用户名: 密码: 验证码:
木质素降解微生物特性及其对农业废物堆肥腐殖化的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业废物,尤其是农作物秸秆中含有大量的木质纤维素,其中的木质素成分复杂,分解困难,导致腐殖质转化不完全,堆肥质量不高,因此加速木质素转化为腐殖质成为农业废物堆肥充分腐熟的关键。论文系统研究了木质素的生物降解特性及其对农业废物堆肥腐殖化的影响,首先研究了两种木质素降解微生物简青霉(Penicillium simplicissimum)和栗褐链霉菌(Streptomyces badius)及一组木质素降解复合菌的木质素降解特性。在此基础上,通过固态发酵实验研究了不同木质素降解微生物对腐殖质形成的影响,并在农业废物堆肥中以黄孢原毛平革菌(Phanerochaete chrysosporium)为接种剂研究了在不同发酵时期接种木质素降解微生物对堆肥腐殖化的影响,为加速堆肥腐熟、提高堆肥品质提供理论指导。
     对P. simplicissimum产漆酶的调控研究发现,附加碳源抑制漆酶Lac活性,而适量氮源可显著提高酶活,常用的Lac诱导剂ABTS和二甲苯胺并不能促进简青霉产生Lac。在发酵过程中,木质素的降解率实际上可能是由Lac的聚合和解聚作用整合的结果。各种附加营养物诱使P. simplicissimum在第3d出现Lac活性峰,该峰值下漆酶聚合能力特别强,直接影响最后木质素的降解率。
     S. badius对稻草木质纤维素的降解研究发现,附加碳氮源对过氧化物酶的产生及木质素的降解均有促进作用,但对半纤维素酶和纤维素酶的产生及半纤维素和纤维素的降解均有抑制作用;附加氮源-酵母膏明显促进可酸沉淀的多聚木质素(APPL)的产生,而附加氮源-氯化铵和碳源-葡萄糖均抑制APPL的产生。
     分别从农业废物堆肥的升温、降温以及腐熟阶段筛选出三组木质素降解复合菌MC1、MC2和MC3。初筛和复筛的结果均表明复合菌MC1具有高效木质素降解能力。复合菌MC1的营养调控正交试验研究表明,该复合菌的最佳培养条件是:摇床转速为120r/min,第一碳源为蔗糖,氮源为蛋白胨,添加ABTS、藜芦醇、吐温80、Cu2+和Mn2+,且第二碳源碱木质素的加入时间为培养的第2d。在此最佳综合培养条件下,复合菌MC1培养6d后的LiP酶活为579.91U/L,MnP酶活为882.49U/L,Lac酶活为80.94U/L,培养10d后的木质素降解率为46.75%。
     比较研究了两种不同木质素降解菌(P. chrysosporium和S. badius)及土著微生物对腐殖质形成的影响。结果表明,接种木质素降解微生物有利于腐殖质总量的形成,且S. badius更有利于腐殖质的形成。由于两种微生物具有不同的木质素降解机理,它们降解木质素形成腐殖质的过程也有所不同。P. chrysosporium转化木质素生成简单分子富里酸(FA),然后聚合FA生成复杂的分子胡敏酸(HA),而S. badius改性木质素,先生成HA,然后将HA转化成FA。
     考察了在农业废物堆肥的不同发酵时期接种P. chrysosporium对堆肥腐殖组分、腐熟度及胡敏酸光学特性的影响。结果表明,在一次发酵时期接种P. chrysosporium对木质素的降解和腐殖质的形成都没有明显的促进作用,而在二次发酵时期接种P. chrysosporium既能提高木质素的降解率,也能促进腐殖质的形成。另外,在二次发酵时期接种P. chrysosporium可以使堆肥的腐熟期缩短7d,但一次发酵时期接种并没有明显缩短堆肥周期。胡敏酸光谱扫描结果进一步表明,在一次发酵时期接种黄孢原毛平革菌不能明显促进胡敏酸的腐殖化程度,但在二次发酵时期接种黄孢原毛平革菌能明显促进堆肥中胡敏酸结构的复杂化,增加其芳构化程度及缩合程度,从而明显提高胡敏酸腐殖化程度。
Agricultural wastes, especially crop straws, contain many quantities of lignocellulose. The main component, lignin, is difficult to be biodegraded due to the complex component and leads the insufficent transfomation of humus and low quality of compost. So accelerelating the humification of lignin is critical to the sufficient maturity of the agricultural wastes. Characteristics of ligninolytic microorganisms and their effects on the humification of the agricultural wastes composting were studied. Firstly, the lignin degrading characteristics of Penicillium simplicissimum, Streptomyces badius and one composite microorganism were studied. Based on these, the effect of biodelignification of rice straw by different ligninolytic organisms on humus formation was discussed in solid state fermentation. Lastly, the lignocellulolytic microorganism, Phanerochaete chrysosporium, was inoculated during different phases of agricultural wastes composting and its effects on the humification were studied. These results would give theory instruction for accelerating composting and improve the compost quality.
     The laccase activities of P. simplicissimum during solid state fermentation with rice straw were studied. Results showed that all supplemental carbon nutrients inhibited the laccase activity, while proper concentration of supplemental nitrogen sources remarkably enhanced the laccase activity. The enhancement of laccase activity by ordinary laccase inducers 2, 2’-azino-bis (3-ethylbenzthiazoline-6- sulfonic acid) and xylidine was not observed in this study. Lignocellulose degradation was improved when laccase activity was relatively low during the fermentation, which proved the polymerizing and depolymerizing function of laccase in lignin degradation by P. simplicissimum. All supplemental sources might induce the peak of Lac activity on day 3 when the polymerizing function was especially strong.
