 (3),256-264.
    6. Kweon, H. K.; Hakansson, K., Metal oxide-based enrichment combined with gas-phase ion-electron reactions for improved mass spectrometric characterization of protein phosphorylation. Journal of Proteome Research 2008,7 (2),749-755.
    7. McLachlin, D. T.; Chait, B. T., Analysis of phosphorylated proteins and peptides by mass spectrometry. Current Opinion in Chemical Biology 2001,5 (5),591-602.
    8. Dunn, J. D.; Igrisan, E. A.; Palumbo, A. M.; Reid, G. E.; Bruening, M. L., Phosphopeptide enrichment using MALDI plates modified with high-capacity polymer brushes. Analytical Chemistry 2008,80 (15),5727-5735.
    9. Reinders, J.; Sickmann, A., State-of-the-art in phosphoproteomics. Proteomics 2005,5 (16),4052-4061.
    10. Thingholm, T. E.; Jensen, O. N.; Robinson, P. J.; Larsen, M. R., SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Molecular& Cellular Proteomics 2008,7 (4),661-671.
    11. Villen, J.; Gygi, S. P., The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nature Protocols 2008,3 (10), 1630-1638.
    12. Tan, F.; Zhang, Y.; Mi, W.; Wang, J.; Wei, J.; Cai, Y.; Qian, X., Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver. Journal of Proteome Research 2008,7(3),1078-1087.
    13. Novotna, L.; Hruby, M.; Benes, M. J.; Kucerova, Z., Immobilized metal affinity chromatography of phosphorylated proteins using high performance sorbents. Chromatographia 2008,68 (5-6),381-386.
    14. Novotna, L.; Hruby, M.; Benes, M. J.; Kucerova, Z., Study of pepsin phosphorylation using immobilized metal affinity chromatography. Journal of Separation Science 2008,31 (10),1662-1668.
    15. Haydon, C. E.; Eyers, P. A.; Aveline-Wolf, L. D.; Resing, K. A.; Maller, J. L.; Ahn, N. G, Identification of novel phosphorylation sites on Xenopus laevis aurora A and analysis of phosphopeptide enrichment by immobilized metal-affinity chromatography. Molecular& Cellular Proteomics 2003,2 (10), 1055-1067.
    16. Xu, X. Q.; Deng, C. H.; Gao, M. X.; Yu, W. J.; Yang, P. Y; Zhang, X. M., Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Advanced Materials 2006,18 (24),3289-3293.
    17. Kaur-Atwal, G; Weston, D. J.; Bonner, P. L. R.; Crosland, S.; Green, P. S.; Creaser, C. S., Immobilised metal affinity chromatography for the analysis of proteins and peptides. Current Analytical Chemistry 2008,4 (2),127-135.
    18. Bakry, R.; Gjerde, D.; Bonn, G. K., Derivatized nanoparticle coated capillaries for purification and micro-extraction of proteins and peptides. Journal of Proteome Research 2006,5 (6),1321-1331.
    19. Pan, C. S.; Ye, M. L.; Liu, Y. G; Feng, S.; Jiang, X. G; Han, G H.; Zhu, J. J.; Zou, H. F., Enrichment of phosphopeptides by Fe3+-immobilized mesoporous nanoparticles of MCM-41 for MALDI and nano-LC-MS/MS analysis. Journal of Proteome Research 2006,5 (11),3114-3124.
    20. Feng, S.; Ye, M. L.; Zhou, H. J.; Jiang, X. G; Jiang, X. N.; Zou, H. F.; Gong, B. L., Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Molecular& Cellular Proteomics 2007,6 (9),1656-1665.
    21. Li, Y; Qi, D. W.; Deng, C. H.; Yang, P. Y; Zhang, X. M., Cerium ion-chelated magnetic silica microspheres for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Journal of Proteome Research 2008,7(4),1767-1777.
    22. Zhou, H. J.; Ye, M. L.; Dong, J.; Han, G. H.; Jiang, X. N.; Wu, R. N.; Zou, H. F., Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. Journal of Proteome Research 2008,7(9),3957-3967.
