用户名: 密码: 验证码:
微生物电解转化水中2,4-二氯苯酚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前难转化有毒物质2,4-二氯苯酚处理工艺的高效性与低成本不易兼顾的问题,本研究将传统厌氧生物法与电化学系统相结合构成生物电化学系统处理2,4-二氯苯酚废水以达到经济、高效的目的。
     首先采用双极室微生物燃料电池反应器,以松花江与阿什河交汇处底泥接种,在室温下启动,集中驯化阳极。因MFC与BES的运行差别,通过测定阳极极化曲线,设计针对BES的生物阳极驯化策略。测定启动成功的BES内阻发现,1000mg/L葡萄糖共基质生物阴极内阻为37.38Ω,非葡萄糖共基质生物阴极内阻为44.25Ω,非生物阴极中的欧姆内阻为56.7Ω左右。
     其次分析影响阴极性能的主要因素,发现最适pH为6.5~7,葡萄糖共基质最适浓度1000mg/L,最适外加电压为0.7V。此状态下运行48小时对200mg/L的2,4-DCP的转化率达到98.5%。微生物的接入使得2,4-二氯苯酚还原所需的最低电压从0.5V降到了0V,大大缩小了能耗。通过循环伏安测得2,4-二氯苯酚在生物阴极中的还原电位约为-0.37V,在非生物阴极中的还原电位约为-0.4V。对应的还原峰值电流分别为1.6mA和2.5mA。
     再次分析不同条件下阴极中的微生物群落结构,发现开路状态下主要以Swine manure pit bacterium,Pseudomonas aeruginosa strain,Dysgonomonas wimpennyi,Bacterium C111为优势菌群,MFC状态下阴极微生物主要以Enterococcus aquimarinus strain,Swine manure pit bacterium,Clostridiaceae bacterium为优势菌群, 1000mg/L葡萄糖共基质的阴极微生物主要以Swine manure pit bacterium为优势菌群,兼有Enterococcus aquimarinus strain,Dysgonomonas wimpennyi,Clostridia bacterium等,而未加葡萄糖的阴极微生物主要以Enterococcus aquimarinus strain,Dysgonomonas wimpennyi,Pseudomonas aeruginose为优势菌群。
     最后,通过不同条件下阴极的循环伏安曲线与HPLC的测试结果并结合相关报道文献分析推测出生物阴极转化2,4-DCP的转化机制均是2,4-二氯苯酚先转化成4-氯酚或2-氯酚,然后再转化成苯酚。
The processing craft of nondegradable toxic 2,4-dichlorophenol was limited to its low efficiency and high cost. In this study, bioelectrochemical system consisted of conventional anaerobic treatment and electrochemical system was developed to treat 2,4-dichlorophenol wastewater. As a result, a purpose of high efficiency and economic was successfully achieved.
     The two-chamber microbial fuel cell reactors was firstly start up with the anodes domesticated together in ambient temperature, and the seed sediment was taken from the intersection of the Songhua River and the Ash Creek. Considering the different operation ways of MFC and BES, bio-anode domestication strategies aiming at the BES was designed by measuring the anodic polarization curve. The measured internal resistances of started-up BES showed that the internal resistances of bio-cathode with glucose of 1000mg/L as the co-substrate, non-glucose co-substrate as the co-substrate and abio-cathode were 37.38Ω,44.25Ωand 56.7Ω,respectively.
     Then factors affecting the performance of bio-cathode were analyzed. Removal rate of 2,4-dichlorophenol with the concentration of 200mg/L was found to be 98.5% when the following conditions were used: a pH of 6.5~7, concentration of glucose 1000mg/L, apply voltage of 0.7V and operation time of 48h. The lowest voltage of the reducing of 2,4-dichlorophenol was decreased from 0.5V to 0V when the micro-organisms were seeded, so the energy consumption was greatly reduced. The reduction potentials of 2,4-dichlorophenol on bio-cathode and abio-cathode were -0.37V and -0.4V, respectively, through the result of cyclic voltammetry curves.
     Microbial community structure on cathodes in different conditions were also analyzed. It was found that Swine manure pit bacterium,Pseudomonas aeruginosa strain,Dysgonomonas wimpennyi,Bacterium C111 were the dominant microorganisms in open circuit condition, Enterococcus aquimarinus strain , Swine manure pit bacterium,Clostridiaceae bacterium were the dominant microorganisms in MFC condition, Swine manure pit bacterium, Enterococcus aquimarinus strain ,Dysgonomonas wimpennyi,Clostridia bacterium were the dominant microorganisms in glucose of 1000mg/L condition, while Enterococcus aquimarinus strain ,Dysgonomonas wimpennyi , Pseudomonas aeruginose were the dominant microorganisms in condition of non-glucose co-substrate.
