用户名: 密码: 验证码:
离子液体催化制备生物柴油的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:以棉籽油为原料,进行离子液体、氢氧化钠和脂肪酶作为催化剂制备生物柴油的工艺比较研究,以脂肪酸甲酯的收率为指标,考察了影响酯交换反应的因素,通过正交实验得到离子液体催化酯交换反应的优化工艺条件。
     方法:分别使用离子液体、氢氧化钠和脂肪酶作为催化剂催化棉籽油制备生物柴油。利用薄层层析色谱和高效液相色谱对生物柴油进行定性、定量分析,并获得其收率。通过单因素多水平实验及正交实验优化酯交换反应的工艺条件,比较分析各种催化剂的催化效果、稳定性、经济性及环境友好性。
     结果:
     1.棉籽油在离子液体[Bmim]OH催化下,酯交换反应制取生物柴油的影响因素依次为:醇油摩尔比>催化剂用量>反应时间>反应温度;[Bmim]OH催化制备生物柴油的优化条件是醇油摩尔比7:1,催化剂用量3.5%,反应时间50min;反应温度55℃;在该条件下脂肪酸甲酯的收率在91.7%-93.5%之间,离子液体[Bmim]OH性质稳定,能重复使用6次以上。
     2.棉籽油在离子液体[Emim]OH催化下,酯交换反应制取生物柴油的影响因素依次为:醇油摩尔比>反应温度>反应时间>催化剂用量;[Emim]OH催化制备生物柴油的优化条件是醇油摩尔比6:1,催化剂用量3.5%,反应时间50min;反应温度55℃;在该条件下脂肪酸甲酯的收率在89.8%-90.7%之间;离子液体[Emim]OH性质稳定,能重复使用6次以上。
     3.棉籽油在NaOH催化下,酯交换反应制取生物柴油的影响因素依次为:醇油摩尔比>反应时间>催化剂用量>反应温度;NaOH催化制备生物柴油的优化条件是醇油摩尔比7:1,催化剂用量1.4%,反应时间60min,反应温度55℃;在该条件下脂肪酸甲酯的收率在89.7%-90.9%之间。
     4.棉籽油在生物酶Nov435催化下,酯交换反应制备生物柴油的工艺条件是:醇油摩尔比为3.5:1、酶用量为10%、反应温度为50℃、转速为160r/min,反应时间24h,在此条件下进行酶催化制备生物柴油的验证实验,实验表明脂肪酸甲酯收率均在90%以上,而且酶催化剂处理后能重复利用。
     结论:
     1.利用离子液体、氢氧化钠和生物酶催化制备了棉籽油生物柴油,利用高效液相色谱和薄层层析色谱定性、定量分析了产物。
     2.运用单因素多水平实验及正交实验分析醇油摩尔比、催化剂用量、反应时间等因素对酯交换反应的影响,并获得四种催化剂催化制备棉籽油生物柴油的优化反应条件。
     3.通过对催化剂催化性能、稳定性、经济性及环境友好性的比较,表明离子液体是生物柴油制备工艺中较优越的催化剂。
Object:Comparative research on transesterification of cottonseed oil used ionic liquids ([BmimJOH, [Emim]OH), NaOH and Nov435 as catalysts. The effect of the molar ratio of methanol to oil, amount of the catalyst, reaction time and temperature on transesterification by the yield of biodiesel were obtained, and the optimum conditions was acknowledged by [Bmim]OH as catalysts through orthogonal analysis.
     Methods:Prepared cottonseed oil biodiesel by ionic liquids ([Bmim]OH, [Emim]OH), NaOH and Nov435 as catalysts. Qualitative and quantitative analysis of biodiesel were followed by HPLC chromatography and Thin-layer chromatography. And the single-factor's effect and the optimized reaction conditions were obtained through multi-level and single-factor experiments and orthogonal experiments. The yield of biodiesel, the stability, the repeatedly use and cost by different catalysts was comparatively analyzed.
     Results:
     1. Produced cottonseed oil biodiesel by [Bmim]OH as catalyst. Determined the four important factors by the orthogonal experiments, and the results are as follows:molar ratio of methanol to oil>amount of the catalyst>time of reaction>temperature of reaction and the optimum condition is that molar ratio of methanol to oil is 7:1, amount of catalyst is 3.5%, time of reaction is 50min and temperature of reaction is 55℃, the yield of biodiesel from 91.7% to 93.5%; and the catalyst is steady and can be used repeatedly more than 6 times.
