用户名: 密码: 验证码:
应用PCR-DGGE和454焦磷酸测序分析儿童龋病相关口腔菌群多样性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口腔微生物在维持口腔内环境稳定上起非常重要的作用。龋病是非常常见的一种牙齿疾病,特别是在幼儿期。然而对于患有龋病的儿童口腔内微生物整个菌群结构和动力学研究至今仍未被清晰的阐明。在本实验中,利用PCR-DGGE与454高通量焦磷酸测序技术相结合,对患有龋病儿童(CAC,下同)和无龋病儿童(CFC,下同)口腔内的微生物菌群进行多样性的比较分析。收集这些儿童的唾液和牙菌斑,提取DNA。设计通用引物测序扩增16S rDNA基因V3变异区进行测序和DGGE分析。测序总计得到186787条序列和41905个单一序列,经鉴定细菌来源10个门的200多个属。
     研究结果显示来自CFC和CAC的细菌可以聚成两个簇和若干个种型,在龈上菌斑中Streptococcus(连锁状球菌属),Veillonella(韦荣球菌属),Actinomyces(放线菌属),Granulicatella(颗粒链菌属),Leptotrichia(纤毛菌属)和Thiomonas(硫单胞菌属)与龋病有关,这些细菌相互作用,逐渐破坏生态平衡,最终导致龋病的发生。我们无法找到一个单一的致病菌但是发现了对龋病发生有着显著相关的致病菌群,而且这些致病菌群有可能成为干预龋病发生的目标。
Oral microbiota plays a vital role in maintaining the homeostasis of oral cavity. Dental caries are among the most common diseases in children.Pathogenic bacteria contribute to the development of the disease.However,the overall structure and dynamics of bacterial communities in oral cavity from children with dental caries have not been explored deeply heretofore.In this study,we examined the bacterial diversity of oral microbiota from children with caries in comparison to those from caries-free children using PCR-DGGE and high-throughput barcoded pyrosequencing. Saliva and supragingival plaque samples were collected from 60 children.DNA was isolated from these samples and the hyper-variable V3 region of 16S rDNA genes was amplified using universal primers.A total of 186 787 sequences were obtained and 41 905 unique sequences represented all domains in our study.More than 200 genera belonging to 10 phyla were identified.
     Our data showed that the oral microbiota in saliva and supragingival plaques could be divided into two clusters and several phylotypes that were significantly different between the two patient groups.The genera of Streptococcus,Veillonella, Actinomyces,Granulicatella,Leptotrichia and Thiomonas in supragingival plaques were associated with dental caries.These genera interacted with each other intimately and changes the composition of the bacterial population destroyed the eubiosis of the microcosm gradually and contributed to the development of dental caries.There was no one specific pathogen but pathogenic communities that correlated with dental caries significantly.And theses pathogenic communities might provide additional targets for dental caries intervention.
引文
[1] Cash H. L., Whitham C. V., Behrendt C. L., Hooper L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin[J]. Science, 2006 313 (5790): 1126.
    [2] Ley R. E., Peterson D. A., Gordon J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006 124 (4): 837-848.
    [3] Mazmanian S. K., Liu C. H., Tzianabos A. O., Kasper D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system[J]. Cell, 2005 122 (1):107-118.
    [4] Paster B. J., Olsen I., Aas J. A., Dewhirst F. E. The breadth of bacterial diversity in the human periodontal pocket and other oral sites[J]. Periodontology 2000, 2006 42: 80.
    [5] Ruby J., Goldner M. Nature of symbiosis in oral disease[J]. Journal of Dental Research, 2007 86 (1): 8.
    [6] Lockhart P. B., Durack D. T. Oral microflora as a cause of endocarditis and other distant site infections[J]. Infectious Disease Clinics of North America, 1999 13 (4): 833-850.
    [7] Paju S., Scannapieco F. A. Oral biofilms, periodontitis, and pulmonary infections[J]. Oral diseases, 2007 13 (6): 508.
    [8] Boggess K. A., Beck J. D., Murtha A. P., Moss K., Offenbacher S. Maternal periodontal disease in early pregnancy and risk for a small-for-gestational-age infant[J]. American journal of obstetrics and gynecology, 2006 194 (5): 1316-1322.
    [9] Beck J. D., Eke P., Heiss G., Madianos P., Couper D., Lin D., Moss K., Elter J., Offenbacher S. Periodontal disease and coronary heart disease: a reappraisal of the exposure[J]. Circulation, 2005 112(1): 19.
    [10] Anusavice K. J. Dental caries: risk assessment and treatment solutions for an elderly population[J]. Compend Contin Educ Dent, 2002 23 (10 Suppl): 12-20.