    23. Yu, Z. Y; Han, G H.; Sun, S. T.; Jiang, X. N.; Chen, R.; Wang, F. J.; Wu, R. A.; Ye, M. L.; Zou, H. F., Preparation of monodisperse immobilized Ti4+affinity chromatography microspheres for specific enrichment of phosphopeptides. Analytica ChimicaActa 2009,636 (1),34-41.
    24. Wolschin, F.; Wienkoop, S.; Weckwerth, W., Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 2005,5 (17),4389-4397.
    25. Kweon, H. K.; Hakansson, K., Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Analytical Chemistry 2006,78(6),1743-1749.
    26. Cuccurullo, M.; Schlosser, G; Cacace, G; Malorni, L.; Pocsfalvi, G, Identification of phosphoproteins and determination of phosphorylation sites by zirconium dioxide enrichment and SELDI-MS/MS. Journal of Mass Spectrometry 2007,42 (8),1069-1078.
    27. Zhou, H. J.; Tian, R. J.; Ye, M. L.; Xu, S. Y; Feng, S.; Pan, C. S.; Jiang, X. G; Li, X.; Zou, H. F., Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis 2007,28 (13),2201-2215.
    28. Rainer, M.; Sonderegger, H.; Bakry, R.; Huck, C. W.; Morandell, S.; Huber, L. A.; Gjerde, D. T.; Bonn, G. K., Analysis of protein phosphorylation by monolithic extraction columns based on poly(divinylbenzene) containing embedded titanium dioxide and zirconium dioxide nano-powders. Proteomics 2008,8 (21),4593-4602.
    29. Thingholm, T. E.; Jorgensen, T. J. D.; Jensen, O. N.; Larsen, M. R., Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nature Protocols 2006,1 (4),1929-1935.
    30. Torta, F.; Fusi, M.; Casari, C. S.; Bottani, C. E.; Bachi, A., Titanium dioxide coated MALDI plate for on target analysis of phosphopeptides. Journal of Proteome Research 2009,8 (4),1932-1942.
    31. Cantin, G. T.; Shock, T. R.; Park, S. K.; Madhani, H. D.; Yates, J. R., Optimizing TiO2-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry. Analytical Chemistry 2007,79 (12),4666-4673.
    32. Hsieh, H. C; Sheu, C; Shi, F. K.; Li, D. T., Development of a titanium dioxide nanoparticle pipette-tip for the selective enrichment of phosphorylated peptides. Journal of Chromatography A 2007,1165 (1-2),128-135.
    33. Pinkse, M. W. H.; Mohammed, S.; Gouw, L. W.; van Breukelen, B.; Vos, H. R. Heck, A. J. R., Highly robust, automated, and sensitive on line TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. Journal of Proteome Research 2008,7 (2),687-697.
    34. Schmidt, A.; Csaszar, E.; Ammerer, G; Mechtler, K., Enhanced detection and identification of multiply phosphorylated peptides using TiO2 enrichment in combination with MALDI TOF/TOF MS. Proteomics 2008,8 (21), 4577-4592.
    35. Bi, H. Y.; Qiao, L.; Busnel, J. M.; Devaud, V.; Liu, B. H.; Girault, H. H., TiO2 printed aluminum foil:Single-use film for a laser desorption/ionization target plate. Analytical Chemistry 2009,81 (3),1177-1183.
    36. Wan, J. J.; Qian, K.; Qiao, L.; Wang, Y. H.; Kong, J. L.; Yang, P. Y; Liu, B. H.; Yu, C. Z., TiO2-modified macroporous silica foams for advanced enrichment of multi-phosphorylated peptides. Chemistry-a European Journal 2009,15 (11),2504-2508.
    37. Sturm, M.; Leitner, A.; Smatt, J. H.; Linden, M.; Lindner, W., Tin dioxide microspheres as a promising material for phosphopeptide enrichment prior to liquid chromatography-(tandem) mass spectrometry analysis. Advanced Functional Materials 2008,18 (16),2381-2389.
