用户名: 密码: 验证码:
微波强化ClO_2催化氧化工艺及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前水中难降解有机污染物处理中存在的技术问题,本文研究开发出一种新型物理化学水处理技术-微波强化高级氧化工艺(Microwave-enhanced Advanced Oxidation Process,简称为MAOP)。微波强化高级氧化技术具有反应速度快、占地面积小、设备简单、操作方便等优点,在水处理领域内有着广阔的应用前景。本文围绕微波强化ClO_2催化氧化工艺中催化剂的研制这一技术关键,制备了CuO/γ-Al_2O_3和La_2O_3-CuO/γ-Al_2O_3催化剂,并以La_2O_3-CuO/γ-Al_2O_3为催化剂,以活性艳黄染料和苯酚模拟废水为处理对象,建立微波强化ClO_2催化氧化处理难降解有机物工艺;研究苯酚和活性艳黄染料在微波强化ClO_2催化氧化工艺中的动力学和体系中羟基自由基的产生以及作用机制;并分析催化剂La_2O_3-CuO/γ-Al_2O_3在使用过程中的失活原因,确定最优的再生方法,均取得了理想的结果。
     本文首先以γ-Al_2O_3为载体,以铜盐为活性组分,采用浸渍沉淀法制备了CuO/γ-Al_2O_3催化剂,对其在微波强化ClO_2催化氧化工艺中的催化活性和稳定性进行研究,并进一步选取稀土镧为助剂,采用分层浸渍沉淀法制备出La_2O_3-CuO/γ-Al_2O_3催化剂。催化剂的结构分析表明,La_2O_3-CuO/γ-Al_2O_3中铜以CuO和Cu2O的形式存在,镧以La_2O_3的形式存在,其中铜的含量为6.748%,镧的含量为0.257%。同时,镧的掺杂可以与载体结合,提高载体γ-Al_2O_3的热稳定性,增大催化剂的比表面积,提高活性组分的负载量,并使得催化剂表面的活性组分CuO的粒径更小、分散更加均匀,增加了催化剂表面的活性点,提高其催化活性和稳定性。
     以自制La_2O_3-CuO/γ-Al_2O_3为催化剂,ClO_2为氧化剂,研究建立微波强化ClO_2催化氧化工艺。对于100mL初始浓度为200mg/L的模拟染料废水,最佳的处理工艺条件为:微波辐照功率400W,辐照时间1.5min,pH值为7, ClO_2投加量80mg/L,催化剂加入量70g/L。在此工艺条件下,对活性艳黄染料的脱色率达到94.03%,TOC去除率为67.92%;对于100mL初始浓度为100mg/L的模拟苯酚废水,最佳的处理工艺条件为:微波辐照功率50W,辐照时间5min,pH值为7,ClO_2投加量80mg/L,催化剂加入量50g/L。在此工艺条件下,对苯酚的去除率达91.66%,TOC去除率为50.35%;
     本文系统研究了微波强化ClO_2催化氧化、微波强化ClO_2氧化、水浴条件下ClO_2催化氧化和水浴条件下ClO_2氧化四种工艺中ClO_2与苯酚的反应动力学。结果表明,四种处理工艺条件下,ClO_2催化氧化苯酚的反应对于苯酚反应级数为1,对ClO_2反应级数为1,总反应级数为2。对比四种不同工艺中的反应速率常数可知,微波辐照与La_2O_3-CuO/γ-Al_2O_3催化剂联合使用可明显提高ClO_2降解有机物的反应速率。
     采用分子荧光光谱法,本文对微波强化ClO_2催化氧化体系中的羟基自由基的生成规律进行了研究探讨。结果表明,常温下ClO_2氧化体系未检测到·OH自由基;常温下ClO_2催化氧化体系和微波强化ClO_2氧化体系可产生少量的·OH自由基;当微波辐照、La_2O_3-CuO/γ-Al_2O_3催化剂和ClO_2联合使用时,体系中有大量的·OH自由基生成,说明微波辐照与催化剂具有协同作用,可明显提高ClO_2氧化体系产生·OH自由基的能力。基于此,本文提出微波强化ClO_2催化氧化处理水中有机污染物的可能机制为:废水中的有机污染物首先被吸附于催化剂表面,由于催化剂能够强烈地吸收微波,催化剂表面在微波场中生成“热点”,同时微波诱导ClO_2产生羟基自由基,由于“热点”的高温作用和羟基自由基氧化反应使吸附于催化剂表面的有机污染物被迅速氧化分解。
     本文还对系统处理活性艳黄染料废水过程中催化剂的失活原因和再生方法进行了深入研究。结果表明,催化剂在使用过程中的失活主要是由废水降解所产生的含碳的中间产物吸附在催化剂表面,掩盖了催化剂的活性中心而引起的。微波辐射再生是一种非常有效的再生方法,其最优工艺条件是微波功率500W,辐照时间30min,SiC与催化剂比值2:1,在此条件下再生的催化剂活性可恢复到新鲜催化剂的91.67%。再生催化剂的结构表征分析表明,催化剂再生之后,其各项结构参数均可基本恢复至新鲜催化剂的状态。
     本文将微波技术和改性γ-Al_2O_3催化剂结合,对传统的ClO_2氧化法进行改进,该方法具有ClO_2用量少、pH值适用范围广、处理速度快、处理效率高、出水温度适宜、投加方式简单、设备简单、操作方便等优点,为水中难降解有机污染物的处理提供了一种新型的有潜力的处理工艺。
Aim to problems of nonbiodegradable wastewater treatment, micirowave-enhanced advanced oxidation process (MAOP) is founded. Compared with other advanced oxidation processes, microwave enhanced oxidation process has many advantages such as the oxidation speed and the mineralization efficiency are higher, the set-up is simpler, and the operation conditions are more convenient. So it promises to have a wide application in the wastewater treatment. The preparing of heterogeneous catalysts with high activity and stability is one of key techniques in MAOP. In this paper, CuO/γ-Al_2O_3 catalyst and La_2O_3-CuO/γ-Al_2O_3 catalyst were prepared. The catalytic activity of La_2O_3-CuO/γ-Al_2O_3 catalyst was investigated in microwave enhanced ClO_2 catatlytic oxidation process by using phenol and remazol golden yellow dye as as model pollutants.
