用户名: 密码: 验证码:
骨组织工程支架内微流体及其变形的数值仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着组织工程学与快速成型技术的不断发展,骨组织工程支架的研究也在不断的深入。本文主要对骨组织工程支架内部微管道的结构设计、微流体的流动状态以及骨支架在流体作用下的变形进行了研究分析。
     首先分析了骨的内部结构,并在此基础上对骨的结构进行简化,建立了具有良好体外培养特性的骨组织工程支架三维微管道结构模型。
     其次分别利用Fluent,Ansys中的CFX模块和Comsol3.2a中的流体动力学模块对骨组织工程支架微管道内的营养液流动状态进行数值模拟仿真,并对得到的结果进行分析和比较,确定计算无复杂边界的流体问题时,选用Fluent进行仿真计算。
     然后利用有限元分析软件Ansys分别用双向流固耦合和单向流固耦合的方法计算骨组织工程支架在微管道内营养液压力作用下的变形,比较两种计算方法得到的结果,分析得出在营养液速度很小时,可以用单向流固耦合计算方法代替双向流固耦合计算方法;利用单向流固耦合计算方法分别计算不同的灌注速率、不同的骨支架结构的骨支架变形,并对得到的结果进行分析比较,确定在营养液不同速度和不同微管道结构下的支架最大变形值。
     最后研究气液两相流在粗糙微管道中流动时的流动特性,通过利用Fluent的VOF模型对氮气和水两相流在粗糙微管道中的流动进行模拟,绘制了流型图,并与光滑微管道的流型图和Triplett等通过实验得到的流型图进行比较,使数值模拟和实验研究得到了彼此的验证。
As the development of tissue engineering and rapid prototyping technology, the research of artificial bone tissue engineering scaffold is also ongoing in-depth. In this paper, structure design of micro-channels in tissue engineering scaffold, flow state of micro-fluid in its internal micro-channels and scaffold deformation imposed by the pressure of fluid are studied and analyzed.
     Firstly, the internal structure of bone is analyzed, on this basis the internal structure of artificial bone is simplified and the structure model of three-dimensional micro-channels that has good vitro characteristics in scaffold is established.
     Secondly, the nutrient flow state in internal micro-channels of scaffold is simulated numerically by Fluent, CFX module in Ansys and the fluid dynamics module in Comsol3.2a, then results obtained are compared and analyzed. The problem of calculating that the fluid has no complicated boundary is simulated and calculated with Fluent.
     Then the scaffold deformation imposed by the pressure of nutrient in micro-channels is calculated and simulated by the use of Ansys with two-way and one-way FSI calculation method. Compared the results obtained by the two calculation methods, we can get the conclusion that when the velocity of nutrient is very low, we can use one-way FSI calculation method instead of two-way; Scaffold deformation is calculated with one-way calculation method while the perfusion velocity of nutrient and the structure of micro-channels are different, then results obtained is analyzed and compared. Maximum value of deformation is determined when the perfusion velocity of nutrient and the structure of micro-channels are different.
     Finally, it studied the two-phase flow characteristics of gas and liquid in rough micro-channel. It simulated two-phase flow pattern of nitrogen and water in rough micro-channel with VOF model in Fluent, then protracted the flow pattern chart of rough micro-channel. Compared it with the flow pattern chart of smooth micro-channel and the flow pattern chart obtained by Triplett’s experiment, the validity of numerical simulation and experimental study are ensured.