    38. Ficarro, S. B.; Parikh, J. R.; Blank, N. C; Marto, J. A., Niobium(V) oxide (Nb2O5):Application to phosphoproteomics. Analytical Chemistry 2008,80 (12),4606-4613.
    39. Yan, J. Y; Li, X. L.; Cheng, S. Y; Ke, Y. X.; Liang, X. M., Facile synthesis of titania-zirconia monodisperse microspheres and application for phosphopeptides enrichment. Chemical Communications 2009, (20), 2929-2931.
    40. Li, Y; Wu, J. S.; Qi, D. W; Xu, X. Q.; Deng, C. H.; Yang, P. Y; Zhang, X. M., Novel approach for the synthesis of Fe3O4@TiO2 core-shell microspheres and their application to the highly specific capture of phosphopeptides for MALDI-TOF MS analysis. Chemical Communications 2008, (5),564-566.
    41. Li, Y; Xu, X. Q.; Qi, D. W; Deng, C. H.; Yang, P. Y; Zhang, X. M., Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. Journal ofProteome Research 2008,7 (6),2526-2538.
    42. Li, Y; Leng, T. H.; Lin, H. Q.; Deng, C. H.; Xu, X. Q.; Yao, N.; Yang, P. Y; Zhang, X. M., Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. Journal ofProteome Research 2007,6 (11),4498-4510.
    43. Wei, J. Y; Zhang, Y. J.; Wang, J. L.; Tan, F.; Liu, J. F.; Cai, Y; Qian, X. H., Highly efficient enrichment of phosphopeptides by magnetic nanoparticles coated with zirconium phosphonate for phosphoproteome analysis. Rapid Communications in Mass Spectrometry 2008,22 (7),1069-1080.
    44. Qi, D. W.; Lu, J.; Deng, C. H.; Zhang, X. M., Magnetically responsive Fe3O4@C@SnO2 core-shell microspheres:synthesis, characterization and application in phosphoproteomics. Journal of Physical Chemistry C 2009,113 (36),15854-15861.
    45. Li, Y.; Liu, Y.; Tang, J.; Lin, H.; Yao, N.; Shen, X.; Deng, C.; Yang, P.; Zhang, X., Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. Journal of Chromatography A 2007,1172 (1),57-71.
    46. Liu, J. C.; Tsai, P. J.; Lee, Y. C.; Chen, Y. C., Affinity capture of uropathogenic Escherichia coli using pigeon ovalbumin-bound Fe3O4@Al2O3 magnetic nanoparticles. Analytical Chemistry 2008,80 (14),5425-5432.
    47. Chen, C. T.; Chen, W. Y.; Tsai, P. J.; Chien, K. Y.; Yu, J. S.; Chen, Y. C., Rapid enrichment of phosphopeptides and phosphoproteins from complex samples using magnetic particles coated with alumina as the concentrating probes for MALDI MS analysis. Journal of Proteome Research 2007,6 (1),316-325.
    48. Lin, H. Y.; Chen, W. Y.; Chen, Y. C., Iron oxide/tantalum oxide core-shell magnetic nanoparticle-based microwave-assisted extraction for phosphopeptide enrichment from complex samples for MALDI MS analysis. Analytical and Bioanalytical Chemistry 2009,394 (8),2129-2136.
    49. Qi, D. W.; Lu, J.; Deng, C. H.; Zhang, X. M., Development of core-shell structure Fe3O4@Ta2O5 microspheres for selective enrichment of phosphopeptides for mass spectrometry analysis. Journal of Chromatography A 2009,1216 (29),5533-5539.
    50. Lin, H. Y.; Chen, W. Y.; Chen, Y. C., Iron oxide/niobium oxide core-shell magnetic nanoparticle-based phosphopeptide enrichment from biological samples for MALDI MS analysis. Journal of Biomedical Nanotechnology 2009,5 (2),215-223.
    51. Jensen, S. S.; Larsen, M. R., Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Communications in Mass Spectrometry 2007,21 (22),3635-3645.