     The kinetic and degradation mechanism of remazol golden yellow dye and phenol in MAOP were studied. The formation of hydroxide radical group (·OH) in MAOP was also investigated. The reason of deactivated catalyst La_2O_3-CuO/γ-Al_2O_3 was analyzed and several different regeneration methods were compared. Firstly, CuO/γ-Al_2O_3 was prepared by impregnation-deposition method. The catalytic activity and stability were investigated in MAOP. Because the catalytic activity of CuO/γ-Al_2O_3 decreased fast in the successive runs, La_2O_3-CuO/γ-Al_2O_3 catalyst was prepared by selecting La as doping agent to improve the catalytic activity of CuO/γ-Al_2O_3. According to the structure analysis, Cu exists as CuO and Cu2O in La_2O_3-CuO/γ-Al_2O_3 with the loading amount of 6.748%; La exists as La_2O_3 in La_2O_3-CuO/γ-Al_2O_3 with the loading amount of 0.257%. It proved the surface modification of the carrierγ-Al_2O_3 by the addition of La_2O_3 could reinforce the thermal ability of the support within a certain extent. La_2O_3 could promote the structure of supports and intensify the interaction between active component and support, so that the loading of Cu in the catalyst was improved. Better dispersion and smaller size of CuO crystals could be obtained by La_2O_3, which made the number of active site increased.
     The process of microwave enhanced chlorine dioxide oxidation treating phenol or remazol golden yellow dye wastewater was investigated by adding La_2O_3-CuO/γ-Al_2O_3 as a catalyst. 100mL synthetic wastewater containing 100 mg/L phenol was treated in MAOP and 91.66% of phenol and 50.35% of total organic carbon (TOC) could be removed under the optimum process conditions: ClO_2 concentration 80 mg/L, microwave power 50 W, contact time 5 min, catalyst dosage 50 g/L, pH 9. Under an optimal condition (ClO_2 concentration 80 mg/L, microwave power 400 W, contact time 1.5 min, catalyst dosage 70 g/L, pH 7), remazol golden yellow dye removal percentage approached 94.03%, corresponding to 67.92% of TOC removal.
     The reaction kinetics in microwave enhanced ClO_2 catatlytic oxidation process, microwave enhanced ClO_2 oxidation process, traditional waterbath ClO_2 catatlytic oxidation process and traditional waterbath ClO_2 oxidation process were studied. Results suggested that the process between phenol and ClO_2 oxidation reaction accord to first-order reaction for phenol and first-order for chlorine dioxide, the total reaction order was 2. Comparesion of reaction constant in different treatments, it could be concluded in microwave enhanced ClO_2 catatlytic oxidation process microwave irradiation and catalyst work together to improve the reaction rate.
     The fluorescence technology was applied to detect the regulation of hydroxyl radicals (·OH) created in microwave enhanced ClO_2 catatlytic oxidation process. The results showed that there was no·OH created in ClO_2 oxidation process under room temperature; there were a few hydroxyl radicals created in ClO_2 catatlytic oxidation process under room temperature and microwave enhanced ClO_2 oxidation process; a lot of hydroxyl radicals were created in microwave enhanced ClO_2 catatlytic oxidation process. The mechanisms of organic pollutant degraded in microwave enhanced ClO_2 catatlytic oxidation process could be conluded: organic pollutant were absorbed on the surface of the catalyst, at the same time; microwave was focused on the surface of the catalyst which can absorb microwave. And microwave was transferred heat energy. So the catalyst was heated to very high temperature, which is called hot spot. Then organic pollutant were degraded by·OH which produced by microwave induced ClO_2 under high temperature of the hot spot formed on the surfaced of catalyst in the microwave field.
     The deactivation reason and regeneration methods of prepared catalysts were also studied in this dissertation. The deactivation was caused by the degradation products of pllutions contained C elements remained on the surface of catalyst and covered the active sites. Microwave radiation regeneration technology was an effective regeneration method; the regenerated catalyst could restore the 91.67% activity of the fresh catalyst with the following working conditions: power of microwave, 500W; exposure time, 30 min; SiC catalyst ratio, 2:1. Studies showed the catalytic activity of regenerated catalyst was very close to initial activity.
     The improvement of traditional chlorine dioxide oxidation has been realized by combining microwave technology and modifiedγ-Al_2O_3 catalytic oxidation. Compared with traditional ClO_2 oxidation, microwave-assisted ClO_2 catalytic oxidation process can degrade contaminants in short reaction time and with low oxidant dosage, extensive pH range. As a developing process, the microwave enhanced ClO_2 catalytic oxidation process would provide a novel treatment method for the refractory wastewater and would have a broad prospect.
引文
1 陈峰滔. 试论农村水污染的治理. 海峡科学,2007,5(5):75~77
    2 王惠勇,闫鹏.中国污水资源化问题及对策.环境保护,2000(4):35~36
    3 国家环境保护总局. 1998 年中国环境状况公报. 环境保护,1999(7) :3~6
    4 张洪林.难降解有机物的处理技术进展.水处理技术,1998, 24 (4): 259~264.