     The lignocellulose degradation of rice straw by Streptomyces badius during solid state fermentation was researched. The results showed that nitrogen resouce-yeast extract stimulated the production of peroxidase and increased the degradation rate of lignin. However they inhibited the production of both hemicellulase and cellulase. They also decreased the degradation rate of the hemicellulose and cellulose. Nitrogen source-yeast extract obviously stimulated the production of APPL, but nitrogen source-ammonium chloride and carbon source-glucose inhibited its production.
     Three composite microorganisms (MC1, MC2 and MC3) with the ability of lignin degradation were screened from three stages of agricultural waste composting and the three stages were warming phase, cooling phase and falling phase, respectively. The results of preliminary screening and further screening both indicated that the composite microorganism MC1 screened from the warming phase had the best ability to degrade lignin. And then, orthogonal experiment was adopted to study its nutritional regulation. The results showed that the optimum integrative culture conditions of MC1 were as follows: rotate speed was 120 r/min; the first carbon source was sucrose, nitrogen source was peptone. ATBS, Veratryl alcohol, Tween-80, Cu2+ and Mn2+ should be added and the second carbon source was added after 2 days. Undering the optimum integrative culture conditions, the enzyme activity of LiP, MnP and Lac after 6 days were 579.91 U/L, 882.49 U/L and 80.94 U/L, respectively. The lignin degradation rate was 46.75% after 10 days.
     The effects of biodelignification of rice straw by two different ligninolytic organisms (P. chrysosporium and S. badius) and aboriginal microbe on humus formation were compared. The results indicate that lignin degrading microorganisms could promote humus formation. Furthermore, S. badius could accelerate the humus formation more than P. chrysosporium. Since the degrading mechanisms of two strains were different, the approaches of humus formation from lignin with P. chrysosporium and S. badius were also different. P. chrysosporium metabolized lignin to simple molecules (FA), which then were polymerized to complex molecules (HA). While S. badius modified lignin to HA, which then were transformed to FA.
     The lignocellulolytic microorganism, P. chrysosporium, was inoculated during diifferent fermentation phases of agricultural wastes composting and its effects on humus, compost maturity and spectroscopic characterization of humic acid fraction were investigated. The results showed that it has no obvious effect on the lignin degradation and humus formation when P. chrysosporium was inoculated during the first fermentation phase of composting, but it can increase the lignin degradation and stimulate the humus release when it was inoculated during the second fermentation phase of composting. When inoculated during the second fermentation phase, P. chrysosporium shorten the period of the composting, while it did not short the period of the composting when inoculated during the first fermentation phase. Spectroscopic characterization of humic acid fraction showed that the inoculation P. chrysosporium increased the degree of the aromatization and the molecular polymerization of humic acid when inoculated during second fermentation phase, while it did not produce an obvious change on the humification degree of humic acid when inoculated during the first fermentation phase.
引文
[1]徐达,周青.农业废物的环境生态效应与资源化利用.中国农学通报,2006,22(6):414-417
    [2]朱凤连,马友华,周静,等.我国畜禽粪便污染和利用现状分析.安徽农学通报,2008,14(13):48-50
    [3]陈志宇,苏继影,栾冬梅.畜禽粪便堆肥技术研究进展.当代畜牧,2004,10:41-43
    [4]鲁聪达,杨继隆,高发兴.畜禽废物的无害化资源化处理技术.浙江工业大学学报,2003,31(2):192-196
    [5]王丽宏,张立峰.农作物秸秆资源的开发利用.河北农业大学学报,2003,26(S1):31-33
    [6]俞才华.秸秆资源化利用技术分析.能源研究与信息,2008,24(2):86-90
    [7]柳建国,卞新民,李慧,等.农业有机固体废物资源化的研究.浙江农业科学,2008,2:175-177
    [8]刘丽香,吴承祯,洪伟,等.农作物秸秆综合利用的进展.亚热带农业研究,2006,2(1):75-80
    [9]钱宏兵.稻麦秸秆直接还田技术的研究.土壤肥料,1998,(2):26-28
    [10]宿庆瑞.玉米秸秆过腹还田培肥增产综合技术与效益的研究.黑龙江农业科学,1997,(6):35-36
    [11]王萌.试论秸秆综合利用与农业生态环境保护.农业学报,2007,19(12):95-97