     2. Produced cottonseed oil biodiesel by [Emim]OH as catalyst. Determined the four important factors by the orthogonal experiments, and the results are as follows:molar ratio of methanol to oil>temperature of reaction>time of reaction> amount of the catalyst and the optimum condition is that molar ratio of methanol to oil is 6:1, amount of catalyst is 3.5%, time of reaction is 50min and temperature of reaction is 55℃, the yield of biodiesel from 89.8% to 90.7%; and the catalyst is steady and can be used repeatedly more than 6 times.
     3. Produced cottonseed oil biodiesel by NaOH as catalyst. Determined the four important factors by the orthogonal experiments, and the results are as follows:molar ratio of methanol to oil>time of reaction >amount of the catalyst>temperature of reaction and the optimum condition is that molar ratio of methanol to oil is 7:1, amount of catalyst is 1.4%, time of reaction is 60min and temperature of reaction is 55℃, the yield of biodiesel from 89.7% to 90.9%.
     4. Produced cottonseed oil biodiesel by Nov435 as catalyst. Obtained the reaction conditions which are the molar ratio of methanol to oil is 3.5:1, amount of catalyst is 10%, time of reaction is 24h, temperature of reaction is 50℃and the stirring speed is 160r/min. Yield of biodiesel is all above 90%, and the catalyst can be used repeatedly after processed by organic solvents.
     Conclusion:
     1. Prepared cottonseed oil biodiesel by ionic liquids, NaOH and Nov435 as catalysts. Qualitative and quantitative analysis of biodiesel were followed by HPLC chromatography and Thin-layer chromatography.
     2. Weighed the importance of different factors which are the molar ratio of methanol to oil, amount of the catalyst, time of reaction and temperature of reaction, and obtained the optimized reaction conditions through multi-level and single-factor experiments and orthogonal experiments.
     3. Compared the yield of biodiesel under the optimum conditions, and analyzed the cost, the time of the repeatedly use and the environmental effect of the four catalysts, and [Bmim]OH was acknowledged as the superior catalyst, and it will be widely used in the future.
引文
[1]离子液体——从基础研究到工业应用[M].张锁江,吕兴梅等.北京:科学出版社,2006.
    [2]离子液体在催化过程中的应用.刘鹰[M].北京:化学工业出版社,2008.
    [3]离子液体——从理论基础到研究进展[M].张星辰等.北京:化学工业出版社,2008.
    [4]Wasserscheid P, Keim W. Ionic liquids-new "solutions" for transition metal catalysis. Angew. Chem.Int.Ed.2000,39:3773-3789.
    [5]Taits S, Osteryoung R A. Infrared study of ambient-temperature chloroaluminates as a function of melt acidity. Inorg. Chem.,1984,23:4352~4360.
    [6]Wilkes J S. A short history of ionic liquids from molten salts to neoteric solvents. Green Chem.2002,4(2):73~80.
    [7]Chum H L, Koch V R, Miller L L et al. Electrochemical scrutiny of organometallic iron complexes an hexamethylbenzene in a room temperature molten salt. J. Am. Chem. Soc., 1975,97(11):3264~3265.
    [8]Hussey C L. Room temperature haloaluminate ionic liquids-novel solvents for transition metal solution chemistry. Pure&Appl. Chem.,1988,60(12):1763~1772.
    [9]Wilkes J S, Levisky J L, Wilson R A et al. Dialkylimidazolium chloroaluminate melts:a new class of room temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg. Chem.,1982,21(3):1263~1264.
    [10]Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylidazolium based ionic liquids. J. Chem. Soc., Chem. Commun.,1992(13):965-966.
    [11]Bonhote P D, Dias A P. Hydrophobic highly conductive ambient-temperature molten. Inorg. Chem.1996,35:1168~1178.
    [12]杨雅立,王晓化,寇元等.不断壮大的离子液体家族.化工进展[J],2003,15(6):471-476.
    [13]Schffler T B, Hussey C L, Seddon K R, et al. Molybdenum chloro complexes in room temperature ionic chloroaluminate ionic liquids:stabilization of hexchloromolybdate (2-) and hexchloromolybdate (3-). Inorg Chem,1983,22(15):2099~2100.
    [14]李雪辉,李榕,陈学伟等.碱性离子液体的研究进展[J].工业催化,2007,15(5):1-5.
    [15]王均凤,张锁江,陈慧萍等.离子液体的性质及其在催化反应中的应用[J].过程工程学报,2003,3(2):177-185.