    5 金钦汉. 微波化学. 北京:科学出版社,1999
    6 王鹏. 环境微波化学技术. 北京:化学工业出版社,2003
    7 R.Church. Dielectric properties of low loss minerals. USBOM Report of Investigations. No. 9194, 1993
    8 R.Gedge. Microwave irradiation in organic chemistry. Tetra. Lett., 1986, (27): 279
    9 龙明策,王鹏,郑彤等. 高吸水性树脂的微波辐射合成工艺及性能研究. 高分子材料科学与工程,2002,18(6):205~207
    10 K. C. Oliver. High speed combinatorial synthesis ultilizing microwave irradiation. Current Opinion in Chemical Biology, 2002, 6(3): 314~320
    11 K. Karunan. Bioaccumulation and toxic potential of extremely hudrophobic polychlorinated at a superfund site contaminated with Aroclor 1246. Environmental Science and Technology, 1998, 32: 1214~1221
    12 冯晓西,乌锡康. 精细化工废水处理. 北京:化学工业出版社,1997
    13 常智觅. 污染控制化学. 武汉:武汉出版社,1998:96~97
    14 李家珍. 燃料、染色工业废水处理. 北京:化学工业出版社,1997:75
    15 崔崇威,马放,张艳民等. 哈依煤气废水处理改造工艺的技术讨论. 哈尔滨建筑大学学报,2002,35(5):26
    16 李向飞,文湘华,林刚. 白腐真菌 F1 对染料脱色特性的研究. 环境污染治理技术与设备,2002,3(7):2~4
    17 郑展望. 非均相 UV/Fenton 处理难降解有机废水研究. 浙江大学博士学位论文,2004:5
    18 黄俊,周申范. 白腐真菌生物 TNT 降解装药废水的研究. 环境科学与技术,1999,(3):17~19
    19 闫艳春,姚良同,宋晓妍等. 工程菌及其固定化细胞对有机磷农药的降解. 中国环境科学,2001,21(5):412~416
    20 乔传令,李瑄,邢建民等. 转解毒酶基因工程菌的解毒作用研究. 中国环境科学,2001,21(12):105~108
    21 林忠祥,鞠昭年,高光凤. 萃取-汽提法处理硝基苯废水的研究. 环境导报,1998,(1):14~16
    22 刘茉娥. 膜分离技术. 北京:化学工业出版社,1998
    23 唐玉斌,陆柱,赵庆祥. 绿色水处理技术的研究与应用进展. 水处理技术,2002,28(1):1~5
    24 冯冰凌,叶菊招,郎雪梅. 聚氨基葡糖超滤膜的研制及其在印染废水处理中的应用. 工业水处理,1998,18(4):16~18
    25 喻胜飞,叶菊招,郎雪梅等. 壳聚糖活性炭共混超滤膜的研制.水处理技术,1999,25(5):255~258
    26 H. S. Jogle, S. D. Samant, J. E. Joshi. Kinetics of Wet Air Oxidation of Phenol and Substituted Phenol. Water Research, 1991, 25(2): 135~145
    27 孙佩石,原田吉明等. 催化湿式氧化法处理高浓读有机废水的动力学模型. 环境污染与治理,1999,20(3):42~45
    28 H. Debellefontaine. Treatment of Organic Aqueous Waste: Wet Air Oxidation and Wet Peroxide Oxidation. Environmental Pollution, 1996,92(2):156~163
    29 杨润昌,周书天. 高浓度难降解有机废水低压湿式催化氧化处理. 环境科学,1997,18(9):71~74
    30 杨润昌,周书天,谢磊. 高浓度甲基橙低压湿式催化氧化及动力学研究. 湘潭大学自然科学学报,2000,22(3):59~62
    31 A. Fortuny, J. Font, A. Fabregat. Wet air oxidation of phenol using active carbon as catalyst. Appl. Catal. B: Environmental, 1998, (193): 165~173
    32 S. T. Kolaczko, P. Plucinski, F. J. Beltran, F. J. Rivas, D. B. Mclurg. Wet air oxidation: a review of process technologies and aspects in reactor design. J. Chem. Eng., 1999, (73): 143~160
    33 周健,陆小华,王延儒等. 超临界水的分子动了学模型,物理化学学报,1999,15(11):1017~1022
    34 R. L. Wolf. Ultraviolet disinfection of potable water. Environmental Science and Technology, 1990, 24(6): 768~773
    35 Y. D. Zhang. Catalytic supercritical water oxidation: phenol conversion and product selectivity. Environmental Science and Technology, 1995, 29(11): 2748~2753
    36 贾建丽,李凯,周岳溪等. 新型负载型光催化剂及其 4BS 降解研究. 中国环境科学,2001,21(4):293~296
    37 阎惠珍,樊荣涛. 光催化在饮用水消毒中的应用.环境与健康杂志,2002,19(2):153~154
    38 B. J. Hwang, K. L. Lee. Electro catalytic oxidation of 2-Chcorophenol on a composite PbO2/polypyrrole electrode in aqueous solution. Journal of Applied Electrochemistry, 1996, 26(1): 153~159
    39 刘钟栋. 微波技术在食品工业中的应用. 北京:中国轻工业出版社, 1999
    40 钱鸿森. 微波加热技术及应用. 哈尔滨:黑龙江科学技术出版社,1985
    41 G. Grassi, F. Foti, F. Risitano, et al. Efficient synthesis of 3-carboxylate pyrroles using microwave irradiation. Tetrahedron Letters, 2005, 46(7): 1061~1062
    42 A. Dandia, K. Arya, M. Sati, et al. Green chemical synthesis of fluorinated 1,3,5-triaryl-s-triazines in aqueous medium under microwaves as potential antifungal agents. Journal of Fluorine Chemistry, 2004, 125(9): 1273~1277
    43 H. S. Tai, C. G. Jou. Application of granular activated carbon packed-bed reactor in microwave radiation field to treat phenol. Chemosphere, 1999, 38(11):2667~2680
    44 C. G. Jou, H. S. Tai. Application of granulated activated carbon packed-bed reactor in microwave radiation field to treat BTX. Chemosphere, 1998, 37(4):685~698