    [12]朱海生,陈志宇,栾冬梅.畜粪便的综合利用.黑龙江畜牧兽医,2004,(4):59-60
    [13]李建国,王金莉.动物粪便的开发潜力与应用.资源开发,2004,(4):13-14
    [14]戴洪刚,唐金陵,杨志军.利用蝇蛆处理畜禽粪便污染的生物技术.农业环境与发展,2002,(1):34-35
    [15]张新阳.畜禽粪便资源利用现状及前景.畜牧业,1999,(9):59-60
    [16]赵小明,龚月生.畜禽粪便再生饲料价值及研究展望.畜牧兽医杂志,2000,19(2):20-22
    [17]相俊红,杨宁,刘强.农村废弃物资源化处理及利用技术.农机科技推广,2004,(5):7
    [18]吴华忠.利用畜禽粪便促进沼气发展.浙江畜牧兽医,2001,26(3):42
    [19]单昊书,吴瑛,徐越,等.畜禽粪便在利用现状和存在的问题探讨.中国家禽,2007,29(16):44-45
    [20]宋彦勤,胡润青,李俊峰,等.利用沼气技术治理大中型畜禽场污染.中国能源,2002,(12):16-181
    [21]汪建飞,于群英,陈世勇,等.农业固体有机废弃物的环境危害及堆肥化技术展望.安徽农业科学,2006,34(18):4720-4722
    [22]赵青玲,杨继涛,李遂亮,等.畜禽粪便资源化利用技术的现状及展望.河南农业大学学报,2003,37(2):184-187
    [23]赵由才.生活垃圾资源化原理与技术.北京:化学工业出版社,2002,140
    [24]罗宇煊,张甲耀,马瑛.有害废物堆肥技术及堆肥生态系统研究进展.上海环境科学,1999,18(10):478-480
    [25]李国学,张福锁.固体废物堆肥化与有机复混肥生产.北京:化学工业出版社,2000,22-25
    [26] Pavlostathis S G, Misra G, Prytula M. Anaerobic processes. Water Environment Res., 1995, 67(4): 459-470
    [27]芈振明,高忠爱,祁梦兰,等.固体废物的处理与处置.北京:高等教育出版社,1996,245
    [28]李艳霞,王敏健,王菊思,等.城市固体废弃物堆肥化处理的影响因素.土壤与环境,1999,8(1):61-65
    [29] Wei S, Jeanette M N, Bruce E M, et al. Effects of aeration and moisture during windrow composting on the nitrogen fertilizer values of dairy waste composts. Applied Soil Ecology, 1999, 11(1): 17-28
    [30] Eliane D G D, Angelo S M M, Carlota de O R Y, et al. Effect of carbon: nitrogen ratio (C:N) and substrate source on glucose-6-phosphate dehydrogenase (G-6-PDH) production by recombinant Saccharomyces cerevisiae. Journal of Food Engineering, 2006, 75(1): 96-103
    [31] Fan Y T, Li C L, Lay J J, et al. Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost. Bioresource Technology, 2004, 91(2): 189-193
    [32] Rowan A K, Snape J R, Fearnside D, et al. Composition and diversity of ammonia oxidising bacterial communities in waste water treatment reactions of different design treating identical waste water. FEMS Microbiology Ecology, 2003, 43(2): 195-206
    [33] Xi B D, Liu H L, Zeng G M, et al. Composting MSW and sewage sludge with effective complex microorganisms. Journal of Environmental Sciences (China),2002, 14(2): 264-268
    [34]鄢洪德,汪钊,李光伟.产酯酶微生物菌种的筛选研究.工业微生物,2007,37(6):44-48
    [35]赵启美,顾向阳.高效苯胺降解菌筛选方法研究.河南农业大学学报,2000,34(2):174-176
    [36]席北斗,孟伟,刘鸿亮,等.垃圾堆肥高效纤维素分解菌的筛选与培养技术.环境污染与防治,2002,24(6):339-341
    [37]马放,杨基先,金文标,等.环境生物制剂的开发与应用.北京:化学工业出版社,2004,25-28
    [38]崔宗均,李美丹,朴哲,等.一组高效稳定纤维素分解菌复合系MC1的筛选及功能.环境科学,2002,23(3):36-39
    [39]赵琼,杨谦.细菌纤维素高产菌株的紫外诱变育种研究.食品与发酵工业,2007,33(7):26-28
    [40]冯明谦,汪立飞,刘德明.高温好氧垃圾堆肥中人工接种初步研究.四川环境,2000,19(3):27-30
    [41]顾希贤,许月蓉.垃圾堆肥微生物接种实验.应用与环境生物学报,1995,1(3):274-278
    [42]杨朝晖,曾光明,袁兴中,等.微生物选育技术在生活垃圾堆肥处理中的应用.环境卫生工程,2003,11(3):115-118
    [43] Ichida J M, Rizoval K, Lefevre C A, et al. Bacterial inoculum enhances keratin degradation and biofilmformation in poultrycompost. Journal of Microbiological Methods, 2001, 47(2): 199-208
    [44]李国学,黄懿梅,姜华.不同堆肥材料及引入外源微生物对高温堆肥腐熟度影响的研究.应用与环境生物学报,1999,5(sl):139-143
    [45]沈根祥,袁大伟,凌霞芬,等. Hsp菌剂在牛粪堆肥中的试验应用.农业境保护,1999,18(2):62-64
    [46]庞金华,程平宏,余廷园.两种微生物制剂对猪粪堆肥的效果.农业环境保护,1998,17(2):71-73
    [47]席北斗,刘鸿亮,孟伟,等.高效复合微生物菌群在垃圾堆肥中的应用.环境科学,2001,22(5):122-125
    [48] Marcello C, Cristina D, Nerinaseba S, et al. Nicotine decontamination of tobaccoagro- industrial waste and its degradation by micro-organisms. WasteManagement and Research, 1997, 15(4): 349-358
    [49]刘庆余,谢君,周颖辉,等.城市污泥发酵处理中微生物对有机物的降解.中国环境科学,1995,15(3):215-218
    [50]赵丽君,杨意东,胡振苓.城市污泥堆肥技术研究.中国给水排水,1999,15(9):58-60
    [51]赵京音,姚政.微生物制剂促进鸡粪堆肥腐熟和臭味控制的研究.上海农学院学报,1995,13(3):193-197
    [52]李承强,魏源送,樊耀波,等.堆肥腐熟度的研究进展.环境科学进展,1999,7(6):1-12
    [53]李艳霞,王敏健,王菊思.有机固体废弃物堆肥的腐熟度参数及指标.环境科学,1999,20(2):98-103
    [54] Paola C, Guido A, Roberto M, et al. Study of the organic matter evolution during municipal solid waste composting aimed at identifying suitable parameters for the evaluation of compost maturity. Waste Management, 2005, 25(2): 209-213
    [55] Bernal M P, Paredes C, Sánchez-Monedero M A, et al. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology, 1998, 63(1): 91-99
    [56]黄国锋,钟流举,张振钿,等.猪粪堆肥化处理过程中的氮素转变及腐熟度研究.应用生态学报,2002,13(11):1459-1462
    [57] Sharon Z N, Omer M, Jorge T, et al. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biology & Biochemistry, 2005, 37(11): 2109-2116