    52. Larsen, M. R.; Thingholm, T. E.; Jensen, O. N.; Roepstorff, F.; Jorgensen, T. J. D., Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Molecular& Cellular Proteomics 2005,4 (7),873-886.
    53. Mazanek, M.; Mituloviae, G; Herzog, F.; Stingl, C; Hutchins, J. R. A.; Peters, J. M.; Mechtler, K., Titanium dioxide as a chemo-affinity solid phase in offline phosphopeptide chromatography prior to HPLC-MS/MS analysis. Nature Protocols 2007,2 (5),1059-U1.
    54. Auroux, P. A.; Iossifidis, D.; Reyes, D. R.; Manz, A., Micro total analysis systems.2. Analytical standard operations and applications. Analytical Chemistry 2002,74 (12),2637-2652.
    55. Tudos, A. J.; Besselink, G. A. J.; Schasfoort, R. B. M., Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab on a Chip 2001,1 (2),83-95.
    56. Nagrath, S.; Sequist, L. V.; Maheswaran, S.; Bell, D. W.; Irimia, D.; Ulkus, L.; Smith, M. R.; Kwak, E. L.; Digumarthy, S.; Muzikansky, A.; Ryan, P.; Balis, U. J.; Tompkins, R. G; Haber, D. A.; Toner, M., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007,450 (7173),1235-U10.
    57. Kaji, N.; Tezuka, Y.; Takamura, Y; Ueda, M.; Nishimoto, T.; Nakanishi, H.; Horiike, Y; Baba, Y, Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field. Analytical Chemistry 2004,76 (1), 15-22.
    58. He, Z. Y; Li, Y G; Zhang, Q. H.; Wang, H. Z., Capillary microchannel-based microreactors with highly durable ZnO/TiO2 nanorod arrays for rapid, high efficiency and continuous-flow photocatalysis. Applied Catalysis B-Environmental 2010,93 (3-4),376-382.
    59. Kim, S. M.; Lee, S. H.; Suh, K. Y., Cell research with physically modified microfluidic channels:A review. Lab on a Chip 2008,8 (7),1015-1023.
    60. Sugiyama, N.; Masuda, T.; Shinoda, K.; Nakamura, A.; Tomita, M.; Ishihama, Y., Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Molecular& Cellular Proteomics 2001,6(6),1103-1109.
    61. Kyono, Y; Sugiyama, N.; Imami, K.; Tomita, M.; Ishihama, Y, Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography. Journal of Proteome Research 2008,7(10),4585-4593.
    62. Ahn, Y H.; Ji, E. S.; Lee, J. Y; Cho, K.; Yoo, J. S., Coupling of TiO2-mediated enrichment and on-bead guanidinoethanethiol labeling for effective phosphopeptide analysis by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry 2007,21 (24),3987-3994.
    63. Shojaei-Zadeh, S.; Anna, S. L., Role of surface anchoring and geometric confinement on focal conic textures in smectic-A liquid crystals. Langmuir 2006,22 (24),9986-9993.
    64. Kenis, P. J. A.; Ismagilov, R. F.; Whitesides, G. M., Microfabrication inside capillaries using multiphase laminar flow patterning. Science 1999,285 (5424), 83-85.
    1. Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M., Directed assembly of one-dimensional nanostructures into functional networks. Science 2001,291 (5504),630-633.
    2. Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L., Direct-current nanogenerator driven by ultrasonic waves. Science 2007,316 (5821),102-105.
    3. Wang, Z. L.; Song, J. H., Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006,312 (5771),242-246.
    4. Schrier, J.; Demchenko, D. O.; Wang, L. W., Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Letters 2007,7(8),2377-2382.
    5. Buscaglia, M. T.; Buscaglia, V.; Curecheriu, L.; Postolache, P.; Mitoseriu, L.; Ianculescu, A. C.; Vasile, B. S.; Zhe, Z.; Nanni, P., Fe2O3@BaTiO3 core-shell particles as reactive precursors for the preparation of multifunctional composites containing different magnetic phases. Chemistry of Materials 2010, 22 (16),4740-4748.