    [16]邵媛,邓宇.离子液体的应用研究进展[J].精细化工中间体,2005,35(6):14-18.
    [17]R.Seddon, Erale M J, Roberts K G, et al. Friedel-Crafts reaction in room temperature ionic liquids. Chem Commun,1998,19:2097~2098.
    [18]Yin D H, Li C Z, Tao L, et al. Synthesis of diphenylmethane derivatives in Lewis acidic ionic liquids. Journal of Molecular Catalysis,2006,245(1-2):260~265.
    [19]Rogers D A,Tucker C E. Diels-Alder reactions in ethylammonuum nitrate a low-melting fused salt. Tetrahedron Letters,1989,30(14):1785~1788.
    [20]Qiu H D, Jiang S X, Liu X. N-Methylimidazolium anion-exchange stationary phase for high-performance liquid chromatography. J Chromatogr A,2006,1103(2):265-270.
    [21]YASUHIKO I, TOSHIYUKI N. Non-conventional electrolytes for electrochemical applications [J]. Electrochim. Acta,2000,45(15~16):2611-2622.
    [22]Souza R F de, Padilha J G, Concalves R S et al. Room temperature dialkylimidazolium ionic liquid-based fuel cells. Electrochemistry Communications,2003,5(8):728~731.
    [23]生物柴油[M].吴谋成.北京:化学工业出版社,2008.
    [24]生物质能源利用技术[M].张建安,刘德华.北京:化学工业出版社,2009.
    [25]生物柴油——绿色能源[M].李昌珠,蒋丽娟,程树棋.北京:化学工业出版社,2004.
    [26]生物质能学[M].程备久,卢向阳,蒋立科等.北京:化学工业出版社,2008.
    [27]Adams C., Peters J F., Rand M C., et al. Investigation of soybean oil as a diesel extender: Endurance tests. Journal of the American Oil Chemists Society,1983,60(12):1574~1579.
    [28]曹晓燕,满瑞林,刘小凤等.生物柴油制备方法研究进展[J].化学工程师,2007,144(9):27-31.
    [29]GRABBE E,NOLASCO,HIPOLITO C,KOBAYASHI G, et al. Biodiesel Production from Crude Palm Oil and Evaluation of Butanol Extraction and Fuel Properties [J].Process Biochemistry,2001,37(1),65~71.
    [30]Freedman B, Pryde E H, MountsT L.Varibles affecting the yields of fatty esters from transesterified vegetable oils [J]. J Am Oil Chem Soc,1984,61:1638-1643.
    [31]陈和,王金福.固体酸催化棉籽油酯交换制备生物柴油[J].过程工程学报,2006,6(4):571-572.
    [32]曹宏远,曹维良,张敬畅.固体酸Zr(SO4) 2·4H2O催化制备生物柴油[J].北京化工大学学报,2005,32(6),61-63.
    [33]张青梅,成应向,向仁军.固体酸催化生物柴油合成研究进展[J].河南科学,2009,27(1):36-39.
    [34]MENG Xin, XIN Zhong. Preparation of Biodiesel from Soybean Oil by Transesterification on KF/CaO Catalyst[J]. PETROCHEMICAL TECHNOLOGY,2005, 34:282~286.
    [35]KIM Hak-Joo, KANG Bo-Seung, KIM Min-Ju, et al. Transesterification of Vegetable Oil to Biodiesel Using Heterogeneous Base Catalysis[J]. Catalysis Today,2004.(3):315~320.
    [36]LECLERQ E,FINIEL A,MORCAU C. Transesterification of Rapeseed Oil in the Presence of Basic Zeolites and Related Solid Sataiysts[J]. JAOCS,2001,78(11):1161~1165.
    [37]BAYNESS, COMNELIS R, HINNCKENS, et al. Esterfication Process[P]. USP,5508457,1996.
    [38]GALEN J S, MOHANPRASAD A D, ERIC J D, et al.Transesterification of Soybean Oil with Zeolite and Metal Catalysts[J].Applied Catalysis,2004,257:213-223.
    [39]LI Wei-min, ZHENG Xiao-liu, XU Chun-ming, et al. Preparation and its properties of Biodiesel by Using Solid Base Catalyst[J]. Journal of Chemical Industry and Engineering, 2005,56(4):711~716.