    [58]李吉进,郝晋珉,邹国元,等.高温堆肥碳氮循环及腐殖质变化特征研究.生态环境,2004,13(3):332-334
    [59] Provenzano M R, Senesi N, Piccone G. Thermal and Spectroscopic Characterization of Composts from Municipal Solid Waste. Compost science & Utilization, 1998, 26(3): 172-179
    [60] Ghita A B, Mohamed H, Juan C, et al. Characterization of fulvic acids by elemental and spectroscopic (FTIR and 13C-NMR)analyses during composting of olive mill wastes plus straw. Bioresource Technology, 2004, 93(3): 285-290
    [61]倪治华,薛智勇.猪粪堆制过程中主要酶活性变化.植物营养与肥料学报,2005,11(3):406-411
    [62]莫测辉,吴启堂,周友平,等.城市污泥对作物种子发芽及幼苗生长影响的初步研究.应用生态学报,1997,8(6):645-649
    [63]蒋挺大.木质素.北京:化学工业出版社,2001,16-18
    [64] Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 2000, 72(2): 169-183
    [65] Carol A C. Bacterial Associations with Decaying Wood: a Review. International Biodeterioration & Biodegradation, 1996, 37(1): 101-107
    [66] Zacchi L, Burla G, Zuolong D, et al. Metabolism of cellulose by Phanerochaete chrysosporium in continuously agitated culture is associated with enhanced production of lignin peroxidase. Journal of Biotechnology, 2000, 78(2): 185-192
    [67] Shingo K, Masanori A, Noriko O, et al. Degradation of a non-phenolic L-O-4 substructure and of polymeric lignin model compounds by laccase of Coriolus versicolor in the presence of 1-hydroxybenzotriazole. FEMS Microbiology Letters, 1999, 170(1): 51-57
    [68]席北斗,刘鸿亮,孟伟,等.垃圾堆肥高效复合微生物菌剂的制备.环境科学研究,2003,16(2):58-64
    [69] Reddy G V, Babu P R, Komaraiah P, et al. Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajorcaju). Process Biochemistry, 2003, 38(10): 1457-1462
    [70] Tuomela M, Oivanen1 P, Hatakka A. Degradation of synthetic 14C-lignin by various white-rot fungi in soil. Soil Biology & Biochemistry, 2002, 34(11): 1613-1620
    [71]陈石根,周润琪.酶学.上海:复旦大学出版社,2001,12-25
    [72] Kamoda S, Saburi Y. Structural and enzymatical comparison of lignostilbene-α,β-dioxygenase isozymes, I, II, and III, from Pseudomonas paucimobilis TMY1009. Bioscience Biotechnology & Biochemistry, 1993, 57: 931-934
    [73] Borneman W S, Hartley R D, Morrison W H, et al. Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Applied Microbiology and Biotechnology, 1990, 33(3): 345-351
    [74] Hernández M, Hernández-Coronado M J, Montiel M D, et al. Pyrolysis/gas chromato-graphy/mass spectrometry as a useful technique to evaluate the ligninolytic action of streptomycetes on wheat straw. Journal of Analytical and Applied Pyrolysis, 2001, 58-59: 539-551
    [75] Falcón M A, Rodríguez A, Carnicero A, et al. Isolation of microorganisms with lignin transformation potential from soil of tenerife island. Soil Biology & Biochemistry, 1995, 27(2): 121-126
    [76]席北斗,刘鸿亮,白庆中,等.堆肥中纤维素和木质素的生物降解研究现状.环境污染治理技术与设备,2002,3(3):19-23
    [77] Zhao J, de Koker T H, Janse B J H. Comparative studies of lignin peroxidases and manganese-dependent peroxidases produced by selected white rot fungi in solid media. FEMS Microbiology Letters, 1996, 145(3): 393-399
    [78] Ejechi B O, Obuekwe C O, Ogbimi A O. Microchemical Studies of Wood Degradation by Brown Rot and White Rot Fungi in Two Tropical Timbers. International Biodeterioration and Biodegradation, 1996, 38(2): 119-122
    [79] Kenneth E H. Extracellular free radical biochemistry of ligninolytic fungi. New Journal of Chemistry, 1996, 20(2): 195-198
    [80]张晶,黄民生,徐亚同.白腐真菌木质素降解酶的研究及应用进展.净水技术,2004,23(1):19-21
    [81] Pérez J, Muńoz-Dorado T, de la R J, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology, 2002, 5(2): 53-63
    [82]刘尚旭,赖寒.木质素降解酶的分子生物学研究进展.重庆教育学院学报,2001,14(3):64-67
    [83] Cullen D. Recent advances on the molecular genetics of liniolytic fungi. Journal of Biotechnology, 1997, 53(3): 273-289
    [84]冀玲芳,石淑兰.木质素的微生物降解.广西轻工业,2002,(1):4-5
    [85]王宜磊.碳源和氮源对彩绒革盖菌Coriolus versicolor木质纤维素酶和木质素酶分泌的影响.微生物学杂志,2000,20(1):29-31
    [86]李翠珍,文湘华.白腐真菌F2的生长及产木质素降解酶特性的研究.环境科学学报,2005,25(2):226-231
    [87] Barder M J, Crawford D L. Effects of carbon and nitrogen supplementation on lignin and cellulose decomposition by a Streptomyces. Canadian Journal of Microbiology, 1981, 27(8): 859-863
    [88]罗宇煊,张甲耀,管筱武,等.嗜碱细菌降解木素的复合碳源共代谢研究Ⅰ——复合碳源组合方式及氮源的选择.城市环境与城市生态,2000,13(2):8-10