引文
1张胡静.丝素/羟基磷灰石支架材料的结构特性和机械性能研究. [西南大学硕士学位论文]. 2010:1~5
    2 J. T. Marino, B. H. Ziran. Use of Solid and Cancellous Autologous Bone Graft for Fractures and Nonunions. Orthopedic Clinics in North America, 2010, 41(1):15~26
    3 M. Mastrogiacomo, A. Papadimitropoulos, A. Cedola, et a1. Engineering of Bone Using Bone Marrow Stromal Cells and a Silicon-stabilized Tricalcium Phosphate Bioceramic: Evidence for a Coupling between Bone Formation and Scaffold Resorption. Biomaterials, 2007, 28(7):1376~1384
    4丁金勇,靳安民.生物支架材料在骨组织工程中的研究进展.中国矫形外科杂质, 2006, 14(1):56~58
    5姜红江.陶瓷化骨的改性及生物活性人工骨构建的研究. [天津大学博士学位论文]. 2008:1~3
    6陈艳梅,奚廷斐,郑裕东.骨组织工程支架材料及其相关的研究进展.北京生物医学工程, 2008, 27(5):541~545
    7曹谊林.组织工程学的研究进展.中国美容医学, 2005, 14(2):134~135
    8杜江华.降解速率可调控的聚β—羟基丁酸酯组织工程支架的研究. [西北工业大学硕士学位论文]. 2007:3~5
    9陈峰.骨组织工程中的细胞外基质材料及其种子细胞.中国组织工程研究与临床康复, 2010, 14(38):7143
    10 S. Liao, C. K. Chan, S. Ramakrishna. Stem Cell and Biomimetic Materials Strategies for Tissue Engineering. Materials Science and Engineering, 2008, 28(8):1189~1202
    11郭树章,任先军.骨髓基质干细胞及其在脊髓组织工程中应用的研究进展.中国脊柱脊髓杂志, 2005, 15(10):620~622
    12 B. Seshi, S. Kumar, D. King, et al. Multilineage Gene from Expression in Human Bone Marrow Stromal Cells as Evidenced by Single-cell Microarray Analysis. BloodCells, Molecules, and Diseases, 2003, 31(2):268~285
    13王超锋.灌注型生物活化骨修复节段性骨缺损的实验研究. [第四军医大学硕士学位论文]. 2007:18~20
    14 L. A. Smith, X. Liu, J. Hu, et al. the Enhancement of Human Embryonic Stem Cell Osteogenic Differentiation With Nano-fibrous. Biomaterials, 2010, 31(21):5526~5535
    15姚康德,尹玉姬.组织工程相关生物材料.北京:化学工业出版社, 2003:16~17
    16 S. Srouji, T. Kizhner, E. Livne. 3D Scaffolds for Bone Marrow Stem Cell Support in Bone Repair. Regen Med, 2006, 1(4):519~528
    17 H. Yoshikawa, A. Myoui. Bone Tissue Engineering with Porous Hydroxyapatite Ceramics. J Artif Organs, 2005, 8(3):131~136
    18 X. Liu, P. Ma. Polymeric Scaffolds for Bone Tissue Engineering. Ann Biomed Eng, 2004, 32(3):477~486
    19王力,王和鸣.骨髓基质细胞成骨影响因素的研究进展.福建中医学院学报, 2003, 13(2):54~57
    20丑修建,陈庆华.组织工程三维多孔支架材料制备技术的研究现状.材料导报, 2004, (18):216~218
    21伍卫刚,郑启新.快速成型技术在骨科的应用研究进展.国际生物医学工程杂志, 2009, 32(6):375
    22 Y. Yan, S. Li, R. Zhang, et a1. Rapid Prototyping and Manufacturing Technology: Principle, Representative Technics, Applications, and Development Trends. Tsinghua Science & Technology, 2009, 14(1):1~12
    23张爱英,王连才,刘厚利,等.基于快速成型技术的组织工程支架制备进展.化工进展, 2004, 23(3):267
    24陈欣,张春林.组织工程骨修复骨缺损的研究进展及临床应用.中国组织工程研究与临床康复, 2010, 14(24):4486~4489
    25金黎明,刘万顺,韩宝芹,等.骨缺损的治疗研究进展.山东医药, 2006, 46(12):80
    26柏彬,肖玉周.骨组织工程的研究进展.解剖与临床, 2010, 15(4):288
    27赵宝东,赵洪涛,赵艳,等. TGF-β促进骨折愈合的实验研究.锦州医学院学报, 2001, 22(2):4~6
    28 A. B. Yeatts, J. P. Fisher. Bone Tissue Engineering Bioreactor: Dynamic Culture and the Influence of Shear Stress. Bone, 2011, 48(2):171~181
    29朱立新.模拟微重力下改良纤维蛋白凝胶复合软骨细胞修复兔关节软骨缺损的实验研究. [第一军医大学博士学位论文]. 2007:54
    30 X. Mao, C. Chu, Z. Mao, et al. The Development and Identification of Constructing Tissue Engineered Bone by Seeding Osteoblasts from Differentiated Rat Marrow Stromal Stem Cells onto Three-dimensional Porous Nano-hydroxylapatite Bone Matrix in Vitro. Tissue and Cell, 2005, 37(5):349~357
    31 T. G. Chu, S. J. Warden, C. H. Turner. Segmental Bone Regeneration Using a Load-bearing Biodegradable Carrier of Bone Morphogenetic Protein-2. Biomaterials, 2007, 28(3):459~467
