用户名: 密码: 验证码:
青岛近海两种生态环境可培养细菌多样性研究及3株海洋新菌的分类鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋是全球生命支持系统的基本组成部分,是实现人类可持续发展的重要资源基础,其中蕴含着丰富的微生物资源。海洋微生物对于生态系统中的物质能量循环以及生态系统多样性的维持有着非常重要的作用。海洋微生物无论是其物种类群还是新陈代谢途径及产物,都存在着丰富的多样性,因而蕴藏着丰富的新资源。研究调查显示,随着科技进步和经济发展,人类在开发利用海洋资源的同时,也对海洋环境和海洋生物资源造成了严重危害,某些海域生态系统已经被破坏殆尽。为了综合合理地、可持续地利用海洋微生物资源,避免资源浪费,对海洋微生物的遗传特征、生理生态和代谢活性产物等的研究具有重要的理论意义和实际价值。本论文对青岛近海两种特殊生态环境中的可培养海洋细菌多样性进行了研究,并从表型特征、化学分类指标和遗传特征等多项分类法对3株海洋新菌进行了分类鉴定。
     为研究与生物膜相关的微生物多样性,在浒苔爆发期间的青岛近海海域,选取黏管藻、裙带菜、囊藻和浒苔等4种分布较广的大型海藻,使用2216E、海水R2A和TCBS三种培养基分离其附生海洋细菌,共分离纯化得到99株海洋细菌。16SrDNA序列分析表明,变形菌门(Proteobacteria)细菌在数量、种类等方面,均占主导地位。这些菌株绝大多数为变形菌门的-变形菌纲(-Proteobacteria,94株)和-变形菌纲(α-Proteobacteria,3株),有1株为放线菌门(Actinobacteria),1株属于厚壁菌门(Firmicutes)。其中丰度最高的3个属分别为假交替单胞菌属(Pseudoalteromonas,22株)、弧菌属(Vibrio,20株)和盐单胞菌属(Halomonas,15株),其次为食烷菌属(Alcanivorax,9株)、肠杆菌属(Enterobacter,8株)、假单胞菌属(Pseudomonas,7株)、气单胞菌属(Aeromonas,5株)、交替单胞菌属(Alteromonas,4株)、赤杆菌属(Erythrobacter,1株)、陆丹氏菌属(Loktanella,1株)、嗜冷单胞菌属(Psychromonas,1株),埃希氏菌属(Escherichia,1株)、海单胞菌属(Marinomonas,1株)、假鲁杰氏菌属(Pseudoruegeria,1株)、发光杆菌属(Photobacterium,1株)、短小杆菌属(Curtobacterium,1株)和芽孢杆菌属(Bacillus,1株)。表明在赤潮爆发时期,与海藻共附生的海洋细菌类群具有丰富的多样性,但其在优势菌群、群落结构组成方面与该地区生态系统正常时期有所不同。
     利用传统平板培养法,从青岛近海文昌鱼保护区底层海水样品,分离获得213株海洋细菌,选取其中33株代表性细菌进行分类鉴定。其16S rDNA序列分析表明,γ-变形菌纲细菌为这一地区主要细菌类群,其中弧菌属13株,盐单胞菌属7株,假单胞菌属4株,假交替单胞菌属3株,嗜冷单胞菌属1株,海单胞菌属1株,寡养单胞菌属(Stenotrophomonas)1株。另有2株细菌属于α-变形菌纲的褐杆菌属(Phaeobacter),1株细菌来自厚壁菌门的盐水球菌属(Salinicoccus)。
     利用传统平板培养法,以海水R2A培养基,从青岛近海文昌鱼保护区沉积物中分离得到一株革兰氏阴性、严格需氧的海洋细菌JYr2~T,并对其进行分类鉴定。结果显示,该细菌呈弯曲杆状,具鞭毛,有运动性,最适生长温度为37C,盐度为5~6%,pH为8~9;具有氧化酶、过氧化氢酶活性;主要脂肪酸为C16:0(30.2%)、C16:1ω7c和/或C16:1ω6c (34.6%)。该菌DNA的G+C含量为42.7%,细胞呼吸醌为泛醌8(Q-8,100%),含有5种极性脂,包括磷脂酰甘油(PG)、磷脂酰乙醇胺(PE)、氨磷脂(PN)和两种氨基脂(AL1和AL2)。JYr2~T与深海单胞菌属(Thalassomonas)中的标准菌Thalassomonas viridans DSM13754T的同源相似度为95.17%,其次与Colwellia polaris537T相似性为95.02%,另外与该科其他细菌的同源相似性均低于94.90%。构建的系统进化树显示,JYr2~T属于γ-变形菌纲的科威尔氏菌科,但并不能明确的被归类于深海单胞菌属和科威尔氏菌属两个已知属中,形成了一个较深的独立分支。根据该菌在表型特征、化学分类特征和系统发生分析上所表现出来的特殊性,认定该菌为科威尔氏菌科中的一个新属新种,命名为沉积物滨海弯菌(Litorilituus sediminis sp. nov.),菌株保藏号分别为CGMCC1.10794~T和JCM17549~T。
     利用传统平板法,以海水R2A培养基,从青岛近海文昌鱼保护区的底层沉积物中,分离出一株革兰氏阴性、严格好氧的海洋细菌JYr12T,并对其进行分类鉴定。结果显示,该菌呈球杆形,具有周生鞭毛、有运动能力,所需最适生长温度为28C,盐度为2~3%,pH为7;含有的主要脂肪酸为C_(16:0)(28.3%)、 C_(16:1)ω7c和/或C_(16:1)ω6c (34.8%);主要的呼吸醌除大量的泛醌-8(Q-8,90%)之外,还包括一定量的泛醌7(Q-7,7%)。主要的极性脂为双磷脂酰甘油(DPG)、磷脂酰甘油(PG)、磷脂酰乙醇胺(PE)、磷脂(PL1)和糖脂类(GL1)。该新菌DNA的G+C含量为42.3%。JYr12~T与γ-变形菌纲中海洋螺杆菌科(Oceanospirillaceae)和交替单胞菌科(Alteromonadaceae)中各属细菌的16S rDNA的同源相似性最高。依次分别为Thalassolituus oleivorans(91.2%),Oceanospirillum linum(91.0%),Spongiispira norvegica(90.6%),Oceaniserpentilla haliotis(90.5%),Oleispiraantarctica(90.4%),Microbulbifer donghaiensis(90.4%),Microbulbifer hydrolyticus(89.8%),远低于大量实验普遍认可的95%这个区分细菌种属的界限。构建的系统进化树显示,JYr12T与γ-变形菌纲的海洋螺杆菌科有着比交替单胞菌科更近的亲缘关系。经进一步的生理生化和化学分类鉴定,确定JYr12~T属于海洋螺杆菌科,并在其中形成了一个单独的分支类群。根据该菌在表型特征、化学分类特征和系统发生分析上所表现出来的特殊性,认定该菌为γ-变形菌纲海洋螺杆菌科中的一个新属新种,命名为周生滨海短杆菌(Litoribacillus peritrichatus gen. nov. sp. nov.),菌株保藏号分别为CGMCC1.10796T和JCM17551T。
     利用海洋微生物高通量分离培养方法,自青岛近海文昌鱼保护区底层海水中,分离出一株革兰氏阴性、严格好氧的海洋细菌H94~T,并对其进行了分类鉴定。该菌呈杆状,不具有鞭毛,但能够滑动;能够在4C、16C、28C、37C生长,盐度耐受范围为1%~12%, pH耐受范围为6~10;具有脂酶、脲酶、β-半乳糖苷酶、色氨酸脱氨酶活性,能够进行D-葡萄糖发酵;对氯霉素、氨苄青霉素敏感,而对青霉素、链霉素具有抗性;能够氧化还原多种糖类;细胞含有的主要脂肪酸组分有C18:1ω9c (28.18%)、C16:0(22.18%)、C16:1ω9c(15.42%);主要的呼吸醌为泛醌-9(Q-9,91%),另外还含有一定量的泛醌-8(Q-8,9%);该菌DNA的G+C含量为56.2%;H94~T与河氏菌属(Hahella)的16S rDNA具有最近的同源相似性。与该属细菌相似性分别为,Hahella antarctica IMCC3113~T(95.89%)、Hahellachejuensis KCTC2396~T(92.89%)、Hahella ganghwensis FR1050~T(92.18%),而与其他种属的同源相似度均低于92.0%。构建的系统进化树分析显示,H94~T属于γ-变形菌纲的河氏菌属,并形成了一个较深的独立分支。根据该菌在表型特征、化学分类特征和系统发生分析上所表现出来的特殊性,认定该菌为河氏菌属的一个细菌新种,命名为青岛河氏菌(Hahella qingdaonensis sp. nov.),菌种保藏号分别为CGMCC1.10800~T和JCM17555~T。
     从青岛文昌鱼保护区分离获得的海洋新菌JYr2~T和H94~T,均具有较高的脲酶活性,而脲酶是一种高效的尿素分解催化剂,其化学反应速度远高于常规的化学催化剂,参与生物的氮循环利用,且具有潜在的生物工程应用价值。
The ocean, which contains abundant microbial resources, is an essential part of thelife system on earth and is important for achieving sustainable development. Marinemicroorganisms play a key role in maintaining the diversity of marine ecosystem. Thereare considerable diversities in terms of microbial taxa, metabolic pathways and products,which indicate they possess rich novel resources. It has been showed that, with thedevelopment of scientific technology and economy, the marine living resources and theecosystem are seriously destroyed by unreasonable exploitation of marine resources.Therefore, in order to exploit the marine microbial resources comprehensively andsustainably, as well as avoid excessive waste, studies on genetic characteristics,physiological features and metabolites of marine microorganisms seem to be of greattheoretical significance and practical value.