    [89] Singhal V, Rathore VS. Effects of Zn2+ and Cu2+ on growth,lignin degradation andligninolytic enzymes in Phanerochaete chrysosporium. World Journal of Microbiology & Biotechnology, 2001, 17(3): 235-240
    [90] Kerem Z, Hadar Y. Effect of manganese on lignin degradation by Pleurotus ostreatus during solig-state fermentation. Applied and Environmental Microbiology, 1993, 59(12): 4115-4120
    [91]肖亚中.影响白腐真菌AH28-2菌株漆酶合成的因子和发酵条件.生物工程学报,2002,2(2):579-583
    [92]胡道伟,朱雄伟,梅运军.白腐菌产漆酶培养条件的研究.华中科技大学学报自然科学版,2003,31(4):111-113
    [93] Zacchi L, Morris I, Harvey P J. Disordered ultrastructure in lignin-peroxidase secreting of the white-rot fungus Phanerochaete chrysosporium. Microbiology, 2000, 146: 759-765
    [94]柯世省,夏黎明,张朝晖.氧浓度对固定化黄孢原毛平革菌合成过氧化物酶的影响.林产化学与工业,2000,20(3):40-45
    [95]丁佐龙.接种物对黄孢原毛平革菌产木质素过氧化物酶能力的影响.安徽农业大学学报,1997,24(3):240-244
    [96]鲁时瑛,王树英,李华钟.黄孢原毛平革菌产蛋白酶对过氧化物酶的影响.无锡轻工大学学报,2003,22(4):23-31
    [97] Haddadin M S, R Al-natour, S Al-qsous. Bio-degradation of lignin in olive pomace by freshly-isolated species of Basidiamycete. Bioresouree Technology, 2002, 82: 131-137
    [98] Kadimaijev D A, Revin V V, Atykyan N A. Effect of wood modification on lignin consumption and synthesis of lignolytic enzymes by the fungus panus (Lentinus) tigrinus. Applied Biochemistry and Microbiology, 2003, 39(5): 488-492
    [99]方建新,史延年,贾志芬,等.芳氧基乙酰基-3-(a-吡啶基)丙酯的合成及生物活性研究.高等学校化学学报,1991,12(5):613-616
    [100]李学垣.土壤化学.北京:高等教育出版社,2001,46-47
    [101] Kim D J, Wi-Hao H. Evaluation of toxicity of the pesticides, chlorpyrifos and arsenic, in the presence of compost humic substances in aqueous systems. Journal of Hazardous Materials, 2003, 103(1): 93-105
    [102] Pandey A K, Pandey S D, Virendra M, et al. Role of humic acid entrapped calcium alginate beads in removal of heavy metals. Journal of Hazardous Materials, 2003, 98(2): 177-181
    [103] Fustec E, Chauvet E, Gas G. Lignin Degradation and Humus Formation in Alluvial Soils and Sediments. Applied and Environment Microbiology, 1989, 55(4): 922-926
    [104] Sánchez-Monedero M, Roig A, Cegarra J, et al. Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting. Bioresource Technology, 1999, 70(2): 193-201
    [105] Yavmetdinov I S, Stepanova E V, Gavrilova V P, et al. Isolation and Characterization of Humin-Like Substances Produced by Wood-Degrading White Rot Fungi. Applied Biochemistry and Microbiology, 2003, 39(3): 257-264
    [106] Crawford D L, PomettoⅢA L, Crawford R L. Lignin Degradation by Streptomyces viridosporus: Isolation and Characterization of a New Polymeric Lignin Degradation Intermediate. Applied and Environment Microbiology, 1983, 45(3): 898-904
    [107]席北斗,李英军,刘鸿亮,等.纤维分解和EM菌协同作用在有机废物堆肥中的应用.环境与开发,2001,16(4):89-93
    [108] Kakezawa M, Mimura A, Takahara Y. Application of two-step composting process to rice straw compost. Soil Science and Plant Nutrition, 1992, 38(2):43-50
    [109] López M J, Elorrieta M A, Vargas-García M C, et al. The effect of aeration on the biotransformation of lignocellulosic wastes by white-rot fungi. Bioresource Technology, 2002, 81(3):123-129
    [110] Huang D L, Zeng G M, Hu T J, et al. Preliminary study on the application of Phanerochaete Chrysosporium in composting of lignin waste[A]. In: Zeng Guang-ming. Proceedings of Energy Enviroment 2003 Conference[C], Changsha, China, 2003: 907-912
    [111] Taccari M, Stringini M, Comitini F, et al. Effect of Phanerochaete chrysosporium inoculation during maturation of co-composted agricultural wastes mixed with olive mill wastewater. Waste Management, 2009, 29(5): 1615-1621
    [112] Requena N, Azcon R, Baca M T. Chemical changes in humic substances from compost due to incubation with ligno-cellulolytic microorganisms and effects on lettuce growth. Applied microbiology and biotechnology, 1996, 45(6): 857-863
    [113] Vargas-García M C, Suárez-Estrella F, López M J, et al. Effect of inoculation in composting processes: modifications in lignocellulosic fraction. Waste Management, 2007, 27(9): 1099-1107
    [114]黄得扬,陆文静,王洪涛.高效纤维素分解菌在蔬菜-花卉秸秆联合好氧堆肥中的应用.环境科学,2004,25(2):146-149
    [115]王伟东,王小芬,王彦杰,等.接种木质纤维素分解复合菌系对堆肥发酵进程的影响.农业工程学报,2008,24(7):193-198