    45 Y. Liu, Y. Lu, P. Liu, et al. Effects of microwaves in selective oxidation of toluene to benzoic acid over a V2O5/TiO2 system. Applied Catalysis A: General, 1998, (170): 207~214
    46 X. T. Liu, X. Quan, L. L. Bo, et al. Temperature measurement of GAC and decomposition of PCP loaded on GAC and GAC-supported copper catalyst in microwave irradiation. Applied Catalysis A: General, 2004, (264): 53~58
    47 X. T. Liu, X. Quan, L. L. Bo, et al. Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation. Carbon, 2004, (42): 415~422
    48 X. Quan, X. T. Liu, L. L. Bo, et al. Regeneration of acid orange 7-exhausted granular activated carbons with microwave irradiation. Water Research, 2004, (38): 4484~4490
    49 姜思朋,王鹏,张国宇等.微波强化氧化法处理 BF-BR 染料废水.中国给水排水,2004, 20(4): 13~15
    50 Y. C. Chang, F. H. Ko, C. J. Ko, et al. Probing the microwave degradation mechanism of phenol-containing polymeric compounds by sample pretreatment and GC–MS analysis. Analytica Chimica Acta, 2004,(526): 121~129
    51 T. R. Marilena, H. Milan. Effect of solvent, catalyst type and catalyst activation on the microwave transformation of 2-tert-butylphenol. Journal of Molecular Catalysis A: Chemical, 2002, (186): 121~126
    52 D. Bogdal, M. Lukasiewicz, J. Pielichowski, et al. Microwave-assisted oxidation of alcohols using Magtrievee. Tetrahedron, 2003, (59) : 649~653
    53 A.Rudolph, Abramovitch, C. Michael. Remediation of waters contaminated with pentachlorophenol. Chemosphere, 2003, (50) : 955~957
    54 姜思朋,王鹏,张国宇等.微波强化氧化法处理 BF-BR 染料废水.中国给水排水,2004, 20(4): 13~15
    55 S. Raquel, C. Blanca, Y. Malcolm, et al. Microwave decomposition of a chlorinated pesticide (Lindane) supported on modified sepiolites. Applied Clay Science, 2002, (22) : 103~113
    56 V. L. Zholobenko. E. R. House. Zeolite-based catalysts for microwave-induced transformations of hydrocarbons. Catalysis Letters, 2003, 89(1-2): 35~40
    57 H. Takashima, L. L Ren, Y. Kanno. Catalytic decomposition of TCE under microwave. Catalysis Communications, 2004, (5): 317~319
    58 K. Airton, P. Z. Patricio, D. Nelson. Hydrogen peroxide assisted photochemical degradation of ethylenediaminetetraacetic acid. Advances in Environmental Research, 2002, (7): 197~202
    59 S. Horikoshi, H. Hidaka, N. Serpone. Environmental Remediation by an Integrated Microwave/UV-Illumination Method. I. Enhanced degradation of rhodamine-B dye in aqueous TiO2 dispersions. Environ. Sci. Technol., 2002, (36): 1357~1366
    60 S. Horikoshi, H. Hidaka, N. Serpone. Environmental remediation by an integrated microwave/UV-illumination method Ⅱ. Characteristics of a novel UV-VIS-microwave integrated irradiation device in photodegradation processes. Journal of Photochemistry and Photobiology A: Chemistry, 2002, (153): 185~189
    61 S. Horikoshi, H. Hidaka, N. Serpone. Environmental Remediation by an Integrated Microwave/UV-illumination Technique. III. Photodegradation of rhodamine-B dye in aqueous TiO2 dispersions irradiated simultaneously with UV/visible and microwave radiation in a flow system using a microwave-powered plasma light source. Environ. Sci. Technol., 2002, (36): 5229~5237
    62 S. Horikoshi, H. Hidaka, N. Serpone. Environmental remediation by an integrated microwave/UV-illumination technique IV. Non-thermal effects in the microwave-assisted degradation of 2, 4-dichlorophenoxyacetic acid in UV-irradiated TiO2/H2O dispersions. Journal of Photochemistry and Photobiology A: Chemistry, 2003, (159): 289~300
    63 S. Horikoshi, A. Saitou, H. Hidaka, N. Serpone. Environmental Remediation by an Integrated Microwave/UV-Illumination Technique. V. Thermal and non-thermal effects of microwave radiation on the mechanism of the photocatalyzed degradation of rhodamine-B dye under UV/VIS irradiation. Environ. Sci. Technol., 2003, (37): 5813~5822