     Finally, through the results of HPLC and cyclic voltammetry curves of cathodes in different conditions, also some relevant literature, the transformation paths of 2,4-dichlorophenol on different bio-cathodes were all as followed: 2,4-dichlorophenol was firstly reduced to 2-Chlorophenol or 4- Chlorophenol, then they were converted to phenol.
引文
[1]徐亦钢,石利利.竹炭对2,4-二氯苯酚的吸附特性及影响因素研究[J].农村生态环境. 2002(1): 35-37.
    [2]王林生冯亚平方亚群傅文昭杨勇.五氯酚对环境污染及居民健康影响研究[J].四川环境. 1995(1).
    [3]程婷,戴友芝,罗春香,等.不同电子供体对2,4-二氯酚还原脱氯的影响[J].微生物学通报. 2008(8): 1209-1213.
    [4]袁履冰,高占先,陈宏博等.有机化学[M].北京:高等教育出版社,1999:244,342-344.
    [5]程婷,戴友芝,刘智勇,等.零价铁对2,4-二氯酚生物还原脱氯的影响研究[J].微生物学通报. 2008(3): 332-335.
    [6] Qin Y. X. 2, 4-二氯酚废水处理的试验研究[J].安全與環境工程. 2006, 13(4): 43-44.
    [7]王祝敏.活性炭纤维填充床脱除工业废水中氯苯酚的实践[J].辽宁城乡环境科技. 2005(3).
    [8]余娟,黎卫亮,李梦耀,等. HDX-8树脂对2,4-二氯苯酚吸附的研究[J].应用化工. 2008(9): 1077-1080.
    [9] Regel-Rosocka M, Wisniewski M. Removal of Phenols From Aqueous Solutions with Solvating Extractants[J]. Polish Journal of Chemical Technology. 2010, 12(3): 19-23.
    [10]范洪富,王达,马军,等.用离子液体[bmim]PF_6和[emim]Beti萃取水中的氯酚[J].大庆石油学院学报. 2007(6): 68-70.
    [11]安淼,周琪,李晖.混合菌转化氯苯酚类化合物[J].工业水处理. 2003(8): 23-25.
    [12]陈勇生,闫姝,孙启俊,等.酚类化合物的生物吸附特征与其结构关系[J].中国环境科学. 1998(3).
    [13] Jacobsen B N, Arvin E, Reinders M. Factors Affecting Sorption of Pentachlorophenol to Suspended Microbial Biomass[J]. Water Research. 1996, 30(1): 13-20.
    [14] Aksu Z, Yener J. A Comparative Adsorption/Biosorption Study of Mono-Chlorinated Phenols Onto Various Sorbents[J]. Waste Manage. 2001, 21(8): 695-702.
    [15] Orth W S, Gillham R W. Dechlorination of Trichloroethene in Aqueous SolutionUsing Fe-O[J]. Environmental Science and Technology. 1996, 30(1): 66-71.
    [16]程荣,王建龙,Wei-Xian Zhang.纳米Fe~0转化2,4-二氯酚的影响因素及其机理[J].中国科学(B辑:化学). 2007(1): 82-87.
    [17] Zhang W X. Nanoscale Iron Particles for Environmental Remediation: An Overview[J].Journal of Nanoparticle Research. 2003, 5(3-4): 323-332.
    [18] Sun Z R, Ge H, Hu X, et al. Preparation of Foam-Nickel Composite Electrode and its Application to 2,4-Dichlorophenol Dechlorination in Aqueous Solution[J]. Separation and Purification Technology. 2010, 72(2): 133-139.
    [19]郑璐,朱承驻,徐莺,等.电解对氯苯酚稀水溶液中脱氯转化机理研究[J].环境科学研究. 2004(6): 54-58.
    [20]刘臣亮,刘奇,王家德.流化态三维电极转化水相2,4-二氯酚的研究[J].中国给水排水. 2010(1): 66-69.
    [21]张选军.微电池法还原脱氯降价2,4二氯苯酚的初步研究[Z]. 2005: 31, 8-61.
    [22]童少平,胡丽华,魏红,等. Ni/Fe二元金属脱氯转化对氯苯酚的研究[J].环境科学. 2005(4): 59-62.
    [23]赵宝秀,王鹏.双阳极光电催化氧化转化2,4-二氯苯酚的研究[J].材料科学与工艺. 2009(3): 343-346.