    [116] Vargas-García M C, Suárez-Estrella F F, López M J, et al. Influence of microbial inoculation and co-composting material on the evolution of humic-like substances during composting of horticultural wastes. Process Biochemistry, 2006, 41(2): 1438-1443
    [117] Zeng G M, Huang D L, Huang G H,et al. Composting of lead-contaminated solid waste with inocula of white-rot fungus. Bioresource Technology, 2007, 98(6): 320-326
    [118] Faure D, Deschamps A M. The effect of bacterial inoculation on the initiation of composting of grape pulps. Bioresource Technology, 1991, 37(7): 235-238
    [119] Magan N, Hand P, Kirkwood I A, et al. Establishment of microbial inocula on decomposing wheat straw in soil of different water contents. Soil Biology and Biochemistry, 1989, 21(1): 15-22
    [120]尹峻峰,王涛.真菌降解木质素的研究现状.云南林业科技,2003,102(1):75-78
    [121]王地,刘期松.长白山地区真菌降解木质素的研究.微生物学报,1990,30(4):296-304
    [122]郁红艳.农业废物堆肥化中木质素的降解及其微生物特性研究. [湖南大学博士学位论文].长沙:湖南大学环境科学与工程学院,2007,106
    [123]付时雨,余惠生,王佳玲.漆酶-助剂体系催化氧化具有α-苄基氢的木素模型物.纤维素科学与技术,1999,7(1):45-50
    [124] Leontievsky A, Myasoedova N, Pozdnyakova N, et al. Yellow laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Letters, 1997, 413(3): 446-448
    [125] Niladevi K N, Prema P. Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresource Technology, 2008, 99(11): 4583-4589
    [126] Songulashvili G, Elisashvili V, Wasser S P, et al. Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industrywastes. Enzyme and Microbial Technology, 2007, 41(1-2): 57-61
    [127]王玉万,徐文玉.木质纤维素基质发酵物中半纤维素、纤维素和木素的定量分析程序.微生物学通报,1987,13(2):82-84
    [128] Ardon O, Kerem Z, Hadar Y. Enhancement of lignin degradation and laccase activity in Pleurotus ostreatus by cotton stalk extract. Canadian Journal of Microbiology, 1998, 44(7): 676-680
    [129] Kahraman S S, Gurdal I H. Effect of synthetic and natural cultures media on laccase production by white rot fungi. Bioresource Technology, 2002, 82(3): 215-217
    [130]钞亚鹏,叶军,钱世钧.担子菌组成型漆酶产生特性的研究.微生物学报,2000,40(6):628-632
    [131] Srinivasan C, Dsouza T M, Boominathan K, et al. Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Applied and Environmental microbiology, 1995, 61(12): 4274-4277
    [132] Fu S Y, Yu H S,Buswell J A. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Pleurotus sajor-caju. FEMS Microbiology Letters, 1997, 147(1): 133-137
    [133] Arora D S, Gill P K. Laccase production by some white rot fungi under different nutritional conditions. Bioresource Technology, 2000, 73(3): 283-285
    [134] Youn H D, Hah Y C, Kang S O. Role of laccase in lignin degradation by white-rot fungi. FEMS Microbiology Letters, 1995, 132(3): 183-188
    [135] Bourbonnais R, Paice M G, Reid D, et al. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2, 2’-azinobis (3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Applied and Environmental Microbiology, 1995, 61(5): 1876-1880
    [136] Hou H M, Zhou J T, Wang J, et al. Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochemistry, 2004, 39(11): 1415-1419
    [137] Rodríguez A, Falcn M A, Carnicero A, et al. Laccase activities of Penicillium chrysogenum in relation to lignin degradation. Applied and Environment Microbiology, 1996, 45(3): 399-403
    [138] Ishihara T, Miyazaki M. Oxidation of milled wood lignin by fungal laccase. Mokuzai Gakkaishi, 1972, 18(8): 415-419
    [139] Higuchi T. Mechanisms of lignin degradation by lignin peroxidase and laccase of white-rot fungi. ACS Symposium Series, 1989, 399: 482-502
    [140] Li K C, Xu F, Karl-erik L. Eriksson. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Applied and Environmental Microbiology,1999,65(6): 2654-2660
    [141] Eggert C, Temp U, Dean J F D, et al. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Letters, 1996, 391(1-2): 144-148
    [142] Hernández M, Hernández-Coronado M J, Ball A S, et al. Degradation of alkali-lignin residues from solid-state fermentation of wheat straw by streptomycetes. Biodegradation, 2001, 12(4): 219-223