    64 S. Horikoshi, H. Hidaka, N. Serpone. Environmental remediation by an integrated microwave/UV illumination technique VI. A simple modified domestic microwave oven integrating an electrodeless UV-VIS lamp to photodegrade environmental pollutants in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 2004, (161): 221~225
    65 S. Horikoshi, A. Tokunaga, H. Hidaka, et al. Environmental remediation by an integrated microwave/UV illumination method VII. Thermal/non-thermal effects in the microwave-assisted photocatalyzed mineralization of bisphenol-A. Journal of Photochemistry and Photobiology A: Chemistry, 2004, (162): 33~40
    66 J. G. Mei, S. M. Yu, J. Cheng. Heterogeneous catalytic wet peroxide oxidation of phenol over delaminated Fe-Ti-PILC employing microwave irradiation. Catalysis Communications, 2004, (5): 437~440
    67 D. H. Han, S. Y. Cha, H. Y. Yang. Improvement of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H2O2 process and kinetic study. Water Research, 2004, (38): 2782~2790
    68 M. H. Lau, J. Tang. Pasteurization of pickled asparagus using 915MHz microwaves. Journal of Food Engineering, 2002, (51): 283~290
    69 P. Dambadarjaa, I. Noriyuki, H. Isao, et al. Inactivation of Escherichia coli by microwave induced low temperature argon plasma treatments. Journal of Food Engineering, 2002, (53) : 341~346
    70 邹宗柏,傅大放,张璐. 用微波辐照消除磺基水杨酸污染物. 环境污染与防治,1999,21(1):22~24
    71 傅大放,邹宗柏,曹鹏. 活性炭的微波辐照再生试验. 中国给水排水, 1997,13(5):7~9
    72 彭金辉. 微波辐照再生味精厂中废活性炭. 林产化学与工业,1998,18(2):89~90
    73 宁平,田森林,王学谦等. 微波辐照再生载甲苯活性炭. 2001,18(2):109~114
    74 王金成,薛大明,全燮等. 微波辐射处理活性艳蓝 KN-R 染料溶液的研究. 环境科学学报,2001,21(5):628~630
    75 王金成,薛大明,全燮等. 活性艳蓝 KN-R 染料溶液微波催化脱色研究. 大连理工大学学报,2001,41(5):545~548
    76 夏立新,李坤兰,庞军等. 微波辐射技术在聚乙烯醇降解反应中的应用. 环境化学,2000,19(6):556~560
    77 傅大放,吴海锁. 微波辐射破乳的试验研究. 中国给水排水,1998,14(4):4~6
    78 赵景联,任国勇. 微波辐射 Fenton 试剂氧化催化降解水中三氯乙烯. 微波学报,2003,19(1):85~90
    79 孙萍,肖波,杨家宽等. 微波技术在环境保护领域的应用. 化工环保,2002,22(2):71~75
    80 王剑虹,严莲荷,周申范等. 微波技术在环境保护领域中的应用. 工业水处理,2003,23(4):18~22
    81 K. K.Chee, M. K. Wong, H. K. Lee. Microwave-assisted solvent elution technique for the extraction of organic pollutant in water. Analytic Chimica ACTA, 1996, (330):217~227
    82 B. P. Cid, A. F. Alborés, E. F.Gómez, et al. Use of microwave single extractions for metal fractionation in sewage sludge samples. Analytica Chimica ACTA, 2001, (431):209~218
    83 Y. Y. Shu, Ming Y. Ko, Y. S. Chang. Microwave-assisted extraction of ginsenosides from ginseng root. Microchemical Journal, 2003, (74): 131~139
    84 J. S. Metcalf, G. A. Codd. Microwave oven and boiling water bath eatraction of hepatotoxins from cyanobacterial cells. FEMS Micobiology Letters, 2000,(184):241~246
    85 Q. H. Jin, F. Liang, H. Q. Zhang, et al. Application of microwave techniques in analytical chemistry. Trends in Analytical Chemistry, 1999,18(7): 479~484
    86 M. R. Criado, I. R. Pereiro, R. C. Torrijos. Optimization of a microwave-assisted extraction method for the analysis of polychlorinated biphenyls in ash samples. Journal of Chromatography A, 2003,(985):137~145
    87 J. L. Luque-Carcia, J. Velasco, M. C. Dobarganes, et al. Fast Quality monitoring of oil from prefried and fried foods by focused microwave-assisted Soxhlet extraction. Food Chemistry, 2002, (76): 241~248
    88 卜玉兰,郭振库. 微波萃取技术. 色谱,1997,15(6):499~501
    89 钟爱国. 微波辅助提取-紫外分光光度法检测土壤中的油脂总量. 光谱实验室,2001,18(6):768~770
    90 D. A. Jones, T. P. Lelyveld, S. D. Mavrofidis, et al. Microwave heading application in environmental engineering-a review. Resources, Conservation and Recycling, 2002, (34):75~90
    91 A. Agazzi, C. Pirola. Fundamentals, methods and future trends of environmental microwave sample preparation. Microchemical Journal, 2000, (67):337~341
    92 W. Maher, F. Krikowa, D. Wruck, et al. Determination of total phosphorus and nitrogen in turbid waters by oxidation with alkaline potassium peroxodisulfate and low pressuremicrowave digestion, autoclave heating or the use of closed vessels in a hot water bath: comparison with Kjeldahl digestion. Analytica Chimica Acta, 2002,(463):283~293