     In this thesis, cultivated marine bacterial diversities have been studied in twospecific ecological environments in Qingdao coastal area, and taxomic positons of threenovel bacteria have been analysed on the basis of phenotypic, chemotaxonomic andphylogenetic distinctiveness.
     To study the bacterial diversity of involved in biofilm, epiphytic microorganismswere isolated from4large seaweeds, i.e., Gloiosiphoniaelin Berkeley, Undariapinnatifida, Colpomenia sinuosa, and Enteromorpha prolifra, collected from theoffshore sea water of Qingdao where the massive green algae (Enteromorpha prolifera)bloom broke out in June2008.99strains were isolated from these seaweeds by usingfour types of culture media, i.e.,2216E, marine R2A, TCBS and marine agar. TheProteobacteria is the dominant Phylum in terms of quantity and species according tothe analysis of16S rDNA sequences, while most of the strains belong to the class of Gamaproteobacteria. There are94strains belong to the Gammaproteobacteria,3strainsbelong to the Alphaproteobacteria,1strain belongs to the Actinobacteria and1strainbelongs to the Firmicutes. There are three genera, Pseudoalteromonas (22), Vibrio (20)and Halomonas (15), taking the hightest possession of abundance ratio. And theremaining strains belong to Alcanivorax (9), Enterobacter (8), Pseudomonas (7),Aeromonas (5), Alteromonas (4), Escherichia (1), Marinomonas (1), Psychromonas (1),Photobacterium (1), Pseudoruegeria (1), Erythrobacter (1), Loktanella (1), Bacillus (1)and Curtobacterium (1). This study showed that there was a rich diversity on thepopulation of marine epiphytic bacterica in the period of green tide outbreak.Nevertheless, the dominant flora and community structure were different from thenormal period of the local ecosystem.
     Conventional cultivation-based method was used to investigate the marine bacterialdiversity from bottom seawater samples of the amphioxus breeding site in Qingdaocoast.33representative strains were selected to be classified from all of the213strains.16S rDNA sequence analysis showed that Gammaproteobacteria take the major role ofmarine bacteria in this region, including Vibrio (13), Halomonas (7), Pseudomonas (4),Pseudoalteromonas (3), Psychromonas (1),Marinomonas (1),Stenotrophomonas (1).And another2strains belong to the Phaeobacter of Alphaproteobacteria.1strainbelongs to the Salinicoccus of Firmicutes.
     A Gram-negative, non-spore-forming, catalase-and oxidase-positive, strictlyaerobic, curved-rod shaped bacterium with polar flagellum, designated strain JYr2~T,was isolated from a sediment sample of an amphioxus breeding zone in the coastalregion of Qingdao, China. The organism grew optimally at37C, pH8-9and in thepresence of5-6%(w/v) NaCl. It contained isoprenoid quinine8(Q-8,100%) as thepredominant isoprenoid quinine. The major fatty acids were C16:0(30.2%) and C16:1ω7cand/or C16:1ω6c (34.6%). Phosphatidylethanolamine (PE), phosphatidylglycerol (PG),aminophospholipid (PN) and two kinds of aminolipid (AL1, AL2) were the majorconstituents of the phospholipids. A phylogenetic analysis based on16S rRNA genesequences indicated that strain JYr2~Tformed a distinct evolutionary lineage within thefamily Colwelliaceae of the class γ-Proteobacteria. It showed <95.0%sequence similarities to all published species of the family, except95.2%to Thalassomonasviridans DSM13754Tand95.02%to Colwellia polaris537T. The G+C content of theDNA was42.7mol%. On the basis of the polyphasic taxonomic study, strain JYr2T(=CGMCC1.10794T=JCM17549T) was considered to represent a novel genus andspecies in γ-Proteobacteria, for which the name Litorilituus sediminis gen. nov. sp. nov.was proposed.
     A novel Gram-negative, strictly aerobic, motile with peritrichous flagella bacterium,designated JYr12~T, was isolated from sediment of an amphioxus breeding zone in thecoastal region of Qingdao, China. Strain JYr12~Tgrew optimally at28C, pH7and in thepresence of2-3%(w/v) NaCl. The major fatty acids were C16:0(28.3%), and C16:1ω7cand/or C16:1ω6c (34.8%). It contained Q-8(90%) and Q-7(7%) as the major isoprenoidquinine. Phosphatidylglycerol (PG), phosphatidylethanolamine (PE) were the majorconstituents of the phospholipids, following with a small amount ofdiphosphatidylglycerol (DPG), an unknown phospholipid (PL1) and an unknownglycolipid (GL1). The G+C content of the DNA was42.3mol%. A phylogeneticanalysis based on16S rRNA gene sequences demonstrated that strain JYr12~Twasunique, showing <95.0%sequence similarities to all published species, i.e.,91.2%toThalassolituus oleivorans,91.0%to Oceanospirillum linum,90.6%to Spongiispiranorvegica,90.5%to Oceaniserpentilla haliotis,90.4%to Oleispira Antarctica,90.4%to Microbulbifer donghaiensis,89.8%to Microbulbifer hydrolyticus. It indicated thatthis isolate formed a distinct evolutionary lineage within the family Oceanospirillaceaeof the class γ-Proteobacteria. On the basis of the polyphasic taxonomic study, strainJYr12~Twas considered to represent a novel genus and species in γ-Proteobacteria, forwhich the name Litoribacillus peritrichatus gen. nov. sp. nov. was proposed. The typestrain was JYr12~T(=CGMCC1.10796~T=JCM17551~T).
     A novel Gram-negative, non-spore-forming, strictly aerobic, irregular-rod shapedbacterium without flagellum, designated strain H94~T, was isolated with thehigh-throughput cultivation method from a bottom sea water sample of an amphioxusbreeding zone in the coastal region of Qingdao, China. The organism can grow at4C,16C,28C,37C, pH6-10and in the presence of1-12%(w/v) NaCl. The major fattyacids were C_(18:1)ω9c (28.18%),C16:0(22.18%)and C16:1ω9c(15.42%). Aphylogenetic analysis based on16S rRNA gene sequences indicated that strain H94~T formed a distinct evolutionary lineage within the genus Hahella of the classγ-Proteobacteria. It showed <97.0%sequence similarities to all published species, i.e.,95.89%to Hahella antarctica,92.89%to Hahella chejuensis,92.18%to Hahellaganghwensis. The G+C content of the DNA was56.2mol%. It contained Q-9(91%)and Q-8(9%) as the major isoprenoid quinine. On the basis of the polyphasictaxonomic study, strain H94~T(=CGMCC1.10794~T=JCM17549~T) was considered torepresent a novel species of the genus Hahella, for which the name Hahellaqingdaonensis sp. nov. was proposed.
     The novel bacteria JYr2~Tand H94~Tare capabale of producing urease, which is ahighly effective urea decomposition catalyst, involved in the biological nitrogenrecycling. Therefore, these two strains possess potential value for biologicalengineering applications.
引文
[1]李冠国,范振刚.海洋生态学.高等教育出版社,2004.8-9.
    [2] Karl, D.M. and Letelier, R. Marine habitats, In: Moselio Schaechter, eds. Encyclopedia ofmicrobiology. Third Edition. Oxforld, UK:Academic Press,2009,258-277.