    [143] Rodríguez J, Hernández-Coronado M J, Hernández M, et al. Chemical characterization by pyrolysis/gas chromatography/mass spectrometry of acid precipitable polymeric lignin (APPL) from wheat straw transformed by selected Streptomyces strains. Analytica Acta, 1997, 345: 121-129
    [144] Ramachandra M, Crawford D L, PomettoⅢA L. Extracellular enzyme activities during lignocellulose degradation by Streptomyces spp.: a comparative study of wild-type and genetically manipulated strains. Applied and Environment Microbiology,1987, 53(12): 2754-2760
    [145] Donnelly P K, Crawford D L. Production by Streptomyces viridosporus T7A of an Enzyme Which Cleaves Aromatic Acids from Lignocellulose. Applied and Environment Microbiology, 1988, 54(9): 2237-2244
    [146] Ramachandra M, Crawford D L, Hertel G. Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Applied and Environment Microbiology, 1988, 54(12): 3057-3063
    [147] Gottshalk L M F, Macedo J M B, Bon E P S. Lignin peroxidase production by Streptomyces viridosporus T7A : Use of corn oil as a carbon source. Applied Biochemistry and Biotechnology, 1999, 79(1-3): 771-778
    [148]郭文硕,黄宗安.锥栗对栗疫病抗性与过氧化物酶的关系.福建林学院学报,2000,20(1):5-8
    [149] Baily M J, Biely P, Poutanen K J. Interlaboratory testing of methods for assay of xylanase. Biotechnology,1992(23):257-270
    [150]胡平平,付时雨,余惠生.固体培养条件下氮源对Panus conchatus酶系及漆酶同工酶的影响.纤维素科学与技术,2001,9(1):2-7
    [151] Giroux H, Vidal P, Bouchard J, et al. Degradation of kraft indulin lignin by Streptomyces viridosporus and Streptomyces badius. Applied and EnvironmentMicrobiology,1988,54(12):3064-3070
    [152]王彩华,余惠生,付时雨.贝壳状革耳菌和黄孢平革菌固体培养酶系比较.微生物学报,1999,39(2):127-131
    [153] PomettoⅢA L, Crawford D L. Effects of pH on lignin and cellulose degradation by Streptomyces viridosporus. Applied and Environment Microbiology, 1986, 52(2): 246-250
    [154]郁红艳,曾光明,黄国和,等.木质素降解真菌的筛选及产酶特性.应用与环境生物学报,2004,10(5):639-642
    [155] Kluczek T B, Tuomela M, Hatakka A, et al. Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus. Applied Microbiol Biotechnology, 2003, 61(4): 374-379
    [156] Motohiro N, Osamu O, Julian D. Isolation and characterization of Streptomyces sp. NL15-2K capable of degrading lignin-related aromatic compounds. Journal of Bioscience and Bioengineering, 2006, 102(2): 124-127
    [157] Karmakar S, Greene H L. Oxidative destruction of chlorofluoro carbons (CFC11 and CFC12) by zeolite catalysts. Journal of catalysis, 1992, 138(1): 364-376
    [158] Stepanova E V, Koroleva O V, Vasilchenko L G, et a1. Fungal decomposition of oat straw during liquid and solid-state fermentation. Applied Biochemistry and Microbiology, 2003, 39(1): 65-74
    [159]张金萍,王敬文,姜景民,等.灵芝属木质素降解高效菌株筛选.林业科学研究,2005,18(1):106-108
    [160]李越中,高培基,王祖农.黄孢原毛平革菌合成木素过氧化物酶的营养调控.微生物学报,1994,34(1):29-36
    [161] Rogalski J, Szczodrak J, Janusz G. Manganese peroxidase production in submerged cultures by free and immobilized mycelia of Nematoloma frowardii. Bioresource Technology, 2006, 97(3): 469-476
    [162] Zeng G M, Yu H Y, Huang H L, et al. Laccase activities of soil inhabiting fungus Penicillium simplicissimum in relation to lignin degradation. World Journal of Microbiology and Biotechnology, 2006, 22(4): 317-324
    [163]刘玲,叶博,刘长江.白腐真菌及其木质素酶的研究进展.饲料工业,2006,27(8):25-28
    [164] Stuardo M, Larrondo L, Vásquez M, et al. Incomplete processing of peroxidase transcripts in the lignin degrading fungus Phanerochaete chrysosporium. FEMS Microbiology Letters, 2005, 242(1): 37-44
    [165] Ralph J P, Catcheside D E A. Involvement of lignin peroxidase, manganese peroxidase and other agents in the degradation of brown coal by Phanerochaete chrysosporium. Fuel and Energy Abstracts, 1997, 38(2): 71
    [166]魏自民,周连仁,王连军.有机物料培肥对风沙土腐殖质中胡敏酸含量与E4/E6的影响.黑龙江农业科学,2003,45(4): 18-20
    [167] Jean-Francois P. Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biology and Biochemistry, 2003, 35(7): 935-945
    [168]来航线,程丽娟,王中科.几种微生物对土壤腐殖质形成的作用.西北农业大学学报,1997,25(6):79-82
    [169]中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1978,136-140
    [170]杨克莲,陈甫华,邵洪波,等.海河河口水体表层底质中腐殖质的提取及性能表征.南开大学学报(自然科学版),1994,35(4): 26-30
    [171] Tomati U, Madejon E, Galli E. Evaluation of humic acid molecular weight as an index of compost stability. Compost Science and Utilization, 2000, 8(2): 108-115