    93 V. Sandroni, C. M.M. Smith. Microwave digestion of sludge, soil and sediment samples for metal analysis by inductively coupled plasma–atomic emission spectrometry. Analytica Chimica Acta, 2002, (468):335~344
    94 V. Sandroni, C. M.M. Smith, A. Donovan. Microwave digestion of sediment, soils and urban particulate matter for trace metal analysis. Talnata, 2003, 60: 715~723
    95 C. Smain, L.a Ahcene, A. A. Hamid, et al. Ultrasound assisted microwave
    96 M. C. B. Quaresma, R. J. Cassella, M. Guardia, et al. Rapid on-line sample dissolution assisted by focused microwave radiation for silicate analysis employing flame atomic absorption spectrometry: iron determination. Talanta, 2004, (62): 807~811
    97 邹明强,王大宁,贾睿等. 家用微波炉消解土壤样品. 吉林大学自然科学学报,1995,(3):73~76
    98 高岐,范彩玲,黄晓书. 微波加热快速测定土壤中有机碳的研究. 土壤通报,1995,26(4):190~191
    99 高岐,张海燕. 微波加热—密闭消解快速光度法测定土壤中的硫含量. 化学通报,1997,(11):43~45
    100 梁重山,党志,刘丛强. 土壤/沉积物样品中有机碳含量的快速测定. 土壤学报,2002,39(1):135~139
    101 梁棕. 微波密封消解法快速测定总磷. 环境保护科学,1997,23(4):36~37
    102 董庆霖,邢向英. 微波消化法测定含油废水的化学需氧量. 工业水处理,1996,16(6):32~33
    103 艾智. 微波消化光度法测定化学需氧量. 理化检验-化学分册,2000,36(7):299~300
    104 孙晓娟,苏跃增,金凤明等. 微波消解分光光度法测定石油化工循环水中总磷. 分析化学,2001,29(9):1113
    105 高愈希,王子健,冷春花. 利用微波消解和高效液相色谱荧光检测法测定环境水样中痕量硒. 分析化学,2001,29(6):629~632
    106 吴抒怀,蔡怡鹃. 微波消化-连续流动进样冷原子吸收法测定中成药中痕量汞. 光谱实验室,1998,15(4):46~50
    107 鲁丹,李海涛. 微波消解-氢化物发生原子吸收光谱法测定食物中的汞. 光 谱学与光谱分析,1999,19(3):394~396
    108 M. A. Wojtowicz, F. P. Miknis , R.W. Grimes, et al. Control of nitric oxide, nitrous oxide, and ammonia emissions using microwave plasmas. Journal of Hazardous Materials, 2000, (74):81~89
    109 J. W. Tang, T. Zhang., D. B. Liang, et al. Direct decomposition of NO by microwave heating over Fe/NaZSM-5. Applied Catalysis B: Environmental, 2002, (36):1~7
    110 X. L. Zhang, D. O. Hayward, C. Lee, et al. Microwave assisted catalyticreduction of sulfur dioxide with methane over MoS2 catalysts. Applied Catalysis B: Environmental, 2001, (33):137~148
    111 J. B. L. Harkness, A. J. Gorski, E. J. Daniels. Hydrogen sulfide waste treatment by microwave plasma dissociation. Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, American Institute of Chemical Engineers, New York, 1990: 197
    112 S. Kataoka, D. T. Tompkins, W. A. Zeltner, et al. Photocatalytic oxidation in the presence of microwave irradiation: observations with ethylene and water. Journal of Photochemistry and Photobiology A: Chemistry, 2002, (148):323~330
    113 M. T. Radoiu, Y. G. Chen, M. C. Depew. Catalytic conversion of methane to acetylene induced by microwave irradiation. Applied Catalysis, 2003, B(43): 187~193
    114 M. Tsuji, K. Nakano, J. Kumagae, et al. Decomposition of NO in a microwave-absorbent assisted discharge of N2 at atmospheric pressure. Surface and Coatings Technology, 2003, (165): 296~308
    115 Z. Zimek, A. G. Chmiclewski, S. Bulka, et al. Flue gases treatment by simultaneous use of electron beam and stream of microwave energy. Radiat. Phys. Chem., 1995, 40(4-6): 1159~1162
    116 M. T. Radoiu, D. I. Martin, I. Calinescu. Emission control of SO2 and NOx by irradiation methods. Journal of Hazardous Materials, 2003, B(97): 145~158
    117 G. Roussy, S. Hilarine, J. M. Thiébaut, et al. Permanent change of catalytic peoperties induced by microwave activation on 0.3% Pt/Al2O3 (EuroPt-3) and on 0.3% Pt-0.3%Re/Al2O3 (EuroPt-4). Applied catalysis, 1997, A(156): 167~180
    118 S. Ringler, P. Girard, G. Maire, et al. Mechanistic studies of NOx reduction reactions under oxidative atmosphere on alumina supported 0.2 wt% platinum catalyst treated under microwave (Part II). Applied Catalysis, 1999, B(20): 219~233
    119 Y. Kong, C. Y. Cha. NOx abatement with carbon absorbed and microwave energy. Energy Fuels, 1995, 9(6): 971~975
    120 张达欣,于爱民,金钦汉. 微波-炭还原法处理处理二氧化硫(SO2)的研究. 微波学报,1998,14(4):341~346