    [3] Dias, B.B., et al. Modern seawater acidification: the response of foraminifera to high-CO2conditions in the Mediterranean Sea. Journal of the Geological Society.2010,167:843-846.
    [4]杨孝英.海洋热对流的数值模拟及其动力来源的研究:[硕士学位论文].吉林:吉林大学,2002.
    [5]陈佳荣.海水中有机物及其与浮游植物生长的关系[J].海洋科学,1982,6:56-58.
    [6]韩恩山,朱令之,张正斌.海洋中海水/沉积物界面相互作用的研究状况[J].河北工业大学学报,1996,2:53-59.
    [7] Lauro, F.M., et al. The genomic basis of trophic strategy in marine bacteria. PNAS.2009,106:15527-15533.
    [8]张晓华等.海洋微生物学.中国海洋大学出版社,2007.2-4.
    [9] Agogué, H., et al. A survey on bacteria inhabiting the sea surface microlayer of coastalecosystems. FEMS Microbiology Ecology.2005,54:269-280.
    [10]李明,叶德赞,黄翔玲.东太平洋海洋微生物种群多样性初步研究[J].海洋湖沼通报,2008,2:75-81.
    [11]薛超波等.海洋微生物多样性研究进展[J].海洋科学进展,2004,22(3):377-384.
    [12] Finlay, B.J., et al. Protist diversity is different? Protist.2004,155(1):15-22.
    [13] Hedlund, B.P. and Staley, J.T. Microbial endemisms and biogeography. In MicrobialDiversity and Bioprospecting (Bull, A.T., ed.). ASM Press.2004,225-231.
    [14] Whitfield, J. Biogeography: is everything everywhere? Science.2005,310:960-961.
    [15]李越中,陈琦.海洋微生物资源多样性[J].生物工程进展.1998,18(4):34-40.
    [16] Whitman, W.B. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. U. S. A.1998,95:6578–6583.
    [17]任立成,李美英,鲍时翔.海洋古菌多样性研究进展[J].生命科学研究,2006(S1):67~70.
    [18] Makarova, K.S. Comparative genomics of the Archaea (Euryarchaeota): evolution ofconserved protein families, the stable core, and the variable shell. Genome Res.1999,9(7):p.608-28.
    [19] Abreu, C. Crenarchaeota and Euryarchaeota in temperate estuarine sediments. J ApplMicrobiol.2001,90(5): p.713-8.
    [20] Hershberger, K.L. Wide diversity of Crenarchaeota. Nature.1996,384(6608):420.
    [21] Kvist, T. Diversity of thermophilic and non-thermophilic Crenarchaeota at80degrees C.FEMS Microbiol Lett.2005,244(1):p.61-8.
    [22] Callieri, C., et al. Bacteria, archaea, and crenarchaeota in the epilimnion and hypolimnionof a deep holo-oligomictic lake. Appl Environ Microbiol.2009,75(22): p.7298-300.
    [23] Reysenbach, A.L., et al. Microbial diversity at83degrees C in Calcite Springs,Yellowstone National Park: another environment where the Aquificales and "Korarchaeota"coexist. Extremophiles.2000,4(1): p.61-7.
    [24] Reigstad, L.J., et al. Diversity and abundance of Korarchaeota in terrestrial hot springs ofIceland and Kamchatka. ISME J.2010.4(3): p.346-56.
    [25] Hohn, M.J., et al. Detection of16S rDNA sequences representing the novel phylum"Nanoarchaeota": indication for a wide distribution in high temperature biotopes. Syst ApplMicrobiol.2002,25(4): p.551-4.
    [26] Branciamore, S., Gallori, E. and Giulio, M. Di. The basal phylogenetic position ofNanoarchaeum equitans (Nanoarchaeota). Front Biosci.2008,13:p.6886-92.
    [27] Edward, F. DeLong. Oceans of Archaea. ASM News.2003,69:503-511
    [28] Konneke, M., et al., Isolation of an autotrophic ammonia-oxidizing marine archaeon.Nature.2005,437(7058): p.543-6.
    [29] Kim, O.S., et al. Introducing EzTaxon-e: a prokaryotic16S rRNA gene sequence databasewith phylotypes that represent uncultured species. Int J Syst Evol Microbiol.2012,62(Pt3):p.716-21.
    [30] Wilms, R., et al. Deep biosphere-related bacteria within the subsurface of tidal flatsediments. Environ Microbiol.2006,8(4):p.709-19.
    [31] Ghosh, A., et al. Culture independent molecular analysis of bacterial communities in themangrove sediment of Sundarban, India. Saline Systems.2010,17,6(1):1.
    [32] Hara, S., Terauchi, K. and Koike, I. Abundance of viruses in marine waters: assessment byepifluorescence and transmission electron microscopy. Appl Environ Microbiol.1991,57(9): p.2731-4.
    [33] Marie, D., et al. Enumeration of phytoplankton, bacteria, and viruses in marine samples.Curr Protoc Cytom.2001, Chapter11: p. Unit1111.
    [34] Qurashi, A.W. and Sabri, A.N. Biofilm formation in moderately halophilic bacteria isinfluenced by varying salinity levels. J Basic Microbiol.2011.
    [35] Soleimani, S., et al. Evaluation of biofilm performance as a protective barrier againstbiocorrosion using an enzyme electrode. Water Sci Technol.2011,64(8): p.1736-42.
    [36] Liao, L., et al. Microbial diversity in deep-sea sediment from the cobalt-rich crust depositregion in the Pacific Ocean. FEMS Microbiol Ecol.2011,78(3): p.565-85.
    [37] Hirst, A.G., Roff J.C., and Lampitt, R.S. A synthesis of growth rates in marine epipelagicinvertebrate zooplankton. Adv Mar Biol.2003,44: p.1-142.
    [38] Moreira, D., Rodriguez-Valera, F. and Lopez-Garcia, P. Metagenomic analysis ofmesopelagic Antarctic plankton reveals a novel deltaproteobacterial group. Microbiology.2006,152(Pt2): p.505-17.
    [39] Gilg, I.C., et al. Phylogenetic affiliations of mesopelagic acantharia and acantharian-likeenvironmental18S rRNA genes off the southern California coast. Protist.2010,161(2): p.197-211.
    [40] Baltar, F., et al. Microbial functioning and community structure variability in themesopelagic and epipelagic waters of the subtropical NE Atlantic. Appl Environ Microbiol.2012.
    [41]李艳华,张利平.海洋微生物资源的开发与利用[J].微生物学通报,2003,30:113-114.
    [42] Irianto, A. and Austin, B. Probiotics in aquaculture. Journal of Fish Diseases.2002,25:633-642.
    [43] Jaysankar, De., Sarkar, A., and Ramaiah, N. Bioremediation of toxic substances by mercuryresistant marine bacteria. Ecotoxicology.2006,15:385-389.
    [44] Matsuda, M., et al. Structural revision of sulfated polysaccharide B-1isolated from amarine Pseudomonas species and its cytotoxic activity against human cancer cell lines.Marine Biotechnology.2003,5:13-19.
    [45] Miyasaka, T., Asami, H., and Watanabe, K. Impacts of bioremediation schemes on bacterialpopulation in naphthalene-contaminated marine sediments. Biodegradation.2006,17:227-235.
    [46] Newman, D.J. and Hill, R.T. New drugs from marine microbes: the tide is turning. Journalof Industrial Microbiology and Biotechnology.2006,33:539-544.
    [47] Schweder, T., Lindequist, U. and Lalk, M. Screening for new metabolites from marinemicroorganisms. advances in biochemical Engineering. Biotechnology.2005,96:1-48.
    [48] Joint, I., Muhling, M. and Querellou, J. Culturing marine bacteria-an essential prerequisitefor biodiscovery. Microb Biotechnol.2010,3(5): p.564-75.
    [49] Kopke, B., et al. Microbial diversity in coastal subsurface sediments: a cultivation approachusing various electron acceptors and substrate gradients. Appl Environ Microbiol.2005,71(12): p.7819-30.
    [50]张秀明,张晓华.海洋微生物培养新技术的研究进展[J].海洋科学.2009,33(6):99-104.
    [51] Phung, N.T., et al. Analysis of microbial diversity in oligotrophic microbial fuel cells using16S rDNA sequences. FEMS Microbiol Lett.2004,233(1): p.77-82.
    [52] Kuznetsov, S.I., Dubinina, G.A. and Lapteva, N.A. Biology of oligotrophic bacteria. AnnuRev Microbiol.1979,33: p.377-87.
