用户名: 密码: 验证码:
高g微阵列加速度传感器中的热设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子设备的热设计一直是影响系统可靠性的重要因素。随着微机电系统制造工艺的成熟,电子产品的微型化速度加快,集成度越来越高。而产品的功耗却比以前更大,使得电子设备的热流密度急剧膨胀,系统的热设计问题已经变得相当严峻!
     本文正是基于以上问题,结合高g微阵列加速度传感器的热问题,对高热流密度、微小尺寸下的槽道流动与换热进行了研究,使得此传感器的热问题得到圆满解决,并通过实验得到了一些关于微小尺度下散热的结论,主要内容有:
     1.对槽道的三种截面形状加以阻力分析,得到这三种截面形状对阻力的影响程度。
     2.对设计的三种同截面形状的单槽道阻力进行分析计算,得到槽道长度对阻力的影响情况。
     3.对矩形截面的单槽道和多槽道的换热进行了仿真,得到了理想的设计方案。
     4.对某天线的散热结构进行了设计,通过理论计算分析得出此微小结构液体冷却系统槽道肋板高度的最佳值。
     5.对此天线的散热结构进行了热实验,实验结果说明微小结构的散热系统完全能解决热密度高达150W cm 2的散热问题。
     6.通过对实验与仿真的数据对比、分析,证明当量直径为0.5mm的该液体冷却系统槽道在层流状态下的理论计算是正确的,得到了宏观传热理论对其分析将不受尺度效应的影响。本结论对电子设备液体冷却系统的设计具有很大的参考价值。并说明该仿真的正确性,可信性,这对微加速度传感器的仿真提供了有力的保证。
The thermal design of electronic equipment is always the important complication in system reliability .As the maturation of MEMS manufacture, the micromation velocity of electronic equipment is expedite,integration degree is rapid improved,but the power dissipation of products is larger then before, this make he heat flux density rapid expanding,so the thermal design of systems is becoming a quite austere problem.
     This paper is just based on this problem, and did some researches in high heat flux density, micro-dimension combining with the thermal problem of high-g microarray accelermoter,it made the thermal problem of this sensor being solved profect faultlessly,and gained some conclusions about thermal design in micro-dimension through experiments, major of them are:
     1. The water flow resistance in three section shapes of microchannels was calculated,and their influence degree was gained.
     2. The water flow resistance in three same section shapes of being designed microchannels was calculated,and the influence degree of microchannel's length was gained.
     3. The thermal simulations in rectangular section of one channel and more channels were done,the profect design was gained.
     4. Designing one thermal system for one radar antenna, through theoretical analysis, the optimal value of rib height was gained for the liquid cooling system.
     5. The experimental results proved that the thermal system of microstructure can slove the heat flux density up to 150W/cm2 completely.
     6. The theoretical analysis is proved to be right in Laminar Flow by the experimental results,and when the equivalent diameter is 0.5mm, the macroscopic heat transfer theory is not affected by the scale effect. The article has a great value for the design of electronic equipment liquid cooling system.
引文
[1]董涛.微管道换热器内微流体的流动与换热.南京理工大学博士学位论文.2003:16.
    [2]徐超,何雅玲,杨卫围,齐永强.现代电子器件冷却方法研究动态.制冷与空调, 2003.3(4):10-13.
    [3]李琴,刘海东,朱敏波.热仿真在电子设备结构设计中的应用.电子工艺技术,2006,27(3):165-181.
    [4]李庆友,王文,周根明.电子元器件散热方法研究.电子器件,2005,28(4):937-941
    [5]平丽浩,钱吉裕,徐德好.电子装备热控新技术综述.电子机械工程,2008,24(1):1-10.
    [6]邱成悌,蒋全兴,等.电子设备结构设计原理.南京:东南大学出版社,2005,6-8.
    [7]付桂翠,高泽溪,方志强,等.电子设备热分析技术研究.电子机械工程,2004(1):13-16.
    [8]赵孝保,袁竹林,章名耀.一种新型可变导热管传热与控制温度机理分析与实验.热能动力工程,1998 ,13 (5) :328 - 330.
    [9]王怀彬,杜军,张洪军,等.介质热管锅炉供热技术.热能动力工程,1998 ,13(3) :226 - 228.
    [10]曾向东,韩立忠,牛文科.蒸发-凝结整体分离式相变换热装置.热能动力程,1996 ,11(增刊) :60 - 62.
    [11] D. Khrustalev,A. Faghri. Estimation of the maximum heat flux in the inverted meniscus type evaporator of a flat miniature heat pipe. Int . J . Heat Mass Transfer ,1996 ,39 :1899-1909.
    [12] Lanchao Lin ,Rengasamy Ponnappan ,John Leland. High performance miniature heat pipe. Int . J . Heat Mass Transfer ,2002 ,45 :3131-3142.
    [13]向燕超,候增祺,张加迅.环路热管技术(LHP)的发展现状.工程热物理学报,2004,25(4):682-684.