    121 王学谦,宁平. 活性炭吸附硫化氢及微波辐照解吸研究. 环境污染与防治,2001,23(6):274~275
    122 唐军旺,杨黄河,任丽丽等. 微波放电脱除 NO. 高等学校化学学报,2002,23(4):632~635
    123 李旦振,郑宜,付贤智. 微波场助光催化氧化及其应用. 高等学校化学学报,2002,23(12):2351~235
    124 李旦振,郑宜,付贤智. 微波-光催化耦合效应及其机理研究. 物理化学学报,2002,18(4):332~33
    125 郑宜,李旦振,付贤智. 水蒸气对有机污染物微波光催化氧化反应的影响. 催化学报,2001,22(2):165~167
    126 傅大放,蔡元明,华建良等. 污水厂污泥微波处理的试验研究. 中国给水排水,1999,15(6):56~57
    127 傅大放,邹路易,蔡元明. 微波加热对污泥肥效和卫生指标的影响. 中国给水排水,2001,17(5):20~23
    128 梁波,宁平,马晓利. 微波辐照解毒铬渣的稳定性研究. 有色金属,2003,55(增刊):95~98
    129 J. A. Menendea, M. Inguanzo, J. J. Pis. Microwave-induced pyrolysis of sewage sludge. Water research, 2002, (36): 3261~3264
    130 A. A. Rudolipha, B. Z. Huang. Decomposition of 4-bromobiphenyl in soil mediated by mmicrowave energy. Chemosphere, 1994, (29): 2517~2521
    131 A. A. Rudolipha, B. Z. Huang, M. Davis, et al. Decomposition of PCB and other polychlorinated aromatics in soil using microwave energy. Chemosphere, 1998, (37): 1427~1436
    132 A. A. Rudolipha, B. Z. Huang, A. A. Dorota, et al. In situ decomposition of PAHs in soil and desorption of organic solvents using microwave energy. Chemosphere, 1999,39(1): 81~87
    133 A. A. Rudolipha, B. Z. Huang, A. A. Dorota, et al. In situ decomposition of PCBs in soil using microwave energy. Chemosphere, 1999,38(10): 2227~2236
    134 A. A. Rudolph, C. Q. Lu, H. Evan, et al. In situ remediation of soils contaminated with toxic metal ions using microwave energy. Chemosphere, 2003, (53): 1077~1085
    135 H. S. Tai, C. G Jou. Immobilization of chromium-contaminated soil by means of microwave energy. Journal of Hazardous Materials, 1999, B(65):267~275
    136 B. Pe?rez-Cid, I. Lavilla, C. Bendicho. Application of microwave extraction for partitioning of heavy metals in sewage sludge. Analytica Chimica Acta, 1999,(378): 201~210
    137 A. Idris, K. Khalid, W. Omar. Drying of silica sludge using microwave heating. Applied Thermal Engineering, 2004, (24): 905~918
    138 S. M. Hong, J. K. Park, Y. O. Lee. Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids. Water Research, 2004, (38): 1615~1625
    139 J.A. Menéndez, A. Dom′?nguez, M. Inguanzo, et al. Microwave pyrolysis of sewage sludge: analysis of the gas fraction. Journal Analytical Applied Pyrolysis, 2004, (71): 657~667
    140 G. Annadurai, R. S. Juang, P. S. Yen, et al. Use of thermally treated waste biological sludge as dye absorbent. Advances in Environmental Research, 2003, (7): 739~744
    141 E. Veschetti, D. Maresca, D. Cutilli, et al. Optimization of HO action in sewage-sludge microwave digestion using pressure vs. temperature and pressure vs. time graphs. Microchemical Journal, 2000, (67): 171~179
    142 A. Tata, F. Beone. Hospital waste sterilization: a technical and economic comparison between radiation and microwaves treatment. Radiat Phys Chem, 1995, 46(4-6):1153~1157
    143 罗鹏,连永祥. 废橡胶微波再生的实验研究. 橡胶工业,1996,43(12):733~736
    144 W. Curt. Hospitals Using New Medical Waste Disposal Methods to Save Money. Hospital Materials Management, 1993,18(7):10~13
    145 Ikawa. Reducing Bacteria in Household Sponges. Journal of Environmental Health, 1999,62(1):18~23
    146 陶陆安. 我国建筑环境的现状及综合利用. 施工技术,1999,28(5):44~45
    147 谢炜平,李红霞. 酸溶-微波热解法从粉煤灰中制取聚合氧化铝的研究. 环境工程,1999,17(2):50~52
    148 T. T. Reddy, S. Tammishetti. Free radical degradation of guar gum. Polymer Degradation and Stability, 2004, (86): 455~459
    149 黄君礼. 新型水处理剂—二氧化氯技术及其应用. 北京:化学工业出版社,2002
    150 田朝晖, 裴元生. 二氧化氯在水溶液中的岐化反应趋势. 甘肃环境研究与监测. 2003,16(1):92~99
    151 张金松. 饮用水二氧化氯净化技术. 北京:化学工业出版社, 2003
    152 J. L. Huang, L. Wang, N. Q. Ren. Disinfection Effect of Chlorine Dioxide on Viruses. Algae and Animal Plonktons in Water. Water Research. 1997,31(3):455~460
    153 J. L. Huang, L. Wang, N. Q. Ren. Disinfection Effect of Chlorine Dioxide on Bacteria in Water. Water Research. 1997,31(3):607~613