    [53] Hutz, A., Schubert, K. and Overmann, J. Thalassospira sp. isolated from the oligotrophiceastern Mediterranean Sea exhibits chemotaxis toward inorganic phosphate duringstarvation. Appl Environ Microbiol.2011,77(13): p.4412-21.
    [54] Williams, H.R., et al. Differential localization and bacteriostasis of Vibrio campbelliiamong tissues of the Eastern oyster, Crassostrea virginica. Dev Comp Immunol.2009,33(4): p.592-600.
    [55] Ding, L., Su, X. and Yokota, A. Research progress of VBNC bacteria--a review. Wei ShengWu Xue Bao.2011,51(7): p.858-62.
    [56] Trevors, J.T. Viable but non-culturable (VBNC) bacteria: Gene expression in planktonicand biofilm cells. J Microbiol Methods.2011,86(2): p.266-73.
    [57] Rappé, M. S. and Giovannoni, S. J. The uncultured microbial majority. Annu Rev ofMicrobiol.2003,57:369–394.
    [58] Sverdlov, E.D.20years of the journal "Molecular Genetics, Microbiology and Virology".Mol Gen Mikrobiol Virusol.2003(1): p.3-5.
    [59] Jannes, G. and De Vos, D. A review of current and future molecular diagnostic tests for usein the microbiology laboratory. Methods Mol Biol.2006,345: p.1-21.
    [60]李秋芬, David, A.Caron.分子世界里的海洋微生物生态学——未来的发展趋势[J].海洋水产研究.2007(06):83~96.
    [61]臧红梅,樊景凤,王斌,周一兵.海洋微生物多样性的研究进展[J].海洋环境科学.2006(03):96~100.
    [62] Barry, D. and McCulloch, R. Molecular microbiology: A key event in survival. Nature.2009,459(7244): p.172-3.
    [63] Epps, J., Ying, H. and Huttley, G.A. Statistical methods for detecting periodic fragments inDNA sequence data. Biol Direct.2011,6: p.21.
    [64] Anton, E., Vidal, F. and Blanco, J. Interchromosomal effect analyses by sperm FISH:incidence and distribution among reorganization carriers. Syst Biol Reprod Med.2011,57(6): p.268-78.
    [65] Bailey, S.M., et al. Chromosome Orientation fluorescence in situ hybridization orstrand-specific FISH. Methods Mol Biol.2010,659: p.173-83.
    [66] Russ, I. and Medjugorac, I. Simplified DGGE in a horizontal electrophoresis system.Nucleic Acids Res.1992,20(20): p.5491.
    [67] Top, B. A simple method to attach a universal50-bp GC-clamp to PCR fragments used formutation analysis by DGGE. PCR Methods Appl.1992,2(1): p.83-5.
    [68] Bailey, S.M., et al. Chromosome Orientation fluorescence in situ hybridization orstrand-specific FISH. Methods Mol Biol.2010,659: p.173-83.
    [69] Henco, K., et al. Temperature gradient gel electrophoresis (TGGE) for the detection ofpolymorphic DNA and RNA. Methods Mol Biol.1994,31: p.211-28.
    [70] Kang, J., et al. TGGE in quantitative PCR of DNA and RNA. Methods Mol Biol.1994,31:p.229-35.
    [71] Jang, J., et al. A rapid method for identification of typical Leuconostoc species by16SrDNA PCR-RFLP analysis. J Microbiol Methods.2003,55(1): p.295-302.
    [72] Noli, E., Salvi, S. and Tuberosa, R. Comparative analysis of genetic relationships in barleybased on RFLP and RAPD markers. Genome.1997,40(5): p.607-16.
    [73] Masiga, D.K. and Turner, C.M. Amplified (restriction) fragment length polymorphism(AFLP) analysis. Methods Mol Biol.2004,270: p.173-86.
    [74] Vuylsteke, M., Peleman, J.D. and van Eijk, M.J. AFLP technology for DNA fingerprinting.Nat Protoc.2007,2(6): p.1387-98.
    [75] Warren, W., et al. Detection of mutations by single-strand conformation polymorphism(SSCP) analysis and SSCP-hybrid methods. Curr Protoc Hum Genet.2001, Chapter7: p.Unit74.
    [76] Marsh, T.L. Terminal restriction fragment length polymorphism (T-RFLP): an emergingmethod for characterizing diversity among homologous populations of amplificationproducts. Curr Opin Microbiol.1999,2(3): p.323-7.
    [77] Mengoni, A., Grassi, E. and Bazzicalupo, M. Cloning method for taxonomic interpretationof T-RFLP patterns. Biotechniques.2002,33(5): p.990,992.
    [78] McGuinness, L.M., et al. Replicability of bacterial communities in denitrifying bioreactorsas measured by PCR/T-RFLP analysis. Environ Sci Technol.2006,40(2): p.509-15.
    [79] Schloss, P.D. and Handelsman, J. Biotechnological prospects from metagenomics. CurrOpin Biotechnol.2003,14(3): p.303-10.
    [80] Cowan, D.A., et al. Metagenomics, gene discovery and the ideal biocatalyst. Biochem SocTrans.2004,32(Pt2): p.298-302.
    [81] Muller, E.C. and Wittmann-Liebold, B. Phylogenetic relationship of organisms obtained byribosomal protein comparison. Cell Mol Life Sci.1997,53(1): p.34-50.
    [82] Bergeron, J. and Drouin, G. The evolution of5S ribosomal RNA genes linked to the rDNAunits of fungal species. Curr Genet.2008,54(3): p.123-31.
    [83] Garcia-Arata, M.I., et al. PCR-amplified16S and23S rDNA restriction analysis for theidentification of Acinetobacter strains at the DNA group level. Res Microbiol.1997,148(9):p.777-84.
    [84] Ibrahim, A., et al. Specific detection of Coxiella burnetii through partial amplification of23S rDNA. Eur J Epidemiol.1997,13(3): p.329-34.
    [85] Ibrahim, A. and Sjostedt, A. Direct sequencing of PCR-amplified23S rDNA. Biotechniques.1997,23(2): p.216-8,220.
    [86] Lee, S. and Fuhrman, J. A. DNA hybridization to compare species composition of naturalbacterioplankton assemblages. Applied and Environmental Microbiology.1990,56(6):739-746.
    [87] Bourne, D.G., et al. Fluorescent oligonucleotide rDNA probes for specific detection ofmethane oxidising bacteria. FEMS Microbiol Ecol.2000,31(1): p.29-38.
    [88] Simon, N., et al. Oligonucleotide probes for the identification of three algal groups by dotblot and fluorescent whole-cell hybridization. J Eukaryot Microbiol.2000,47(1): p.76-84.
    [89] Pernthaler, A., Pernthaler, J. and Amann, R. Fluorescence in situ hybridization andcatalyzed reporter deposition for the identification of marine bacteria. Appl EnvironMicrobiol.2002,68(6): p.3094-101.
    [90] Pernthaler, A., et al. Comparison of fluorescently labeled oligonucleotide and polynucleotideprobes for the detection of pelagic marine bacteria and archaea. Appl Environ Microbiol.2002,68(2): p.661-7.
    [91] Top, B. A simple method to attach a universal50-bp GC-clamp to PCR fragments used formutation analysis by DGGE. PCR Methods Appl.1992,2(1): p.83-5.
    [92] Muyzer, G. DGGE/TGGE a method for identifying genes from natural ecosystems. CurrOpin Microbiol.1999,2(3): p.317-22.
    [93] Rasmussen, L. D., Ekelund, F. and Hansen, L. H. Group specific PCR primers to amplify24s a-subunit rRNA genes from Kinetoplastida (Protozoa) used in denaturing gradient gelelectrophoresis. Microb.Eco1.2001,42:109-115
    [94] Henco, K., et al. Temperature gradient gel electrophoresis (TGGE) for the detection ofpolymorphic DNA and RNA. Methods Mol Biol.1994,31: p.211-28.
    [95] Muyzer, G. DGGE/TGGE a method for identifying genes from natural ecosystems. CurrOpin Microbiol.1999,2(3): p.317-22.
    [96]陈晓蕾,张忠泽,微生物的ARDRA检测[J].微生物学杂志.1999,19(4):40-43.
    [97] Gich, F.B., et al. Assessment of microbial community structure changes by amplifiedribosomal DNA restriction analysis (ARDRA). Int Microbiol.2000,3(2): p.103-6.
    [98] Bakri, Y., Arabi, M.I. and Jawhar, M. RAPD technique is a useful tool to distinguishPenicillium species. Pol J Microbiol.2007,56(4): p.273-6.