    [11] Theilade E. The non-specific theory in microbial etiology of inflammatory periodontal diseases[J]. J Clin Periodontol, 1986 13 (10): 905-11.
    [12] Loesche W. J. Clinical and microbiological aspects of chemotherapeutic agents used according to the specific plaque hypothesis[J]. Journal of Dental Research, 1979 58 (12): 2404.
    [13] Marsh P. D. Microbial ecology of dental plaque and its significance in health and disease[J]. Advances in Dental Research, 1994 8 (2): 263.
    [14] Hill J. E., Goh S. H., Money D. M., Doyle M., Li A., Crosby W. L., Links M., Leung A., Chan D., Hemmingsen S. M. Characterization of vaginal microflora of healthy, nonpregnant women by chaperonin-60 sequence-based methods[J]. American journal of obstetrics and gynecology, 2005 193(3): 682-692.
    [15] Keijser B. J. F., Zaura E., Huse S. M, van der Vossen J., Schuren F. H. J, Montijn R. C., Ten Cate J. M., Crielaard W. Pyrosequencing analysis of the oral microflora of healthy adults[J]. Journal of Dental Research, 2008 87 (11): 1016.
    [16] Meyer M., Stenzel U., Hofreiter M. Parallel tagged sequencing on the 454 platform[J]. Nat Protoc, 2008 3 (2): 267-278.
    [17] Whitman W. B., Coleman D. C., Wiebe W. J. Prokaryotes: the unseen majority[J]. Proceedings of the National Academy of Sciences, 1998 95 (12): 6578.
    [18] Gill S. R., Pop M., Deboy R. T., Eckburg P. B., Tumbaugh P. J., Samuel B. S., Gordon J. I., Relman D. A., Fraser-Liggett C. M., Nelson K. E. Metagenomic analysis of the human distal gut microbiome[J]. Science, 2006 312 (5778): 1355-9.
    [19] Kuramitsu H. K., He X., Lux R., Anderson M. H., Shi W. Interspecies interactions within oral microbial communities[J]. Microbiology and Molecular Biology Reviews, 2007 71 (4): 653.
    [20] Fejerskov O., Kidd E. A. M. Dental caries: the disease and its clinical managemen[J]. Journal of Dental Education.
    [21] Petersen P. E. The World Oral Health Report 2003: continuous improvement of oral health in the 21st century-the approach of the WHO Global Oral Health Programme[J]. Community Dentistry and Oral Epidemiology, 2003 31 (1): 3.
    [22] Preza D., Olsen I., Aas J. A., Willumsen T., Grinde B., Paster B. J. Bacterial profiles of root caries in elderly patients[J]. J Clin Microbiol, 2008 46 (6): 2015-21.
    [23] Kidd E. A. M., Fejerskov O. What constitutes dental caries? Histopathology of carious enamel and dentin related to the action of cariogenic biofilms[J]. Journal of dental research, 2004 83 (Supplement 1): C35.
    [24] Fejerskov O. Changing paradigms in concepts on dental caries: consequences for oral health care[J]. Caries Res, 2004 38 (3): 182-191.
    [25] Scheie A. A., Petersen F. C. The biofilm concept: consequences for future prophylaxis of oral diseases?[J]. Critical Reviews in Oral Biology & Medicine, 2004 15 (1): 4.
    [26] Featherstone J. D. B. The science and practice of caries prevention[J]. The Journal of the American Dental Association, 2000 131 (7): 887.
    [27] Featherstone J. D. B. The continuum of dental caries-evidence for a dynamic disease process[J]. Journal of dental research, 2004 83 (Supplement 1): C39.
    
    [28] Selwitz R. H, Ismail A. I., Pitts N. B. Dental caries[J]. The Lancet, 2007 369 (9555): 51-59.
    [29] Fejerskov O., Manji F. Risk assessment in dental caries[J]. Risk Assessment in Dentistry. Chapel Hill, University of North Carolina Dental Ecology, 1990: 215-217.
    [30] 苏勇,朱伟云.分子生物学技术在胃肠道微生态中应用研究进展[J]. 生物技术通报, 2006(004): 73-77.
    [31] Woo P. C. Y., Ng K. H. L., Lau S. K. P., Yip K., Fung A. M. Y., Leung K., Tam D. M. W., Que T., Yuen K. Usefulness of the MicroSeq 500 16S ribosomal DNA-based bacterial identification system for identification of clinically significant bacterial isolates with ambiguous biochemical profiles[J]. Journal of Clinical Microbiology, 2003 41 (5): 1996.
    [32] Li M., Wang B., Zhang M., Rantalainen M., Wang S., Zhou H., Zhang Y., Shen J., Pang X., Zhang M. Symbiotic gut microbes modulate human metabolic phenotypes[J]. Proceedings of the National Academy of Sciences, 2008 105 (6): 2117.