    6. Guan, J. G.; Mou, F. Z.; Sun, Z. G.; Shi, W. D., Preparation of hollow spheres with controllable interior structures by heterogeneous contraction. Chemical Communications 2010,46(35),6605-6607.
    7. Sanles-Sobrido, M.; Banobre-Lopez, M.; Salgueirino, V.; Correa-Duarte, M. A.; Rodriguez-Gonzalez, B.; Rivas, J.; Liz-Marzan, L. M., Tailoring the magnetic properties of nickel nanoshells through controlled chemical growth. Journal of Materials Chemistry 2010,20 (35),7360-7365.
    8. Zhai, J.; Tao, X.; Pu, Y. A.; Zeng, X. F.; Chen, J. F., Core/shell structured ZnO/SiO2 nanoparticles:Preparation, characterization and photocatalytic property. Applied Surface Science 2010,257 (2),393-397.
    9. Auroux, P. A.; Iossifidis, D.; Reyes, D. R.; Manz, A., Micro total analysis systems.2. Analytical standard operations and applications. Analytical Chemistry 2002,74 (12),2637-2652.
    10. Tarhan, M. C; Yokokawa, R.; Bottier, C; Collard, D.; Fujita, H., A nano-needle/microtubule composite gliding on a kinesin-coated surface for target molecule transport. Lab on a Chip 2010,10 (1),86-91.
    11. Kim, S. M.; Lee, S. H.; Suh, K. Y., Cell research with physically modified microfluidic channels:A review. Lab on a Chip 2008,8 (7),1015-1023.
    12. Law, M.; Greene, L. E.; Johnson, J. C; Saykally, R.; Yang, P. D., Nanowire dye-sensitized solar cells. Nature Materials 2005,4 (6),455-459.
    13. Huang, M. H.; Wu, Y; Feick, H.; Tran, N.; Weber, E.; Yang, P. D., Catalytic growth of zinc oxide nanowires by vapor transport. Advanced Materials 2001, 13(2),113-116.
    14. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y; Kind, H.; Weber, E.; Russo, R.; Yang, P. D., Room-temperature ultraviolet nanowire nanolasers. Science 2001,292 (5523),1897-1899.
    15. Fan, X.; Zhang, M. L.; Shafiq, I.; Zhang, W. J.; Lee, C. S.; Lee, S. T., ZnS/ZnO heterojunction nanoribbons. Advanced Materials 2009,21 (23), 2393-2396.
    16. Mahtab, R.; Sealey, S. M.; Hunyadi, S. E.; Kinard, B.; Ray, T.; Murphy, C. J., Influence of the nature of quantum dot surface cations on interactions with DNA. Journal of Inorganic Biochemistry 2007,101 (4),559-564.
    17. Willner, I.; Willner, B., Biomolecule-based nanomaterials and nanostructures. Nano Letters 2010,10 (10),3805-3815.
    18. Shiang, Y. C; Huang, C. C; Wang, T. H.; Chien, C. W; Chang, H. T., Aptamer-conjugated nanoparticles efficiently control the activity of thrombin. Advanced Functional Materials 2010,20 (18),3175-3182.
    19. Preston, T. C; Signorell, R., Formation of gold particles on nanoscale toroidal DNA assembled with bis(ethylenediamine)gold(III). Langmuir 2010,26 (12), 10250-10253.
    20. Bi, H. Y; Meng, S.; Li, Y; Guo, K.; Chen, Y P.; Kong, J. L; Yang, P. Y; Zhong, W; Liu, B. H., Deposition of PEG onto PMMA microchannel surface to minimize nonspecific adsorption. Lab on a Chip 2006,6 (6),769-775.
    21. Bonanni, A.; del Valle, M., Use of nanomaterials for impedimetric DNA sensors:A review. Analytica ChimicaActa 2010,678 (1),7-17.
    22. Liu, F.; Choi, J. Y.; Seo, T. S., Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosensors and Bioelectronics 2010,25 (10),2361-2365.