    [99]王伟继等. AFLP分子标记技术的发展及其在海洋生物中的应用.海洋水产研究.2005,(26)1:80-84.
    [100] Yandell, D.W. SSCP (single strand conformation polymorphism) analysis of PCR fragments.Jpn J Cancer Res.1991,82(12): p.1468-9.
    [101] Hayashi, K. PCR-SSCP: a simple and sensitive method for detection of mutations in thegenomic DNA. PCR Methods Appl.1991,1(1): p.34-8.
    [102] Orita, M., et al. Detection of polymorphisms of human DNA by gel electrophoresis assingle-strand conformation polymorphisms. Proc Natl Acad Sci U S A.1989,86(8): p.2766-70.
    [103] Orita, M., et al. Rapid and sensitive detection of point mutations and DNA polymorphismsusing the polymerase chain reaction. Genomics.1989,5(4): p.874-9.
    [104] Sabine, P., et a1. Succession of microbial communities during hot composing as detected byPCR-single-strand conformation polymorphism-based genetic profiles of small-subunitrRNA genes. Applied and Environmental Microbiology.2000, M66(3):930—936.
    [105] Dunbar, J., Ticknor, L.O. and Kuske, C.R. Phylogenetic specificity and reproducibility andnew method for analysis of terminal restriction fragment profiles of16S rRNA genes frombacterial communities. Appl Environ Microbiol.2001,67(1): p.190-7.
    [106] Park, S.J., Chae, J.C. and Rhee, S.K. Application of DNA microarray for screeningmetagenome library clones. Methods Mol Biol.2010,668: p.313-24.
    [107] Pasteris, J.D., et al. Raman spectroscopic and laser scanning confocal microscopic analysisof sulfur in living sulfur-precipitating marine bacteria. Chem. Geol.2001,180:3–18.
    [108] Potma, E.O., et al. Real-time visualization of intracellular hydrodynamics in single livingcells. Proc. Natl. Acad. Sci. USA.2001,98:1577–1582.
    [109] Umeda, M. A simple metachromatic and fluorescent staining method for microorganismsusing carbocyanine dye. Microbiol Immunol.1987,31(2): p.113-21.
    [110] Lorenz, B., et al. A novel method for determination of inorganic polyphosphates using thefluorescent dye fura-2. Anal Biochem.1997,246(2): p.176-84.
    [111] Fan, G.Y. and Ellisman, M.H. Digital imaging in transmission electron microscopy. JMicrosc.2000,200(Pt1): p.1-13.
    [112] Alani, R. and Pan, M. In situ transmission electron microscopy studies and real-time digitalimaging. J Microsc.2001,203(Pt1): p.128-33.
    [113] Broger, T., et al. Real-time on-line flow cytometry for bioprocess monitoring. J Biotechnol.2011,154(4): p.240-7.
    [114] Doerr, A. A flow cytometry revolution. Nat Methods.2011,8(7): p.531.
    [115] Das, S., Lyla, P.S. and Ajmal Khan, S. Marine microbial diversity and ecology: importanceand future perspectives. Current science,2006,90(10):1325-1335.
    [116] Fudou, R., Iizuka, T. and Yamanaka, S. Haliangicin, a novel antifungal metabolite producedby a marine myxobacterium.1. Fermentation and biological characteristics. J Antibiot(Tokyo).2001,54(2): p.149-52.
    [117] Fudou, R., et al. Haliangicin, a novel antifungal metabolite produced by a marinemyxobacterium.2. Isolation and structural elucidation. J Antibiot (Tokyo).2001,54(2): p.153-6.
    [118] Peng, Z.G., et al. Anti-HIV activities of Achyranthes bidentata polysaccharide sulfate invitro and in vivo. Yao Xue Xue Bao.2008,43(7): p.702-6.
    [119] Jensen, P. R., Fenical, W. Marine Microorganisms and Drug Discovery: Current Status andFuture Potential In Drugs from the Sea. Edited by Fusetani N. Basel, Karger,2000, pp6–29
    [120] Haverinen, J., Hassinen, M. and Vornanen, M. Fish cardiac sodium channels aretetrodotoxin sensitive. Acta Physiol (Oxf).2007,191(3): p.197-204.
    [121] Llewellyn, L.E. Saxitoxin, a toxic marine natural product that targets a multitude ofreceptors. Nat Prod Rep.2006,23(2): p.200-22.
    [122] Sato, S., et al. Saxitoxin as a toxic principle of a freshwater puffer, Tetraodon fangi, inThailand. Toxicon.1997,35(1): p.137-40.
    [123] Saha, B.K. and Parani, K. Bioremediation of distillery effluent by a consortium of microbialisolates. J Environ Sci Eng.2011,53(1): p.123-8.
    [124] Verhagen, P., De Gelder, L. and Boon, N. Biofilm based bioremediation strategies for thetreatment of pesticide waste streams. Commun Agric Appl Biol Sci.2011,76(1): p.239-43.
    [125] Brenner, D. J., Staley J T, Krieg N R. Classification of prokaryotic organisms and theconcept of bacterial speciation. In Bergey’s manual of systematic bacteriology. secondedition vol2:27-32
    [126]张晓华,陈皓文.海洋原核生物名称.北京:科学出版社,2009.
    [127]金光,张晓华.海洋新菌的分类与鉴定方法[J].中国海洋大学学报.2011,41(4):069~076
    [128] Amann, R. I., et al. Diversity among Fibrobacter isolates: towards a phylogeneticclassification. Syst Appl Microbiol.1992,15:23–31.
    [129] Collins, M. D., et al. Phylogenetic analysis of the genus Lactobacillus and related lacticacid bacteria as determined by reverse transcriptase sequencing of16S rRNA. FEMSMicrobiol Lett.1991,77:5–12.
    [130] Fox, G. E., Wisotzkey, J. D. and Jurtshuk, P. How close is close:16S rRNA sequenceidentity may not be sufficient to guarantee species identity. Int J Syst Bacteriol.1992,42:166–170.
    [131] Martínez-Murcia, A. J. and Collins, M. D. A phylogenetic analysis of the genusLeuconostoc based on reverse transcriptase sequencing of16S rRNA. FEMS MicrobiolLett.1990,70:73–83.
    [132] Yarza, P., et al. The All-Species Living Tree project: a16S rRNA-based phylogenetic tree ofall sequenced type strains. Syst Appl Microbiol.2008,31(4):241-250.
    [133] Ko, C.Y., et al. A sensitive estimation of the percentage of guanine plus cytosine indeoxyribonucleic acid by high performance liquid chromatography. Anal Biochem.1977,80:183-192.
    [134] Tamaoka, J. and Komagata, K. Determination of DNA base composition by reversed-phasehigh-performance liquid chromatography. FEMS Microbiol Lett.1984,25:125-128.
    [135] Mesbah, M., Premachandran, U. and Whitman, W.B. Precise measurement of the G+Ccontent of deoxyribonucleic acid by high-performance liquid chromatography. Int J SystBacteriol.1989,39:159-167.
    [136] Brenner, D. J. Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. Int JSyst Bacteriol.1973,23:298–307.
    [137] Johnson, J. L. Use of nucleic-acid homologies in the taxonomy of anaerobic bacteria. Int JSyst Bacteriol.1973,23:308–315.
    [138] Johnson, J. L. Nucleic acids in bacterial classification. In Bergey’s Manual of SystematicBacteriology, vol.1. Edited by N. R. Krieg&J. G. Holt. Baltimore: Williams&Wilkins.1984, p.8–11
    [139] Wayne, L. G., et al. International Committee on Systematic Bacteriology. Report of the adhoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol.1987,37:463–464.
    [140] Maiden, M.C. Multilocus sequence typing of bacteria. Annu Rev Microbiol.2006,60:561-88.
    [141]. Sawabe, T., Kita-Tsukamoto, K. and Thompson, F.L. Inferring the evolutionary history ofvibrios by means of multilocus sequence analysis. J Bacteriol.2007b,189:7932-7936.
    [142]. Thompson, F.L., et al. Multilocus sequence analysis reveals that Vibrio harveyi and V.campbellii are distinct species. Appl Environ Microbiol.2007,73:4279-4285.
    [143]. Ibarz Pavón, A.B. and Maiden, M.C. Multilocus sequence typing. Methods Mol Biol.2009,551:129-140.
    [144] Zeigler, D. R. Gene sequences useful for predicting relatedness of whole genomes inbacteria. Int J Syst Evol Microbiol.2003,53:1893–1900.