    [172] Jouraiphy A, Amir S, Gharous M El, et al. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. International Biodeterioration & Biodegradation, 2005, 56(2): 101-108
    [173] Lei F, Vaner G J S. The effect of microbial inoculation and pH on microbial community structure changes during composting. Process Biochemistry, 2000, 35(9): 923-929
    [174]王光玉,陈雷,宣世伟,等.生活垃圾好氧堆肥微生物接种的初步研究.环境科学与技术,2005,28(2):20-21,50
    [175]吴香尧.城市生活垃圾堆肥化处理的现状、问题及解决途径初探.成都理工学院学报,1999,26(3):211-216
    [176]蒲一涛,钟毅沪,周万龙.固氮菌和纤维素分解菌的混合培养及其对生活垃圾降解的影响.环境科学与技术,1999,34(1): 15-18
    [177] Wei Z M, Xi B D, Zhao Y, et al. Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid. Chemosphere, 2007, 68(2): 368-374
    [178] Miikki V, Senesi N, Haenninen K. Characterization of humic material formed by composting of domestic and industrial biowastes: Part 2-spectroscopic evaluation of humic acid structures. Chemosphere, 1997, 34(8): 1639-1651
    [179]李吉进,邹国元,徐秋明,等.鸡粪堆肥腐熟度参数及波谱的形状研究.植物营养与肥料学报,2006,12(2):219-226
    [180] Castaldi P, Alberti G, Merella R, et al. Study of the organic matter evolution during municipal solid waste composting aimed at identifying suitable parameters for the evaluation of compost maturity. Waste Management, 2005, 25(2): 209-213
    [181] Plaza C, Xing BS, Fernández JM, et al. Binding of polycyclic aromatic hydrocarbons by humic acids formed during composting. Environmental Pollution, 2009, 157(1): 257-263
    [182]魏自民,席北斗,赵越,等.接种外源微生物生活垃圾堆肥中的胡敏酸荧光特性.环境科学学报,2005,25(10):1349-1354
    [183]窦森,陈恩凤,须湘成,等.施用有机肥料对土壤胡敏酸结构特征的影响——胡敏酸的光学性质.土壤学报,1995,32(1):40-49
    [184] Shirshova L T, Ghabbour E A, Davies G. Spectroscopic characterization of humic acid fractions isolated from soil using different extraction procedures. Geoderma, 2006, 133(3-4): 204-216
    [185] Kwiatkowska J, Provenzano M R, Senesi N. Long term effects of a brown coal-based amendment on the properties of soil humic acids. Geoderma, 2008, 148(2): 200-205
    [186] Tlombardi A, Fjardim W. Fluorescence spectroscopy of high performance liquid chromatography fractionated marine and terrestrial organic materials. Water Research, 1999, 33(2): 512-520
    [187] Hafidi M, Amir S, Revel J C. Structural characterization of olive mill waster-water after aerobic digestion using elemental analysis, FTIR and 13C NMR. Process Biochemistry, 2005, 40(8): 2615–2622
    [188] Chefetz B, Hadar Y, Chen Y. Dissolved organic carbon fractions formed during composting of municipal solid waste: properties and significance. Acta Hydrochim Hydrobiol, 1998, 26(3): 172-179
    [189] Makenga R B, Simard R R. Low molecular weight aliphatic acid contents of composted manures. Journal of Environmental Quality, 1998, 27(3): 557-561
    [190] William F, Brinton. Volatile organic acids in compost: production and odorant aspects. Compost Science Utilization, 1998, 6(1): 75-82
    [191] Chen Y, Aviad T. Effects of humic substances on plant growth[A]. Humic substances in soil and crop sciences: selected readings proceedings of a symposium cosponsored by the international humic substances society[C].Chicago IL,1990,161-186
    [192] Zucconi F,Bertoldi M. Compost specification for the production and compost from municipal solid waste. London: Elsevier Applied Science, 1987, (1): 30-50
    [193] Provenzano M R, Senesi N, Piccone G. Thermal and spectroscopic characterization of composts from municipal solid wasters. Compost Science & Utilization, 1998, 6(3): 67-73
    [194] Senesi N, Miano T M, Provenzano M R, et al. Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Science, 1991, 152(4): 259-270
    [195] Vanlauwe B, Dendooven L, Merckx R. Residue fraction and decomposition : The significance of the active fraction. Plant and Soil, 1994, 158(2): 263-274
    [196]吴景贵,吕岩,王明辉,等.有机肥腐解过程的红外光谱研究.植物营养与肥料学报,2004,10(3):259-266
    [197] Chefetz B, Hatcher P G, Hadar, et al. Chemical and biological characterization of organic matter during composting of municipal solid waste. Journal of Environmental Quality, 1996, 25(4): 776-785
    [198]卓苏能,文启孝.核磁共振技术在土壤有机质研究中应用的新进展.土壤学进展,1994,22(6):27-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700