    23. Dutta, D.; Sundaram, S. K.; Teeguarden, J. G; Riley, B. J.; Fifield, L. S.; Jacobs, J. M.; Addleman, S. R.; Kaysen, G. A.; Moudgil, B. M.; Weber, T. J., Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicological Sciences 2007,100 (1),303-315.
    24. Wang, H. X.; Meng, S.; Guo, K.; Liu, Y; Yang, P. Y; Zhong, W; Liu, B. H., Microfluidic immunosensor based on stable antibody-patterned surface in PMMA microchip. Electrochemistry Communications 2008,10 (3),447-450.
    25. Thingholm, T. E.; Jorgensen, T. J. D.; Jensen, O. N.; Larsen, M. R., Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nature Protocols 2006,1 (4),1929-1935.
    26. Rainer, M.; Sonderegger, H.; Bakry, R.; Huck, C. W.; Morandell, S.; Huber, L. A.; Gjerde, D. T.; Bonn, G. K., Analysis of protein phosphorylation by monolithic extraction columns based on poly(divinylbenzene) containing embedded titanium dioxide and zirconium dioxide nano-powders. Proteomics 2008,8 (21),4593-4602.
    27. Liang, J. G.; Ai, X. P.; He, Z. K.; Pang, D. W, Functionalized CdSe quantum dots as selective silver ion chemodosimeter. Analyst 2004,129 (7),619-622.
    28. Gonzalez-Bejar, M.; Frenette, M.; Jorge, L.; Scaiano, J. C., 7-Mercapto-4-methylcoumarin as a reporter of thiol binding to the CdSe quantum dot surface. Chemical Communications 2009, (22),3202-3204.
    29. Zhu, C. Q.; Zhao, D. H.; Chen, J. L.; Li, Y. X.; Wang, L. Y; Wang, L.; Zhou, Y. Y; Zhuo, S. J.; Wu, Y Q., Application of L-cysteine-capped nano-ZnS as a fluorescence probe for the determination of proteins. Analytical and Bioanalytical Chemistry 2004,378 (3),811-815.
    30. Chen, X. D.; Wang, X. B.; Liu, L.; Yang, D. C; Fan, L., Functionalized semiconductor nanocrystals for ultrasensitive detection of peptides. Analytica ChimicaActa 2005,542 (2),144-150.
    31. Vlckova, B.; Matejka, P.; Simonova, J.; C., K.; Pancoska, P.; Vladimir, B., Surface-enhanced resonance Raman spectra of free base 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin and its silver complex in systems with silver colloid:Direct adsorption in comparison to adsorption via molecular spacer. Journal of Physical Chemistry 1993,97 (38),9719-9729.
    32. Yan, C. L.; Xue, D. F., Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy. Journal of Physical Chemistry B 2006,110 (51),25850-25855.
    33. Dloczik, L.; Engelhardt, R.; Ernst, K.; Fiechter, S.; Sieber, I.; Konenkamp, R., Hexagonal nanotubes of ZnS by chemical conversion of monocrystalline ZnO columns. Applied Physics Letters 2001,78 (23),3687-3689.
    34. Tripathi, G. N. R.; Clements, M., Adsorption of 2-mercaptopyrimidine on silver nanoparticles in water. Journal of Physical Chemistry B 2003,107 (40), 11125-11132.
    35. Joo, S. W.; Han, S. W.; Kim, K., Multilayer formation of 1,2-ethanedithiol on gold:Surface-enhanced Raman scattering and ellipsometry study. Langmuir 2000,16(12),5391-5396.
    36. Ravindran, A.; Singh, A.; Raichur, A. M.; Chandrasekaran, N.; Mukherjee, A., Studies on interaction of colloidal Ag nanoparticles with Bovine Serum Albumin (BSA). Colloids and Surfaces B-Biointerfaces 2010,76 (1),32-37.
    37. Pathak, S.; Choi, S. K.; Arnheim, N.; Thompson, M. E., Hydroxylated quantum dots as luminescent probes for in situ hybridization. Journal of the American Chemical Society2001,123 (17),4103-4104.