    [145] Santos, S. R. and Ochman, H. Identification and phylogenetic sorting of bacterial lineageswith universally conserved genes and proteins. Environ Microbiol.2004,6:754–759.
    [146] Ratledge, C. and Wilkinson, S. G. Microbial lipids, vol.1. London: Academic Press.1988.
    [147] Tindall, B.J. Respiratory lipoquinones as biomarkers. In Molecular Microbial EcologyManual, Akkermans, edited by Bruijn A, Elsas, D. Kluwer Publishers, Dordrecht,Netherlands. Section4.1.5, Supplement12nd edn.2005.
    [148] Collins, M. D. and Gilbart, J. New members of the Coenzyme Q series from theLegionellaceae. FEMS Microbiol Letts.1983,16:251-255.
    [149] Karr, D. E., Bibb, W. F. and Moss, C. W. Isoprenoid quinones of the genus Legionella. JClin Microbiol,1982,15:1044–1048.
    [150] Groth, I., et al.. A. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomyceteswith diaminobutyric acid in the cell wall. Int J Syst Bacteriol.1996,46:234–239.
    [151] Andrus, A. and Kuimelis, R.G. Polyacrylamide gel electrophoresis (PAGE) of syntheticnucleic acids. Curr Protoc Nucleic Acid Chem.2001, Chapter10: p. Unit104.
    [152] Nowacka, M., et al.2D-PAGE as an effective method of RNA degradome analysis. MolBiol Rep.2012.39(1): p.139-46.
    [153] Yan, T. and Zhou, M.J. Environmental and health effects associated with Harmful AlgalBloom and marine algal toxins in China. Biomed Environ Sci.2004.17(2): p.165-76.
    [154] Lovejoy, C., Bowman, J.P. and Hallegraeff, G.M. Algicidal effects of a novel marinepseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algalbloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl EnvironMicrobiol.1998.64(8): p.2806-13.
    [155] Li, Y.S., et al. Study on the dynamics of algal bloom and its influence factors in ToloHarbour, Hong Kong. Water Environ Res.2004,76(7): p.2643-54.
    [156] Miller, M.A., et al. Evidence for a novel marine harmful algal bloom: cyanotoxin(microcystin) transfer from land to sea otters. PLoS One.2010,5(9).
    [157] Fleming, L.E., et al. Evaluation of harmful algal bloom outreach activities. Mar Drugs.2007,5(4): p.208-19.
    [158] Tang, Y.Z., Koch, F. and Gobler, C.J. Most harmful algal bloom species are vitamin B1andB12auxotrophs. Proc Natl Acad Sci U S A.2010,107(48): p.20756-61.
    [159] Garrett, M., et al. Harmful algal bloom species and phosphate-processing effluent: field andlaboratory studies. Mar Pollut Bull.2011,62(3): p.596-601.
    [160] Nakano, K., Lee, T.J. and Matsumura, M. In situ algal bloom control by the integration ofultrasonic radiation and jet circulation to flushing. Environ Sci Technol.2001,35(24): p.4941-6.
    [161] Chung, S.W., Lee,H. and Jung, Y. The effect of hydrodynamic flow regimes on the algalbloom in a monomictic reservoir. Water Sci Technol.2008,58(6): p.1291-8.
    [162] Gonzalez, J.M., et al. Bacterial community structure associated with adimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microbiol.2000,66(10): p.4237-46.
    [163] Tujula, N.A., et al. A CARD-FISH protocol for the identification and enumeration ofepiphytic bacteria on marine algae. Journal of Microbiological Methods.2006,65(3): pp.604-607.
    [164] Egan, S., et al. Phylogenetic relationship and antifouling activity of bacterial epiphytesfrom the marine alga Ulva lactuca. Environ. Microbiol.2000,2:343–347.
    [165] Penesyan, A., et al. Antimicrobial activity observed among cultured marine epiphyticbacteria reflects their potential as a source of new drugs. FEMS Microbiol Ecol.2009,7;69(1):113-24.
    [166]陈详,张小葵,杨洞庭,刘广博,王玉静.海星内生细菌的分离与初步鉴定[J].枣庄学院学报,2008,(02)
    [167]纪明候.海藻化学[M].北京:科学出版社,1997.
    [168] Rao, D., Webb, J. S. and Kjelleberg, S. Microbial colonization and competition on themarine alga Ulva australis. Appl. Environ. Microbiol.2006,72:5547-5555.
    [169] Egan, S., Thomas, T. and Kjelleberg, S. Unlocking the diversity and biotechnologicalpotential of marine surface associated microbial communities. Curr Opin Microbiol.2008,11:219–225.
    [170] Ausubel, F. M., et al.(editors) Short Protocols in Molecular Biology: a Compendium ofMethods from Current Protocols in Molecular Biology,3rd edn. New York: Wiley.1995.
    [171] Chun, J., et al. EzTaxon: a web-based tool for the identification of prokaryotes based on16Sribosomal RNA gene sequences. Int J Syst Evol Microbiol.2007,57:2259–2261.
    [172] Thompson, J. D., et al. The CLUSTAL_X windows interface: flexible strategies formultiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.1997,25:4876–4882.
    [173] Tamura, K., et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) softwareversion4.0. Mol Biol Evol.2007,24:1596–1599.
    [174] Acinas, S.G., Anton, J. and Rodriguez-Valera, F. Diversity of free-living and attachedbacteria in offshore western Mediterranean waters as depicted by analysis of genesencoding16S rRNA. Appl Environ Microbiol.1999,65:514-522.
    [175]张淑梅,李忠红.浅议中国海藻开发利用[J].水产科学.2001,(04).
    [176]缪莉,郑忠辉,苏文金.共附生海洋微生物活性物质的研究进展[J].海洋通报.2002,(03)
    [177]周颖.共附生海洋微生物抗茵活性物质的研究[J].农机化研究.2008,(02).
    [178] Rungprom, W., et al. Cyclic tetrapeptides from marine bacteria associated with the seaweedDiginea sp. and the sponge Halisarca ectofibrosa.Tetrahedron.2008,64(14): pp.3147-3152.
    [179]徐涤,秦松,庞国兴,崔洪霞,王鹏.青岛和大连海区海带(Laminariajaponica)外生细菌的16S rRNA基因序列分析[J].高技术通讯.2004,(02).
    [180]姜健,杨宝灵,元起,刘松梅,吕洁.具有抑菌活性的海洋细菌的分离与鉴定[J].生物技术.2004,(06).
    [181]胡萍,王雪青.海洋微生物抗菌物质的研究进展[J].食品科学.2004,(11).
    [182] Lemos, M.L., Toranzo, A.E. and Barja, J.L. Antibiotic activity of epiphytic bacteria isolatedfrom intertidal seaweeds. Microb. Ecol.1985,11:149–163.
    [183] Bansemir, A., et al. Screening of cultivated seaweeds for antibacterial activity against fishpathogenic bacteria. Aquaculture.2006,252:79-84.
    [184]马悦欣,孙田,王海燕,王岩,朱莹.大连海区潮间带海藻附生真菌的抗微生物活性[J].大连水产学院学报.2004,(01).
    [185]孙杰,杨润业,任晓明.三种海藻内生真菌的分离及其抑菌活性研究[J].食品科学.2007,(11).
    [186]郑立,林伟,严小军,陈海敏.海洋细菌抗菌和细胞毒活性的初步研究[J].应用生态学报.2004,(09).
    [187]马悦欣,于作镇,于书渤,安军.大连海区潮间带海藻附生细菌的抗真菌活性[J].大连水产学院学报.2005,(02).
    [188]马悦欣,于书渤,李俊,刘侃,曹善茂.大连海区海藻和无脊椎动物附生细菌对养殖网笼污损细菌的拮抗活性[J].大连水产学院学报.2007,(01)
    [189] Rao, D., et al. Low densities of epiphytic bacteria from the marine alga Ulva australis inhibitsettlement of fouling organisms. Appl Environ Microbiol.2007,73:7844–7852.
    [190] Holmstrom, C., et a1.Antifouling activities expressed by marine surface associatedPseudoarmoaas species[J].FEMS Microbiology Ecology.2002,41:47—58.
    [191] Kaczmarska, I., et al. Diversity and distribution of epibiotic bacteria on Pseudonitzschiamultiseries (Bacillariophyceae) in culture, and comparison with those on diatoms in nativeseawater. Harmful Algae.2005,4:725-741.