    [40]David G C, Lisa J G, Adam F L, Karen W. Structure-reactivity correlations in Mg-Al hydrot; catalysts for biodiesel synthesis [J]. Applied Catalysis A:General,2005,287(2):183~190.
    [41]Liu Dan. Production of Biodiesel [D]. Nanjing:Nanjing University of Technology,20Q4.
    [42]杨继国,林炜铁,吴军林.酶法合成生物柴油的研究进展[J],化工环保,2004,24(2):116-120
    [43]OZNUR Kose, MELEK Tter, AYSE Aksoy H. Immobilized Candida Antarctica Lipase catalyzed Alcoholysis of Cotton Seed Oilina Solvent-free Medium [J]. Bioresource Technology,2002,83(2):125~129.
    [44]蔡志强,邬国英,林平西等.固定化脂酶催化合成生物柴油的研究[J].中国油脂,2004,29(8):29-32.
    [45JAYHAN Demirbas. Biodiesel from Vegetable Oils Via Transestefificafion in Supercrifical Methanol[J].Energy Conversion and Management,2002,43:2349~2356.
    [46]HAN Heng wen, CAO Weiliang, ZHANG Jing chang. Preparation of Biodiesel from Soybean Oil Using Supercritical Methanol and CO2 as Cosolvent[J]. Process Biochemist,2005,40:3148~3151.
    [47]Giridhar M, Chandana K, Rajnish K. Synthesis of biodiesel in supercritical fluids[J]. Fuel,2004(83):2029~2033.
    [48]朱江丽,李彦奇,钱建华等.超声波法制备生物柴油的研究[J].渤海大学学报(自然科学版),2009,(1)20-23.
    [49]杨庆利,禹山林,秦松.超声波辅助下海滨锦葵油制备生物柴油工艺的优化[J].石油化工,2008,(11)1147-1151.
    [50]WHITTAKER A G, MINGOS D M P. Synthetic reactions using metal powders under microwave irradiation[J] Journal of Microwave Power and Electromagnetic Energy,1994, 29(4):195~198.
    [51]GEDYE R,SMITH F, WESTAWAY K. Microwaves in organic and organ metallic synthesis [J]. Journal of Microwave Power and Electromagnetic Energy,1991,26(1):3~17.
    [52]李增富,陈登龙,陈顺玉等.微波辅助催化制备生物柴油的研究[J].福建师范大学学报(自然科学版),2008(11):69-73.
    [53]蔡新安,张春干,余忠定.微波辐射酸催化潲水油合成生物柴油的研究[J].化学工程师,2008(9):6-8.
    [54]Smith G P,Dworkin A S,Pagni R M, et al. Quantitative study of the acidity of HC1 in a molten Chloraluminate system. J Am Chem Soc,1989,111:5075~5077.
    [55]Cole A C, Jesen J L, Ntai I. Novel b(?)rnsted acidic ionic liquids and their use as dual solvent-catalyst. J Am Chem Soc,2002,124(21):5962~5963.
    [56]Vasundhara S, Sukhbir K, Varinder S. Microwave accelerated preparation of [bimim]HSO4 ionic liquid:an acid catalyst for improved synthesis of coumarins, Cata Comm. 2005,6(1):57~60.
    [57]WU Qin, CHEN He, HAN Ming han, et al. Transesterification of Cottonseed Oil to Biodiesel Catalyzedb Highly Active Ionic Liquids[J].Chinese Journal of Catalyst,2006, 27(4):294~296.
    [58]孔洁,韩雪峰,陈乐培等.微波辐射下离子液体[BMIM]HSO4催化葵花籽油制备生物柴油[J].粮油加工,2009(8)63-64.
    [59]李怀平,汪全义,兰先秋等.离子液体[Hmim] HSO4催化菜籽油制备生物柴油[J].中国油脂,2008(4):57-59.
    [60]Mehnert C P, Dispenzire N C, Cook R A. Preparation of C9-aldehyde via aldol condensation reactions in ionic liquid media[J]. Chem Commun,2002,2(15):1610~1611.
    [61]Gong K, Fang D, Wang H L, et al. Basic functionalized ionic liquid catalyzed one-pot Mannich-type reaction:three component synthesis of β-Amino carbonyl compounds. Monatshefte fur Chemie,2007,138:1195~1198.
    [62]Yang L, Xu L W, Zhou W, et al. Highly efficient Aza-Michael reactions of aromatic amines and N-heterocycles catalyzed by a basic ionic liquid under solvent-free conditions. Tetradron Lett,2006,47:7723~7726.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700