    [33] Fischer S. G., Lerman L. S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory[J]. Proc Natl Acad Sci USA, 1983 80 (6): 1579-1583.
    [34] Myers R. M., Fischer S. G., Lerman L. S., Maniatis T. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis[J]. Nucleic Acids Research, 1985 13 (9): 3131.
    [35] Duineveld B. M., Rosado A. S., van Elsas J. D., van Veen J. A. Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns[J]. Applied and Environmental Microbiology, 1998 64 (12): 4950.
    [36] Goldenberg O., Herrmann S., Marjoram G., Noyer-Weidner M., Hong G., Bereswill S., G bel U. B. Molecular monitoring of the intestinal flora by denaturing high performance liquid chromatography[J]. Journal of microbiological methods, 2007 68 (1): 94-105.
    [37] Devillard E., Burton J. P., Reid G. Complexity of vaginal microflora as analyzed by PCR denaturing gradient gel electrophoresis in a patient with recurrent bacterial vaginosis[J]. Infectious Diseases in Obstetrics and Gynecology, 2005 13 (1): 25-30.
    [38] Li Y., Ge Y., Saxena D., Caufield P. W. Genetic profiling of the oral microbiota associated with severe early-childhood caries[J]. Journal of clinical microbiology, 2007 45 (1): 81.
    [39] Margulies M, Egholm M., Altman W. E., Attiya S., Bader J. S., Bemben L. A, Berka J., Braverman M. S., Chen Y. J., Chen Z. Genome sequencing in open microfabricated high density picoliter reactors[J]. Nature, 2005 437 (7057): 376.
    [40] Droege M., Hill B. The Genome Sequencer FLX(tm) System-Longer reads, more applications, straight forward bioinformatics and more complete data sets[J]. Journal of Biotechnology, 2008 136(1-2): 3-10.
    [41] Rothberg J. M., Leamon J. H. The development and impact of 454 sequencing[J]. Nat Biotechnol, 2008 26(10): 1117-1124.
    [42] Muyzer G., De Waal E. C., Uitterlinden A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993 59 (3): 695.
    [43] Dowd S. E., Zaragoza J., Rodriguez J. R., Oliver M. J., Payton P. R. Windows. NET Network Distributed Basic Local Alignment Search Toolkit(W. ND-BLAST)[J]. BMC bioinformatics, 2005 6(1): 93.
    [44] Cole J. R., Chai B, Marsh T. L., Farris R. J., Wang Q., Kulam S. A., Chandra S., McGarrell D. M., Schmidt T. M., Garrity G. M. The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy [J]. Nucleic Acids Research, 2003 31 (1): 442.
    [45] DeSantis Jr T. Z., Hugenholtz P., Keller K., Brodie E. L., Larsen N., Piceno Y. M., Phan R., Andersen G. L. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes[J]. Nucleic Acids Research, 2006 34 (Web Server issue): W394.
    [46] Sogin M. L., Morrison H. G., Huber J. A., Welch D. M., Huse S. M., Neal P. R., Arrieta J. M., Herndl G. J. Microbial diversity in the deep sea and the underexplored "rare biosphere"[J]. Proceedings of the National Academy of Sciences, 2006 103 (32): 12115.
    [47] Huber J. A., Welch M., David B., Morrison H. G., Huse S. M., Neal P. R., Butterfield D. A., Sogin M. L. Microbial population structures in the deep marine biosphere[J]. science, 2007 318 (5847): 97.
    [48] Sundquist A., Bigdeli S., Jalili R., Druzin M. L., Waller S., Pullen K. M., El-Sayed Y. Y., Taslimi M. M., Batzoglou S., Ronaghi M. Bacterial flora-typing with targeted, chip-based Pyrosequencing[J]. BMC microbiology, 2007 7 (1): 108.
    [49] Liu Z., Lozupone C., Hamady M., Bushman F. D., Knight R. Short pyrosequencing reads suffice for accurate microbial community analysis[J]. Nucleic Acids Research, 2007 35 (18): e120.
    
    [50] Aas J. A, Griffen A. L., Dardis S. R., Lee A. M., Olsen I., Dewhirst F. E., Leys E. J., Paster B. J. Bacteria of dental caries in primary and permanent teeth in children and young adults[J]. Journal of Clinical Microbiology, 2008 46 (4): 1407.
    [51] Li Y., Ku C. Y. S., Xu J., Saxena D., Caufield P. W. Survey of oral microbial diversity using PCR-based denaturing gradient gel electrophoresis[J]. Journal of dental research, 2005 84 (6): 559.