    38. Alivisatos, A. P.; Johnsson, K. P.; Peng, X. G; Wilson, T. E.; Loweth, C. J.; Bruchez, M. P.; Schultz, P. G, Organization of'nanocrystal molecules'using DNA. Nature 1996,382 (6592),609-611.
    39. Sondi, I.; Siiman, O.; Koester, S.; Matijevic, E., Preparation of aminodextran-CdS nanoparticle complexes and biologically active antibody-aminodextran-CdS nanoparticle conjugates. Langmuir 2000,16 (7), 3107-3118.
    40. Chan, W. C. W.; Nie, S. M., Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998,281 (5385),2016-2018.
    41. Putz, S. M.; Vogiatzi, F.; Stiewe, T.; Sickmann, A., Malignant transformation in a defined genetic background:proteome changes displayed by 2D-PAGE. Molecular Cancer 2010,9,254-268.
    42. Brandao, A. R.; Barbosa, H. S.; Arruda, M. A. Z., Image analysis of two-dimensional gel electrophoresis for comparative proteomics of transgenic and non-transgenic soybean seeds. Journal of Proteomics 2010,73 (8), 1433-1440.
    43. Weinkauf, M.; Hutter, G; Zimmermann, Y.; Hartmann, E.; Rosenwald, A.; Dreyling, M, Combined RNA-expression and 2D-PAGE-screening identifies comprehensive interaction networks affected after bortezomib or enzastaurin exposure of mantle cell lymphoma. Talanta 2010,80 (4),1539-1544.
    44. Kohler, M.; Franz, S.; Regeniter, A.; Ikonen, A.; Walpurgis, K.; Thomas, A.; Schanzer, W.; Thevis, M, Comparison of the urinary protein patterns of athletes by 2D-gel electrophoresis and mass spectrometry-a pilot study. Drug Testing and Analysis 2009,1 (7-8),382-386.
    45. Dunbar, B.; Elthon, T. E.; Osterman, J. C; Whitaker, B. A.; Wilson, S. B., Identification of plant mitochondrial proteins:A procedure linking two-dimensional gel electrophoresis to protein sequencing from PVDF membranes using a FastBlot cycle. Plant Molecular Biology Reporter 1997, 15(1),46-61.
    46. Addis, M. F.; Tanca, A.; Pagnozzi, D.; Rocca, S.; Uzzau, S.,2-D PAGE and MS analysis of proteins from formalin-fixed, paraffin-embedded tissues. Proteomics 2009,9 (18),4329-4339.
    47. Sleat, D. E.; Lackland, H.; Wang, Y. H.; Sohar, I.; Xiao, G.; Li, H.; Lobel, P., The human brain mannose 6-phosphate glycoproteome:A complex mixture composed of multiple isoforms of many soluble lysosomal proteins. Proteomics 2005,5 (6),1520-1532.
    48. De Angelis, M.; Di Cagno, R.; Minervini, F.; Rizzello, C. G; Gobbetti, M., Two-dimensional electrophoresis and IgE-mediated food allergy. Electrophoresis 2010,31 (13),2126-2136.
    49. Kinoshita, E.; Kinoshita-Kikuta, E.; Koike, T., Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nature Protocols 2009,4 (10),1513-1521.
    50. He, M.; Herr, A. E., Microfluidic polyacrylamide gel electrophoresis with in situ immunoblotting for native protein analysis. Analytical Chemistry 2009,81 (19),8177-8184.
    51. Kouguchi, H.; Matsumoto, J.; Katoh, Y.; Suzuki, T.; Oku, Y; Yagi, K., Echinococcus multilocularis:Two-dimensional Western blotting method for the identification and expression analysis of immunogenic proteins in infected dogs. ExperimentalParasitology 2010,124 (2),238-243.
    52. Klein, J., Probing the interactions of proteins and nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 2007,104 (7),2029-2030.
    53. Nie, S. M.; Emery, S. R., Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997,275 (5303),1102-1106.
    54. Kneipp, J.; Kneipp, H.; Kneipp, K., SERS-A single-molecule and nanoscale tool forbioanalytics. Chemical Society Reviews 2008,37 (5),1052-1060.