    [192] Matz, C., et al. Marine biofilm bacteria evade eukaryotic predation by targeted chemicaldefense. Pub. Libr. Sci. U. S. A.2008,7:3e2744.
    [193]李筠,生菊,纪伟尚,徐怀恕.海湾扇贝(Argopecten irradians)附着基异养细菌区系初探[J].青岛海洋大学学报(自然科学版).2001,(01).
    [194] Cowden, R.R. Cytochemical studies on oocyte growth in the lancelet, Branchiostomacaribaeum. Z Zellforsch Mikrosk Anat.1963,60: p.399-408.
    [195] Howell, W.M. and Boschung, H.T. Jr. Chromosomes of the lancelet, Branchiostoma floridae(order Amphioxi). Experientia.1971,27(12): p.1495-6.
    [196] Stokes, M., Larval locomotion of the lancelet. J Exp Biol.1997,200(Pt11): p.1661-80.
    [197] Sugumar, G., et al. Vibrio splendidus biovar II as the causative agent of bacillary necrosis ofJapanese oyster Crassostrea gigas larvae. Dis Aquat Organ.1998,33(2): p.111-8.
    [198] Forsyth, M.P., et al. Salt tolerance of intertidal marine bacteria. Can J Microbiol.1971,17(6): p.825-8.
    [199] Baumann, L., et al. Taxonomy of aerobic marine eubacteria. J Bacteriol.1972,110(1): p.402-29.
    [200] Takami, H., et al. Biodiversity in deep-sea sites located near the south part of Japan.Extremophiles.1999,3(2): p.97-102.
    [201] Vandecandelaere, I., et al. Alteromonas genovensissp. nov., isolated from a marineelectroactive biofilm and emended description of Alteromonas macleodii Baumann et al.1972(Approved lists1980). Int J Syst Evol Microbiol.2008a,58:2589–2596.
    [202] Amoozegar, M.A., et al. Salinicoccus iranensis sp. nov., a novel moderate halophile. Int JSyst Evol Microbiol.2008,58(Pt1): p.178-83.
    [203] Abbassi, M.S., et al. Stenotrophomonas maltophilia responsible for respiratory infections inneonatal intensive care unit: antibiotic susceptibility and molecular typing. Pathol Biol(Paris).2009,57(5): p.363-7.
    [204] Bin Abdulhak, A.A., et al. Stenotrophomonas maltophilia infections of intact skin: asystematic review of the literature. Diagn Microbiol Infect Dis.2009,63(3): p.330-3.
    [205] Chen, Y., Cheung, S.G. and Shin, P.K.S. The diet of amphioxus in subtropical Hong Kongas indicated by fatty acid and stable isotopic analyses. J MAR BIOL ASSOC UK.2008,88:1487-1491
    [206] Harada, S. Variations in the transfer efficiency from photosynthetic and bacterial carbonproduction i rlto zptankton during a shift of zooplankton dominance from copepoda todoliotida.In;PICES Fou rth Annual Meetittg Abstracts.1995,23
    [207]张喆,孟祥红,肖慧,谭海丽,滕海波,唐学玺.青岛近岸水体夏冬季浮游病毒、细菌分布特征及其与环境因子的关系[J].武汉大学学报(理学版).2008,54(2):209~214
    [208]梁彦韬.青岛近海浮游病毒、微微型浮游植物、异养细菌的丰度变化及其与环境相关性研究:[硕士学位论文].青岛:中国海洋大学,2008
    [209]肖慧,张艳,张喆,朱琳,游偲,唐学玺.青岛、威海水域夏冬季表层沉积物细菌多样性的初步研究[J].中国海洋大学学报.2009,39(4):641~646
    [210]冀世奇.海洋微生物高通量培养和分选方法的建立及应用:[博士学位论文].青岛:中国海洋大学,2011
    [211] Ivanova, E. P., Flavier, S. and Christer, R. Phylogenetic relationships among marineAlteromonas-like proteobacteria: emended description of the family Alteromonadaceae andproposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceaefam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov.and Psychromonadaceae fam. nov. Int. J. Syst. Evol. Microbiol.2004,54:1773-1788.
    [212] Ivanova, E. P., et al. Evaluation of phospholipid and fatty acid compositions aschemotaxonomic markers of Alteromonas-like Proteobacteria. Curr Microbiol.2000,41:341–345.
    [213] Ivanova, E. P., et al. Alteromonas addita sp. nov. Int J Syst Evol Microbiol.2005,55:1065–1068.
    [214] Macián, M. C., et al. Thalassomonas viridans gen. nov., sp. nov., a novel marine cproteobacterium. Int J Syst Evol Microbiol.2001,51:1283–1289.
    [215] Bowman, J. P., et al. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwelliarossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic specieswith the ability to synthesize docosahexaenoic acid (22:6v3). Int J Syst Bacteriol.1998,48:1171–1180.
    [216] Yi, H., Bae, K. S. and Chun, J. Thalassomonas ganghwensis sp. nov., isolated from tidal flatsediment. Int J Syst Evol Microbiol.2004,54:377–380.
    [217] Thompson, F. L., et al. Thalassomonas loyana sp. nov., a causativeagent of the whiteplague-like disease of corals on the Eilat coral reef. Int J Syst Evol Microbiol.2006,56:365–368.
    [218] Jean, W. D., Shieh, W. Y. and Liu, T. Y. Thalassomonas agarivorans sp. nov., a marineagarolytic bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, andemended description of the genus Thalassomonas. Int J Syst Evol Microbiol.2006,56:1245–1250.
    [219] Hosoya, S., Adachi, K. and Kasai, H. Thalassomonas actiniarum sp. nov. andThalassomonas haliotis sp. nov., isolated from marine animals. International Journal ofSystematic and Evolutionary Microbiology.2009,59:686–690
    [220] Park, S., et al. Thalassomonas agariperforans sp. nov., an agarolytic bacterium isolatedfrom marine sand. Int. J. Syst. Evol. Microbiol.2011,61:2573-2576.
    [221] Allouch J, et al. The three-dimensional structures of two β-agarases. J Biol Chem.2003,278:47171–47180
    [222] Ha, J.C., et al. β-agarase from Pseudomonas sp. W7: Purification of the re-combinantenzyme from Escherichia coli and the effects of salt on its activity. Biotechnol ApplBiochem.1997,26:1–6
    [223] Kato, I. Antioxidative and antitumorigenic properties of agaro-oligosaccharide. Bio Industry.2000,17:13–19
    [224] Suzuki, M.T., et al. Bacterial diversity among small-subunit rRNA gene clones and cellularisolates from the same seawater sample. App Environ Microbiol.1997,63:983–989
    [225] Felsenstein, J. PHYLIP (phylogeny inference package), v3.69. Distributed by the author.Department of Genome Sciences, University of Washington, Seattle, USA.2009.
    [226] Mesbah, M. and Whitman, W. B. Measurement of deoxyguanosine/thymidine ratios incomplex mixtures by high-performance liquid chromatography for determination of themole percentage guanine+cytosine of DNA. J Chromatogr.1989,479:297–306.
    [227] Beveridge, T. J., Lawrence, J. R. and Murray, R. G. E. Sampling and staining for lightmicroscopy. p.19-33In Methods for General and Molecular Microbiology. C. A. Reddy, T.J. Beveridge, J. A. Breznak, G. Marzluf, T. M. Schmidt,&L. R. Snyder (ed.) ASM Press,Washington DC.2007.
    [228] Hu, Z.-Y. and Li, Y. Pseudidiomarina sediminum sp. nov., a marine bacterium isolated fromcoastal sediments of Luoyuan Bay in China. Int J Syst Evol Microbiol.2007,57:2572–2577
    [229] Bernardet, J.-F., Nakagawa, Y. and Holmes, B. Proposed minimal standards for describingnew taxa of the family Flavobacteriaceae and emended description of the family. Int J SystEvol Microbiol.2002,52:1049-1070.
    [230] Tindall, B. J., et al. Phenotypic characterization and the principles of comparativesystematics. p.330-393In Methods for General and Molecular Microbiology. C. A. Reddy,T. J. Beveridge, J. A. Breznak, G. Marzluf, T. M. Schmidt,&L. R. Snyder (ed.) ASM Press,Washington DC.2007.
    [231] Breznak, J. A. and Costilow, R. N. Physicochemical factors in growth. In Methods forGeneral and Molecular Bacteriology, pp.137–154. Edited by P. Gerhardt, R. G. E. Murray,W. A. Wood&N. R. Krieg. Washington, DC:American Society for Microbiology.1994.