    [14] Tuckerman D B,Pease R F W.High performance heat sink for VISI.IEEE Electron Device Letters.1981(4):126-129.
    [15]何叶,李磊明,杨涛.基于MEMS技术的新型微冷却技术.仪表技术与传感器,2004(9):43-45.
    [16]朱丽.微管道散热器的制造及应用技术研究.南京理工大学硕士学位论文.2003:33.
    [17] Levy S, Fuller R,Niemi R.Heat transfer to water in thin rectangular channels.Journal of Heat transfer.1959(1):129-143.
    [18] Wu Peiyi ,Little W A. Measurement of friction factors for the flow of gases in very firechannels used for microminiature Joule2Thomson refrigerators. Cryogenic ,1983 ,23 :273~277.
    [19] Wu Peiyi,Little W A. Measurement of the heat transfer characteristics of gases flow in fine channels used for microminiature refrigerators. Cryogenic ,1984 ,24 :415~420.
    [20] Choi S B , Barron R F , Warrington R O. Fluid flow and heat transfer in microtubes[A]. Micromechanical Sensors ,Actuators , and System. ASME[C] . 1991 , DSC32 : 123 - 134.
    [21] Pfahler J , Harleyj , Bau H H. Liquid and Gas Transport in Small Channels[A] . Microstructures , Sensors , and Actuators Winter Annual Meeting of the ASME , 1990 , 19 : 149 - 157.
    [22] Peng X F , Wang B X. Experimental investigation on liquid forced - convection heat transfer through microchannels [ J ] .Heat Transfer , 1994. 37 (Suppl. 1) : 73– 82.
    [23]张培杰.微矩形通道组内的流动与对流换热.重庆:重庆大学,1994.
    [24]姜明健,罗晓惠,刘伟力.水在微尺度槽道中单相流动和换热研究.北京联合大学学报,1998,12(1):71-75.
    [25] Li Z X , Du D X , Guo Z Y1 Experimental study on flow characteristics of liquid in circular microtubes1 Microscale Thermophysics Engineering , 2000 , 7 : 253 -265.
    [26] Xu B,Ooi K T,Wong N T,etal.Experimental investigation of flow friction for in micrichannels. International Communication of Heat Mass Transfer.2000(27):1165-1176.
    [27] Judy, D Maynes,B W Webb.Characterization of frictional pressure drop for liquid flows through microchannels. International Journal of Heat and Mass Transfer.1994(31):73-82.
    [28]张培杰,辛明道.微尺寸管内流体流动与换热.中国工程热物理学会第八届年会,北京,1992.
    [29]辛明道,师晋生.微矩形槽道内的受迫对流换热性能实验.中国工程热物理学会第八届年会,北京,1992.
    [30]何洪涛,杨拥军,徐永青,吝海锋.引信用高g加速度计研究. MEMS器件与技术,2002(6):28-31.
    [31]邱成悌,蒋全兴,等.电子设备结构设计原理.南京:东南大学出版社,2005:22-23.
    [32](美)徐泰然. MEMS和微系统——设计与制造.北京:机械工业出版社,2005.8:336-339.
    [33]杜广生著.工程流体力学.北京:中国电力出版社,2005.1:115-117.
    [34]陈运生,董涛,杨朝初,毕勤成,翟立奎,朱丽,候丽雅.芯片冷却用分形微管道散热器内的压降与传热.电子学报,2003,31(11):1717-1720.
    [35] Mandelbrot B B. The Fractal Geometry of Nature[M] .W. H. Freeman ,New York ,1982.
    [36](美)徐泰然. MEMS和微系统——设计与制造.北京:机械工业出版社,2005.8:165-167.
    [37] Janusz Bryzek. Impact of MEMS technology on society . Sensors andactuators ,1996 ,56 :1-9.
    [38]尹宝林. MEMS中的CAD/ CAE技术与系统结构.仪器仪表学报,1996 ,17 (1) :27.
    [39]刘晓明,朱钟淦.微机电系统设计与制造.北京:国防工业出版社,2006.1:1-4.
    [40]杜广生.工程流体力学.北京:中国电力出版社,2005:128-131.
    [41]徐晓婷,朱敏波,杨艳妮.电子设备热仿真分析及软件应用.电子工艺技术,2006,27(5):265-268.
    [42]陈洁茹,朱敏波,齐颖. Icepak在电子设备热设计中的应用.电子机械工程,2005,21(1):14-16.
    [43]王彦海,张世伟,徐岩峰.Icepak仿真软件在水冷底板热设计中的应用.电子机械工程,2008,24(1):27-29.
    [44]方志强,付桂翠,高泽溪.电子设备热分析软件应用研究.北京航空航天大学学报,2003,29(8):737-740.
    [45]单乐生,武强,徐娟,李波. Icepak在中兴通讯热设计中的应用. FLUENT第一界中国用户大会.
    [46]梅启元.热管在雷达散热上应用的可行性研究.电子机械工程,2007,23(1):17-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700