    [24]钟文辉,孙明,何国庆,等.转化2,4-二氯酚微生物的分离及其2,4-二氯酚羟化酶基因的克隆和表达[J].生物工程学报. 2004(2): 209-214.
    [25]黄俊,余刚,成捷,等.白腐真菌生物转化五氯苯酚的动力学研究[J].农业环境科学学报. 2004(1): 167-169.
    [26] Ieropoulos I A, Greenman J, Melhuish C, et al. Comparative Study of Three Types of Microbial Fuel Cell[J]. Enzyme and Microbial Technology. 2005, 37(2): 238-245.
    [27] Bond D R, Holmes D E, Tender L M, et al. Electrode-Reducing Microorganisms that Harvest Energy From Marine Sediments[J]. Science. 2002, 295(5554): 483-485.
    [28] Rabaey K, Boon N, Hofte M, et al. Microbial Phenazine Production Enhances Electron Transfer in Biofuel Cells[J]. Environmental Science and Technology. 2005, 39(9): 3401-3408.
    [29] Kim H J, Park H S, Hyun M S, et al. A Mediator-Less Microbial Fuel Cell Using a Metal Reducing Bacterium, Shewanella Putrefaciens[J]. Enzyme and Microbial Technology. Tech. 2002, 30(2): 145-152.
    [30] Park D H, Kim S K, Shin I H, et al. Electricity Production in Biofuel Cell UsingModified Graphite Electrode with Neutral Red[J]. Biotechnology Letters. 2000, 22(16): 1301-1304.
    [31] Biffinger J C, Pietron J, Ray R, et al. A Biofilm Enhanced Miniature Microbial Fuel Cell Using Shewanella Oneidensis Dsp10 and Oxygen Reduction Cathodes[J]. Biosensors and Bioelectronics. 2007, 22(8): 1672-1679.
    [32] Haoyu E, Cheng S, Scott K, et al. Microbial Fuel Cell Performance with Non-Pt Cathode Catalysts[J]. J. Power Sources. 2007, 171(2): 275-281.
    [33] Clauwaert P, Van der Ha D, Boon N, et al. Open Air Biocathode Enables Effective Electricity Generation with Microbial Fuel Cells[J]. E Environmental Science and Technology. 2007, 41(21): 7564-7569.
    [34] Virdis B, Rabaey K, Yuan Z, et al. Microbial Fuel Cells for Simultaneous Carbon and Nitrogen Removal[J]. Water Research. 2008, 42(12): 3013-3024.
    [35] Aulenta F, Reale P, Canosa A, et al. Characterization of an Electro-Active Biocathode Capable of Dechlorinating Trichloroethene and Cis-Dichloroethene to Ethene[J]. Biosensors and Bioelectronics. 2010, 25(7): 1796-1802.
    [36] Gregory K B, Lovley D R. Remediation and Recovery of Uranium From Contaminated Subsurface Environments with Electrodes[J]. Environmental Science and Technology. 2005, 39(22): 8943-8947.
    [37] Habermann W, Pommer E H. Biological Fuel Cells with Sulphide Storage Capacity[J]. Appl. Applied Microbiology and Biotechnology. 1991, 35(1): 128-133.
    [38] Rozendal R A, Hamelers H, Euverink G, et al. Principle and Perspectives of Hydrogen Production through Biocatalyzed Electrolysis[J]. International Journal of Hydrogen Energy. 2006, 31(12): 1632-1640.
    [39] Ditzig J, Liu H, Logan B E. Production of Hydrogen From Domestic Wastewater Using a Bioelectrochemically Assisted Microbial Reactor (Beamr)[J]. International Journal of Hydrogen Energy. 2007, 32(13): 2296-2304.
    [40] Biological Fuel Cells with Sulphide Storage Capacity[Z]. 1991: 35, 128-133.
    [41] Min B, Logan B E. Continuous Electricity Generation From Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell[J]. Environmental Science and Technology. 2004, 38(21): 5809-5814.
    [42] Liu H, Logan B E. Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane[J]. Environmental Science and Technology. 2004, 38(14): 4040-4046.
    [43] He Z, Minteer S D, Angenent L T. Electricity Generation From Artificial Wastewater Using an Upflow Microbial Fuel Cell[J]. Environmental Science andTechnology. 2005, 39(14): 5262-5267.
    [44] Cooney M J, Roschi E, Marison I W, et al. Physiologic Studies with the Sulfate-Reducing Bacterium Desulfovibrio Desulfuricans: Evaluation for Use in a Biofuel Cell[J]. Enzyme and Microbial Technology. 1996, 18(5): 358-365.