    [52] Ercolini D. PCR-DGGE fingerprinting: novel strategies for detection of microbes in food[J]. Journal of Microbiological Methods, 2004 56 (3): 297-314.
    [53] Yang X., Xie L., Li Y., Wei C. More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body[J]. PLoS One, 2009 4 (6): e6074.
    [54] Andersson A. F., Lindberg M., Jakobsson H., B ckhed F., Nyren P., Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing[J]. PLoS One, 2008 3 (7).
    [55] Aas J. A., Paster B. J., Stokes L. N., Olsen I., Dewhirst F. E. Defining the normal bacterial flora of the oral cavity[J]. Journal of Clinical Microbiology, 2005 43 (11): 5721.
    [56] Egland P. G., Palmer R. J., Kolenbrander P. E. Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: Signaling in flow conditions requires juxtaposition[J]. Proceedings of the National Academy of Sciences, 2004 101 (48): 16917.
    [57] Chalmers N. I., Palmer Jr R. J., Cisar J. O., Kolenbrander P. E. Characterization of a Streptococcus sp.-Veillonella sp. Community Micromanipulated from Dental Plaque[J]. Journal of Bacteriology, 2008 190 (24): 8145.
    [58] Choi E. J., Lee S. H., Kim Y. J. Quantitative real-time polymerase chain reaction for Streptococcus mutans and Streptococcus sobrinus in dental plaque samples and its association with early childhood caries[J]. Int J Paediatr Dent, 2009 19 (2): 141-7.
    [59] Arif N., Sheehy E. C., Do T., Beighton D. Diversity of Veillonella spp. from sound and carious sites in children[J]. Journal of dental research, 2008 87 (3): 278.
    [60] Takeshita T., Nakano Y., Kumagai T., Yasui M., Kamio N., Shibata Y., Shiota S., Yamashita Y. The ecological proportion of indigenous bacterial populations in saliva is correlated with oral health status[J]. Isme J, 2009 3(1): 65-78.
    [61] Ohara-Nemoto Y., Kishi K., Satho M., Tajika S., Sasaki M., Namioka A., Kimura S. Infective endocarditis caused by Granulicatella elegans originating in the oral cavity[J]. Journal of Clinical Microbiology, 2005 43 (3): 1405.
    [62] Frank D. N., St Amand A. L., Feldman R. A., Boedeker E. C., Harpaz N., Pace N. R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases[J]. Proceedings of the National Academy of Sciences, 2007 104 (34): 13780.
    [63] Chhour K. L., Nadkarni M. A., Byun R., Martin F. E., Jacques N. A., Hunter N. Molecular analysis of microbial diversity in advanced caries[J]. Journal of Clinical Microbiology, 2005 43 (2): 843.
    [64] Corby P. M., Lyons-Weiler J., Bretz W. A., Hart T. C., Aas J. A., Boumenna T., Goss J., Corby A. L., Junior H. M., Weyant R. J. Microbial risk indicators of early childhood caries[J]. Journal of clinical microbiology, 2005 43 (11): 5753.
    [65] Van Houte J. Bacterial specificity in the etiology of dental caries[J]. International dental journal, 1980 30 (4): 305.
    [66] Dige I., Raarup M. K., Nyengaard J. R., Kilian M., Nyvad B. Actinomyces naeslundii in initial dental biofilm formation[J]. Microbiology, 2009 155 (7): 2116.
    [67] Ready D., D'Aiuto F., Spratt D. A., Suvan J., Tonetti M. S., Wilson M. Disease severity associated with presence in subgingival plaque of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Tannerella forsythia, singly or in combination, as detected by nested multiplex PCR[J]. Journal of Clinical Microbiology, 2008 46 (10): 3380.
    [68] Jenkinson H. F., Lamont R. J. Oral microbial communities in sickness and in health[J]. Trends in Microbiology, 2005 13 (12): 589-595.
    [69] Acinas S. G., Klepac-Ceraj V., Hunt D. E., Pharino C., Ceraj I., Distel D. L., Polz M. F. Fine-scale phylogenetic architecture of a complex bacterial community[J]. PHYLOGENETIC 2004: 33.
    [70] Pedros-Alio C. Marine microbial diversity: can it be determined?[J]. Trends in Microbiology, 2006 14 (6): 257-263.
    [71] Munson M. A., Banerjee A., Watson T. F., Wade W. G. Molecular analysis of the microflora associated with dental caries[J]. Journal of Clinical Microbiology, 2004 42 (7): 3023.
    [72] Horz H. P., Vianna M. E., Gomes B., Conrads G. Evaluation of universal probes and primer sets for assessing total bacterial load in clinical samples: general implications and practical use in endodontic antimicrobial therapy[J]. Journal of Clinical Microbiology, 2005 43 (10): 5332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700