    [232] Smibert, R. M. and Krieg, N. R. Phenotypic characterization. In Methods for General andMolecular Bacteriology, pp.607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood&N. R. Krieg. Washington, DC:American Society for Microbiology.1994.
    [233] Arnott, S., et al.. The agarose double helix and its function in agarose gel structure. J MolBiol.1974,90:269-284.
    [234] Forrd, S. A. and Atkins, E. D. T. New A-ray diffranction results from agarose: Extendedsingle helix structures and implications for gelation mechanism. Biopolymers.1989,28:1345-1365.
    [235] Xie, C. H. and Yokota, A. Phylogenetic analysis of Lampropedia hyaline based on the16SrRNA gene sequence. J Gen Appl Microbiol.2003,49:345-349.
    [236] Collins, M. D., et al. Distribution of menaquinones in Actinomycetes and Corynebacteria. JGen Microbiol.1977,100:221-230.
    [237] Tamaoka, J., Katayama-Fujimura, Y. and Kuraishi, H. Analysis of bacterial menaquinonemixtures by high performance liquid chromatography. J Appl Bacteriol.1983,54:31-36.
    [238] Minnikin, D. E., et al. An integrated procedure for the extraction of bacterial isoprenoidquinines and polar lipids. J Microbiol Methods.1984,2:233-241.
    [239] Komagata, K. and Suzuki, K. Lipid and cell wall analysis in bacterial systematics. MethodsMicrobiol.1987,19:161-203.
    [240] Yarza, P., et al. The All-Species Living Tree project: a16S rRNA-based phylogenetic tree ofall sequenced type strains. Syst Appl Microbiol.2008,31(4):241-250.
    [241] Zhang, D.C., et al. Colwellia polaris sp. nov., a psychrotolerant bacterium isolated fromArctic sea ice. Int. J. Syst. Evol. Microbiol.2008,58:1931-1934.
    [242] Yu, Y., Li, H.R. and Zeng, Y.X. Colwellia chukchiensis sp. nov., a psychrotolerantbacterium isolated from the Arctic Ocean. Int. J. Syst. Evol. Microbiol.2011,61:850-853.
    [243] Deming, J.W., et al. Isolation of an obligately barophilic bacterium and description of anew genus, Colwellia gen. nov. Syst. Appl. Microbiol.1988,10:152-160.
    [244] Garrity, G. M., Bell, J. A. and Lilburn, T. Family I. Oceanospirillaceae fam. nov. In: D.J.Brenner, N.R. Krieg, J.T. Staley and G. M. Garrity (eds), Bergey's Manual of SystematicBacteriology, second edition, vol.2(The Proteobacteria), part B (TheGammaproteobacteria), Springer, NewYork.2005c, p.271.
    [245] Scott, K. M., et al. The genome of deep-sea vent chemolithoautotroph Thiomicrospiracrunogena XCL-2. PLoS Biol.2006,4, e383.
    [246] Garrity, G. M., Bell, J. A. and Lilburn, T. G. Order VIII. Oceanospirillales ord. nov. In: D.J.Brenner, N.R. Krieg, J.T. Staley and G. M. Garrity (eds), Bergey's Manual of SystematicBacteriology, second edition, vol.2(The Proteobacteria), part B (TheGammaproteobacteria), Springer, NewYork.2005b, p.270.
    [247] G rtner, A., Wiese, J. and Imhoff, J. F. Amphritea atlantica gen. nov., sp. nov., agammaproteobacterium from the Logatchev hydrothermal vent field. Int. J. Syst. Evol.Microbiol.2008,58:34-39.
    [248] Dauga, C., et al. Balneatrix alpica gen. nov., sp. nov. a bacterium associated withpneumonia and meningitis in a spa therapy centre. Res. Microbiol.1993,144:35-46.
    [249] Pinhassi, J., et al. Bermanella marisrubri gen. nov., sp. nov., a genome-sequencedgammaproteobacterium from the Red Sea. Int. J. Syst. Evol. Microbiol.2009,59:373-377.
    [250] Espinosa, E., et al. A. Taxonomic study of Marinomonas strains isolated from the seagrassPosidonia oceanica, with descriptions of Marinomonas balearica sp. nov. andMarinomonas pollencensis sp. nov. Int. J. Syst. Evol. Microbiol.2010,60:93-98.
    [251] Satomi, M., et al. Marinospirillum gen. nov., with descriptions of Marinospirillummegaterium sp. nov., isolated from kusaya gravy, and transfer of Oceanospirillumminutulum to Marinospirillum minutulum comb. nov. Int. J. Syst. Bacteriol.1998,48:1341-1348.
    [252] Arahal, D. R., et al. Neptuniibacter caesariensis gen. nov., sp. nov., a novel marinegenome-sequenced gammaproteobacterium. Int. J. Syst. Evol. Microbiol.2007,57:1000-1006.
    [253] Hedlund, B. P., et al. Polycyclic aromatic hydrocarbon degradation by a new marinebacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl. Environ. Microbiol.1999,65:251-259.
    [254] Dimitriu, P. A., et al. Nitrincola lacisaponensis gen. nov., sp. nov., a novel alkaliphilicbacterium isolated from an alkaline, saline lake. Int. J. Syst. Evol. Microbiol.2005,55:2273-2278.
    [255] Schl sser, A., et al. Oceaniserpentilla haliotis gen. nov., sp. nov., a marine bacteriumisolated from haemolymph serum of blacklip abalone. Int. J. Syst. Evol. Microbiol.2008,58:2122-2125.
    [256] Satomi, M., et al. Phylogenetic study of the genus Oceanospirillum based on16S rRNA andgyrB genes: emended description of the genus Oceanospirillum, description ofPseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transferof Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium asMarinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. Int. J.Syst. Evol. Microbiol.2002,52:739-747.
    [257] Teramoto, M., et al. Oleibacter marinus gen. nov., sp. nov., a bacterium that degradespetroleum aliphatic hydrocarbons in a tropical marine environment. Int. J. Syst. Evol.Microbiol.2011,61:375-380.
    [258] Yakimov, M. M., et al. Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclasticmarine bacterium isolated from Antarctic coastal sea water. Int. J. Syst. Evol. Microbiol.2003,53:779-785
    [259] Romanenko, L. A., et al. Reinekea marinisedimentorum gen. nov., sp. nov., a novelgammaproteobacterium from marine coastal sediments. Int. J. Syst. Evol. Microbiol.2004,54:669-673.
    [260] Hylemon, P. B., et al. The genus Spirillum: A taxonomic study. International Journal ofSystematic Bacteriology.1973,23:340-380.
    [261] Van Landschoot, A. and De Ley, J. Intra-and intergeneric similarities of the rRNA cistronsof Alteromonas, Marinomonas (gen. nov.) and some other gram-negative bacteria. J. Gen.Microbiol.1983,129:3057-3074.
    [262] Yakimov, M. M., et al. Thalassolituus oleivorans gen. nov., sp. nov., a novel marinebacterium that obligately utilizes hydrocarbons. Int. J. Syst. Evol. Microbiol.2004,54:141-148.
    [263] Kaesler, I., et al. Spongiispira norvegica gen. nov., sp. nov., a marine bacterium isolatedfrom the boreal sponge Isops phlegraei. Int. J. Syst. Evol. Microbiol.2008,58:1815-1820.
    [264] Lee, H.K., et al. Hahella chejuensis gen. nov., sp. nov., anextracellular-polysaccharide-producing marine bacterium. Int J Syst Evol Microbiol.2001.51(Pt2): p.661-6.
    [265] Baik, K.S., et al. Hahella ganghwensis sp. nov., isolated from tidal flat sediment. Int J SystEvol Microbiol.2005.55(Pt2): p.681-4.
    [266] Kim, D., et al. Biosynthesis of antibiotic prodiginines in the marine bacterium Hahellachejuensis KCTC2396. J Appl Microbiol.2007,102(4): p.937-44.
    [267] Kim, D., et al. Red to red-the marine bacterium Hahella chejuensis and its productprodigiosin for mitigation of harmful algal blooms. J Microbiol Biotechnol.2008,18(10): p.1621-9.
    [268] Jeong, H., et al. Genomic blueprint of Hahella chejuensis, a marine microbe producing analgicidal agent. Nucleic Acids Res.2005,33(22): p.7066-73.
    [269] Lee, K., Lee, H.K. and Cho, J.C. Hahella antarctica sp. nov., isolated from Antarcticseawater. Int J Syst Evol Microbiol.2008,58(Pt2): p.353-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700