    [45] Luo H P, Liu G L, Zhang R D, et al. Phenol Degradation in Microbial Fuel Cells[J]. Chemical Engineering. J. 2009, 147(2-3): 259-264.
    [46]顾荷炎,张兴旺,李中坚,等.微生物燃料电池协同处理含氯酚废水[J].科学通报. 2007(18): 2214-2216.
    [47]孙寓姣,王勇,董萍.醌指纹技术解析MBR污泥膨胀过程中微生物群落特性[J].北京理工大学学报. 2010(12): 1483-1487.
    [48]刘微,王树涛,陈英旭,等.转Bt基因水稻根际土壤微生物多样性的磷脂脂肪酸(PLFAs)表征[J].应用生态学报. 2011(3): 727-733.
    [49] Addison S, Slade A, Dennis M. Effects of Substrate Composition On the Structure of Microbial Communities in Wastewater Using Fluorescence in Situ Hybridisation[J]. Systematic and Applied Microbiology. 2011, 34(5): 337-343.
    [50] Lin C H, Kuo J, Wang Y W, et al. Bacterial Diversity in Paclobutrazol Applied Agricultural Soils[J]. J. Journal of Environmental Science and Health. 2010, 45(7): 711-718.
    [51] Bai Y H, Sun Q H, Xing R, et al. Analysis of Denitrifier Community in a Bioaugmented Sequencing Batch Reactor for the Treatment of Coking Wastewater Containing Pyridine and Quinoline[J]. Applied Microbiology and Biotechnology. 2011, 90(4): 1485-1492.
    [52] Zeng Y X, Zou Y, Chen B, et al. Phylogenetic Diversity of Sediment Bacteria in the Northern Bering Sea[J]. Polar Biology. 2011, 34(6): 907-919.
    [53] Hess K R, Zhang W, Baggerly K A, et al. Microarrays: Handling the Deluge of Data and Extracting Reliable Information[J]. Trends in Biotechnology. 2001, 19(11): 463-468.
    [54] Chen Y, Dougherty E R, Bittner M L. Ratio-Based Decisions and the Quantitative Analysis of Cdna Microarray Images[J]. J. Journal of Biomedical Optics. 1997, 2(4): 364-374.
    [55] Franke-Whittle I H, Goberna M, Pfister V, et al. Design and Development of the Anaerochip Microarray for Investigation of Methanogenic Communities[J]. J. Journal of Biomedical Optics. 2009, 79(3): 279-288.
    [56] Kim J R, Beecroft N J, Varcoe J R, et al. Spatiotemporal Development of the Bacterial Community in a Tubular Longitudinal Microbial Fuel Cell[J]. Journal of Microbiological Methods. 2011: 1-13.
    [57] Kiely P D, Cusick R, Call D F, et al. Anode Microbial Communities Produced byChanging From Microbial Fuel Cell to Microbial Electrolysis Cell Operation Using Two Different Wastewaters[J]. Applied Microbiology and Biotechnology. 2011, 102(1): 388-394.
    [58] Chung K, Fujiki I, Okabe S. Effect of Formation of Biofilms and Chemical Scale On the Cathode Electrode On the Performance of a Continuous Two-Chamber Microbial Fuel Cell[J]. Bioresource Technology. 2011, 102(1): 355-360.
    [59] Park H S, Kim B H, Kim H S, et al. A Novel Electrochemically Active and Fe(Iii)-Reducing Bacterium Phylogenetically Related to Clostridium Butyricum Isolated From a Microbial Fuel Cell[J]. Anaerobe. 2001, 7(6): 297-306.
    [60] Cheng S A, Logan B E. Ammonia Treatment of Carbon Cloth Anodes to Enhance Power Generation of Microbial Fuel Cells[J]. Electrochemistry Communications. 2007, 9(3): 492-496.
    [61] Rabaey K, Boon N, Siciliano S D, et al. Biofuel Cells Select for Microbial Consortia that Self-Mediate Electron Transfer[J]. pplied and Environmental Microbiology. 2004, 70(9): 5373-5382.
    [62] Kim J R, Jung S H, Regan J M, et al. Electricity Generation and Microbial Community Analysis of Alcohol Powered Microbial Fuel Cells[J]. Bioresource Technology. 2007, 98(13): 2568-2577.
    [63] Liu H, Cheng S A, Logan B E. Production of Electricity From Acetate Or Butyrate Using a Single-Chamber Microbial Fuel Cell[J]. Environmental Science and Technology .2005, 39(2): 658-662.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700