    154 黄君礼, 王学风, 赵国华等. 二氧化氯对水中无机污染物的去除效果研究. 环境化学. 1996,15(10):82~90
    155 A.Katz, N.Narkis. Removal of Chlorine Dioxide Disinfection By-products by Ferrous Salts. Water Research. 2001,35(1):101~108
    156 王永仪, 李金城, 徐丽. 二氧化氯处理高浓度含氰废水研究. 第七届全国二氧化氯技术研讨会, 杭州, 2001:201~205
    157 J. R. Parga, S. S. Shukla, F. R. Carrillo-Pedroza. Destruction of Cyanide Waste Solutions Using Chlorine Dioxide, Ozone and Titaniasol. Waste Management. 2003, 23(2):183~191
    158 贺启环, 方华, 高蓉菁等. 二氧化氯催化氧化处理难降解废水技术的研究. 环境污染治理技术与设备. 2003,4(11):39~43
    159 J. Swietlik, U. R. Stanislawiak, S.Bilozor, et al. Effect of Oixidation with Chlorine Dioxide on the Adsorption of Natural Organic Matter on Granular Activated Carbon. Pol.J.Environ. 2002,(2):435~439
    160 U. Raczyk-Stanislawiak, J. Swietlik, A. Dbrowska, et al. Biodegradability of Organic By-Products After Natural Organic Matter Oxidation with ClO2-Case Study. Water Research. 2004,38(4):1044~1054
    161 黄君礼, 李春兰, 王学风等. 二氧化氯对酚类化合物的去除效果研究. 环境化学.1998, 17(2):174~179
    162 贺启环, 方华. 酚醛树脂生产废水处理工艺. 化工环保. 2003,23(4):216~220
    163 徐锡彪等. 对氨基苯甲醚废水处理. 环境污染与防治, 2001,23(3):134~135
    164 贺启环, 方华, 张勇. 二氧化氯催化氧化处理难降解废水技术研究进展. 环境污染治理技术与设备. 2002,3(9):63~65
    165 徐萍. 二氧化氯催化氧化降解水中苯酚的影响因素研究. 科技情报开发与经济. 2004,14(7):170~171
    166 缪旭光,郭中权,周如禄. 铁炭微电解-C1O2 催化氧化处理酮康唑废水. 环境污染治理技术与设备. 2004,5(4):77~79
    167 徐新华, 徐明海, 陈海峰. 含芳烃废水的 ClO2 催化氧化处理. 浙江大学学报(理学版). 2003,30(5):561~569
    168 金小元, 陈金龙, 李爱民等. 二氧化氯催化氧化处理含酚废水的研究. 离子交换与吸附. 2003,19(1):61~66
    169 施来顺, 朱红梅, 董岩岩等.二氧化氯催化氧化处理萘酚绿模拟废水的实验研究. 山东大学学报(工学版). 2006,36(4):91~95
    170 黄君礼. ClO2 分析技术. 北京:中国环境科学出版社,2000
    171 钟理.废水处理新技术:非均相催化氧化过程. 广东化工. 1999,(5):13~14
    172 潘履让.固体催化剂的设计与制备.天津:南开大学出版社,1993
    173 王鹏,毕晓伊,姜虹. 用于微波诱导 ClO2 催化氧化工艺的催化剂 CuO/γ-Al2O3 的制备方法. 专利公开号:CN1907562
    74 黄仲涛.工业催化剂手册.北京:化工出版社,2004
    75 蒋晓原, 周仁贤, 毛建新等.CeO2对CuO/Al2O3分散状态及催化性能的影响.分子催化.1999,13(3):176~180
    76 蒋晓原, 周仁贤, 朱波等.氧化镧对CuO/γ-Al2O3活性和结构的影响.科技通报.1997,13(3):148~151
    77 林明桂, 杨成, 吴贵升等.锰和镧改性Cu/ZrO2合成甲醇催化剂的结构及催化性能.催化学报.2004,25(7):591~595
    78 刘迎新,陈吉祥,张继炎等.氧化镧助剂对镍/二氧化硅催化剂结构和加氢性能的影响.化工学报.2005,56(11):2214~2218
    79 崔崇威,黄君礼.二氧化氯与苯酚的单电子转移反应机理.环境化学. 2003,11(6):560~561
    80 贾之慎.比色法测量 Fenton 反应产生的羟自由基.生物化学与生物物理进展.1996,23(2): 184~186
    81 S. Horikoshi, H. Hidaka, N. Serpone. Environmental remediation by an integrated microwave/UV-illumination technique IV. Non-thermal effects in the microwave-assisted degradation of 2,4-dichlorophenoxyacetic acid in UV-irradiated TiO2/H2O dispersions. Journal of Photochemistry and Photobiology A: Chemistry, 2003, (159): 289~300
    82 S. Horikoshi, A. Saitou, H. Hidaka. Environmental remediation by an integratedmicrowave/UV illumination method. V. Thermal and nonthermal effects of microwave radiation on the photocatalyst and on the photodegradation of rhodamine-B under UV/Vis radiation. Environmental Science&Technology, 2003, (37): 5813~5822
    83 路建关,张正彪,吴健飞等.微波辐射下均聚和共聚反应机理.高分子材料科学与工程.2003, 19(3): 130~136
    84 Z. Z. Sun, J. Ma, L. B. Wang, et al. Degradation of nitrobenzene in aqueous solution by ozone-ceramic honeycomb. Journal of Environmental Sciences, 2005, 17(5):716~721
    85 方艳芬,黄应平,陈和春等.二氧化钛光催化体系中的羟基自由基的测定.分析化学.2006, 34(9): 83~86
    86 张乃东, 郑威, 彭永臻. 褪色光度法测定芬顿体系中产生的轻自由基. 分析化学.2003, 31(5): 552~554
    87 于怀东,方茹,陈士明等.锰离子参与的类 Fenton 反应的 HPLC 和 ESR 波谱研究.化学学报.2005, 63(14): 1357~1360
    88 吕永为,郭祥群.荧光分光光度法测定两种中药对羟基自由基的清除作用.厦门大学学报(自然科学版).2004, 43(2): 208~212
    89 T. Ozawa, Y. Miuna, J. Ueda. Oxidation of Spin-traps by Chlorine Dioxide Radicals in Aqueous Solutions: First ESR Evidence of Formation of New NitroxideRadical. Free Radical Biol Med. 1996,(20):837~841
    90 T. Hirakawa, Y. Nosaka. Properties of ·O2- and ·OH Formed in TiO2 Aqueous Suspensions by Photocatalytic Reaction and the Influence of H2O2 and Some Ions.Langmuir.2002,18(8):3247~3254
    91 张国宇. 微波诱导氧化水处理中催化剂的制备及应用研究 .哈尔滨工业大学博士学位论文,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700