    55. Sun, C. X.; Wu, X.; Ding, H. H.; Zhao, L. L.; Wang, F.; Yang, J. H.; Liu, X. Y, The fluorescence enhancement of the protein adsorbed on the surface of Ag nanoparticle. Journal of Fluorescence 2009,19 (1),111-117.
    56. Shao, M. W.; Lu, L.; Wang, H.; Luo, S. Z.; Ma, D. D. D., Microfabrication of a new sensor based on silver and silicon nanomaterials, and its application to the enrichment and detection of bovine serum albumin via surface-enhanced Raman scattering. Microchimica Acta 2009,164 (1-2),157-160.
    57. Liao, Y H.; Tseng, C. Y; Chen, W. L., Structural characterization of dioscorin, the major tuber protein of yams, by near infrared Raman spectroscopy. In Journal of Physics:Conference Series Eds.2006; Vol.28, pp 119-122.
    58. Phillips, D. L.; Jie, X.; Liu, H. J.; Chong, C. K.; Corke, H., Raman spectroscopic determination of the degree of succinate in modified waxy maize starches. Analytical Letters 1999,32 (13),2703-2711.
    59. Samek,O.; Telle, H. H.; Harris, L. G; Bloomfield, M.; Mack, D., Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections. Laser Physics Letters 2008,5 (6),465-470.
    60. Podstawka, E.; Niaura, G; Proniewicz, L. M., Potential-dependent studies on the interaction between phenylalanine-substituted bombesin fragments and roughened Ag, Au, and Cu electrode surfaces. Journal of Physical Chemistry B 2010,114 (2),1010-1029.
    61. Vassiliev, I. R.; Offenbacher, A. R.; Barry, B. A., Redox-active tyrosine residues in pentapeptides. Journal of Physical Chemistry B 2005,109 (48), 23077-23085.
    62. Xu, M.; Shashilov, V.; Lednev, I. K., Probing the cross-beta core structure of amyloid fibrils by hydrogen-deuterium exchange deep ultraviolet resonance Raman Spectroscopy. Journal of the American Chemical Society 2007,129 (36),11002-11003.
    63. Jacob, C. R.; Luber, S.; Reiher, M., Understanding the signatures of secondary-structure elements in proteins with raman optical activity spectroscopy. Chemistry-a European Journal 2009,15 (48),13491-13508.
    64. Kawasaki, H.; Akira, T.; Watanabe, T.; Nozaki, K.; Yonezawa, T.; Arakawa, R., Sulfonate group-modified FePtCu nanoparticles as a selective probe for LDI-MS analysis of oligopeptides from a peptide mixture and human serum proteins. Analytical andBioanalytical Chemistry 2009,395 (5),1423-1431.
    65. Wilhelm, C; Gazeau, F.; Roger, J.; Pons, J. N.; Salis, M. F.; Perzynski, R.; Bacri, J. C, Binding of biological effectors on magnetic nanoparticles measured by a magnetically induced transient birefringence experiment. Physical Review E 2002,65 (3),9.
    66. Qing, L. S.; Xue, Y; Zheng, Y; Xiong, J.; Liao, X.; Ding, L. S.; Li, B. G; Liu, Y. M., Ligand fishing from Dioscorea nipponica extract using human serum albumin functionalized magnetic nanoparticles. Journal of Chromatography A 2010,1217 (28),4663-4668.
    67. Hong, C. Y; Chen, Y. C, Selective enrichment of ochratoxin A using human serum albumin bound magnetic beads as the concentrating probes for capillary electrophoresis/electrospray ionization-mass spectrometric analysis. Journal of Chromatography A 2007,1159 (1-2),250-255.
    68. Thode, K.; Luck, M.; Semmler, W.; Muller, R. H.; Kresse, M., Determination of plasma protein adsorption on magnetic iron oxides:Sample preparation. Pharmaceutical Research 1997,14 (7),905-910.
    69. Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.; McNeil, S. E., Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Advanced Drug Delivery Reviews 2009,61 (6),428-437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700