    32阎俏梅,张富强,崔磊,等.骨髓基质干细胞与不同支架材料复合异位成骨能力的实验研究.上海口腔医学, 2005, 14(3):260~266
    33赵子义,陈新,郭希民,等.组织工程骨对羊节段性骨缺损的修复.中华实验外科杂志, 2005, 22(3):275~277
    34阳富春,杨志明,周悦婷,等.猕猴组织工程化骨异体植入修复骨缺损T淋巴细胞亚群的检测.中华实验外科杂志, 2004, 21(1):12~14
    35 J. D. Boer, C. V. Blitterswijk, C. Lowik. Bioluminescent Imaging: Emerging Technology for Non-invasive Imaging of Bone Tissue Engineering. Biomateriais, 2006, 27(9):185l~1858
    36宋静.微通道内气液两相流动特性的研究. [天津大学硕士学位论文]. 2006:1~28
    37赵静一,李侃.基于快速成型的组织工程中的微流体现象.液压与气动, 2005, (8):65~67
    38陈红波.基于快速成型的组织工程中流动现象的研究. [燕山大学工学硕士学位论文]. 2007:12~36
    39郭飞.关于气液两相流流型及其判别的若干问题.能源科技, 2010, (7):277
    40 J. Li, G. P. Peterson. Boiling Nucleation and Two-phase Flow Patterns in Forced Liquid Flow in Microchannels. International Journal of Heat and Mass Transfer, 2005, 48(23-24):4797~4810
    41 A. Serizawa, Z. Feng, Z. Kawara. Two-phase Flow in Microchannels. Experimental Thermal and Fluid Science, 2002, 26(6-7):703~714
    42 T. Yen, M. Shoji, F. Takemura, et al. Visualization of Convective Boiling Heat Transfer in Single Microchannels with Different Shaped Cross-sections. International Journal of Heat and Mass Transfer, 2006, 49(21-22):3884~3894
    43 T. S. Zhao, Q. C. Bi. Co-current Air-water Two-phase Flow Patterns in Vertical Triangular Microchannels. International Journal of Multiphase Flow, 2001, 27(5):765~782
    44 K. A. Triplett, S. M. Ghiaasiaan, S. I. Abdel-Khalik, et al. Gas–liquid Two-phase Flow in Microchannels Part ?: Two-phase Flow Patterns. International Journal of Multiphase Flow, 1999, 25(3):377~394
    45 K. Mishima, T. Hibiki. Some Characteristics of Air-water Two-phase Flow in Small Diameter Vertical Tubes. International Journal of Multiphase Flow, 1996, 22(4):703~712
    46 W. L. Chen, M. C. Twu, C. Pan. Gas–liquid Two-phase Flow in Micro-channels. International Journal of Multiphase Flow, 2002, 28(7):1235~1247
    47 A. Kawahara, P. M. Chung, M. Kawaji. Investigation of Two-phase Flow Pattern, Void Fraction and Pressure Drop in a Microchannel. International Journal of Multiphase Flow, 2002, 28(9):1411~1435
    48劳力云.气液两相管流流态判别方法的研究. [中国科学院力学研究所博士后学位论文]. 2001:20~40
    49李立州,王婧超,吕震宙,等.学科间载荷参数空间插值传递方法.航空动力学报, 2007, 22(7):1050~1054
    50马斗.单孔气泡动力学行为的VOF数值模拟. [天津大学硕士论文]. 2009:9
    51朱晓龙,李占利.人工活性骨内部结构建模方法的探索.西安科技学院学报, 2003, 23(2):212~215
    52徐达传.实用临床骨缺损修复应用解剖学.北京:中国医药科技出版社, 2000:1~11
    53王玺.β-磷酸三钙/生物玻璃多孔复合支架的制备与强化研究. [中南大学硕士学位论文]. 2007:3~6
    54李莉敏,郭桂芳,胡庆夕,等.面向骨组织工程的三维仿生支架的微观结构研究.中国制造业信息化, 2005, 34(4):86~88
    55徐尚龙,李涤尘,张彦东,等.自然骨微管的三维仿生重建及两相流分析.西安交通大学学报, 2006, 40(3):265~269
    56谢俊.基于ANSYS和Fluent软件的导流管流场分析.机械设计与制造, 2008, (9):70~72
    57马哲一.骨组织工程支架内微流体流动状态的数值仿真及分析. [燕山大学工学硕士学位论文]. 2009:46~60
    58周祺旻.微冲击射流的换热特性研究. [南京航空航天大学硕士学位论文]. 2008:14~16
    59付磊,黄彦华,朱培模.水轮机转轮叶片流固耦合水力振动分析.水利水电科技进展, 2010, 30(1):24~26
    60朱君,翁惠芳,李东阳,等.基于流固耦合技术的压裂液管流特性研究.石油矿场机械, 2010, 39(3):1~5
    61肖正康,魏生民,汪焰恩,等.基于流—固耦合模型的人工骨力学数值仿真.机械科学与技术, 2008, 27(6):744~747
    62凌智勇,丁建宁,杨继昌,等.微流动的研究现状及影响因素.浙江大学学报, 2002, 23(6):1~5
    63 J. U. Brackbill, D. B. Kothe, C. Zemach. A Continuum Method for Modeling Surface Tension. Journal of Computational Physics, 1992, 100(2):335~354
    64刘升,郝英立.竖直管内降膜流动气液两相运动数值模拟.热科学与技术, 2008, 7(1):5~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700