用户名: 密码: 验证码:
废轮胎热解油的资源化利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经济的增长、交通运输业的发达带动了汽车工业的快速发展,随之而来的是废轮胎产生量的不断增加,因此,废轮胎的处理成为国内外专家的研究热点。废轮胎的热解制油技术是目前公认的一条附加值高且环境友好的回收路线,而如何合理利用产生的大量热解油则成为该技术继续发展的关键。本文以工业试验装置生产的废轮胎热解油为研究对象,对其资源化利用进行了研究。主要研究内容如下:
     本文在大量文献调查的基础上,首先从热解油的综合分析和评价入手,不仅对热解油,而且还对馏分油、窄馏分油进行了详细分析。结果表明:热解油的金属元素含量低,硫、氮含量高,芳烃含量高;轻、中质馏分的总含量高,其性质和组成分别与FCC(催化裂化)汽、柴油接近;重质馏分的性质和组成与石油沥青相近;并认定了窄馏分油中烃类化合物和非烃类化合物的分布规律;通过对热解油中特殊物质的分析表明,热解油中的酸性化合物主要以脂肪酸的形式存在。
     热解油中的轻、中质馏分含量高达62.9%,是热解油资源化利用的重点,而且热解油的性质和组成与石油相似,本文提出利用石油加工手段将热解油加工炼制成石油产品或调合组分,并依据废轮胎热解装置规模小、分散性大的特点,提出将其掺入石油加工装置进行加工的方案。
     于是,本文以轻质馏分为典型,对其掺炼至FCC汽油中加氢精制的可行性进行了考察。首先在实验室加氢精制固定床微型反应器上,采用正交实验,考察操作参数(包括掺炼比)对加氢精制过程脱硫率、脱氮率的影响,结果表明反应温度的影响最显著;对轻质馏分掺炼至FCC汽油中进行加氢精制的可行性考察的结果表明:在氢油比512、进油体积空速1.65 h-1、反应温度353℃、反应压力3 MPa、掺量比10%的操作条件下,得到产品的密度、硫含量,以及馏程分布均能达到我国GB/T 17930车用汽油标准;然后,对轻质馏分掺炼至FCC汽油中加氢精制动力学进行了研究,通过对三种模型的筛选,确定了可以用1级加氢精制反应动力学模型来描述HDS、HDN反应,经F统计检验和相对误差信息分析,得到其复相关指数分别为0.9248和0.9794,平均相对误差分别为4.33%和0.87%。
     通过对重质馏分的分析,结果表明重质馏分是生产道路沥青的合适原料。于是,本文对重质馏分分别采用蒸馏法、掺入法生产道路沥青的可行性进行了研究。结果表明采用蒸馏法虽然切割温度点在420℃、430℃、440℃的直馏沥青的针入度、软化点、延度均能满足道路沥青的技术指标,但其老化性能无法达标,说明热解油重质馏分采用蒸馏法生产道路沥青不可行;对重质馏分以不同搅拌温度、不同搅拌时间、不同搅拌速率掺入AH-70道路沥青的可行性进行了研究,结果表明在搅拌温度160℃、搅拌时间10 min、搅拌速率2500 r·min-1的条件下,向AH-70道路沥青中掺入1%的重质馏分,可以基本达到AH-70沥青的标准,与此同时其老化后的延展性还能得到很大改善。
     以上研究成果,为热解油的资源化利用开辟了一条新的途径,具有重要的学术意义和应用价值。
Large amount of used tires have been produced due to the rapidly growing global economics and automobile industry. To figure out an economic and practical manner on utilization of used tires has come into a stringent task for researches. It is widely known that to pyrolysis used tires is a high value-added and environmentally friendly recycling route. However, the most critical issue during used tires pyrolysis is how to intelligently utilize the specific pyrolysis oil. In this dissertation, used tires pyrolysis oil from industrial unit was used as the starting material. Characterization, utilization and application of used tire pyrolysis oil were studied. The results are expected to provide a principle valuable option for the utilization of used tires. This dissertation mainly consists of the following contents.
     A detail analysis and evaluation were conducted on compositions of the used tire pyrolysis oil, including fractions and narrow fractions of the oil. The results showed that pyrolysis oil was low metal content with high sulfur and nitrogen, and high aromatic. The content of light and medium fractions was high up to 62.9% of pyrolysis oil, and the characteristics and compositions were much closed to those of FCC gasoline and FCC (Fluid Catalytic Cracking) diesel, respectively. On the other hand, the characteristics and compositions of heavy fraction were similar to those of petroleum asphalt. The regular pattern of the distribution of hydrocarbon compounds and non-hydrocarbon compounds in narrow fractions were ascertained as well. In the characteristics component analysis of the pyrolysis oil, it was found that the main acidic compounds in the pyrolysis oil were fatty acids which are seldom seen in crude oils.
     Pyrolysis oil contained light and medium fractions of 62.9%, which was an important point for utilization of pyrolysis oil. Since the characteristics and compositions of pyrolysis oil were similar to those of crude oil, it is potential to use oil processing methods to process and turn the pyrolysis oil into petroleum products or additive particles. In this dissertation, a distinctive utilization route for the pyrolysis oil was present, which the pyrolysis oil would be incorporated in oil processing plants in consideration of the features of pyrolytic device being small scale and large dispersion.
     Light fraction in the pyrolysis oil was used as a model fraction to blend with FCC gasoline, and then the hydrotreating process of the mixture oil was studied. With the method of orthogonal experiment, the hydrotreating operation parameters (including the blending ratio of light fraction to FCC gasoline) on desulphurization and denitrogeneration rate were optimized in the laboratory fixed bed micro-reactor. The results showed that hydrotreating temperature was the most significant factor. Furthermore, the feasibility of hydrotreating of FCC light gasoline blending with light fraction was investigated under industrial operating conditions. The results showed that density, sulfur content and distillation range of the hydrotreating product achieved the standards of gasoline fuels for vehicles under the following conditions:the ratio of hydrogen to oil at 512, the liquid hourly space velocity at 1.65 h-1, reaction temperature at 353℃, reaction pressure at 3 MPa, and blending ratio at 10%. In the three kinetic study models of hydrotreating reaction of FCC gasoline blending with light fraction, the first-order reaction kinetic model was found to describe the HDS and HDN reactions. The analysis of relative error and F statistical analysis showed that the multiple correlation indexes were 0.9248 and 0.9794, and the average relative errors were 4.33% and 0.87%, respectively.
     The investigation of heavy fraction composition showed that heavy fraction was potential to produce road asphalt. The feasibility of heavy fraction to produce road asphalt was studied by distillation and blending methods, respectively. The distillation results showed that penetration, softening point, and ductility of straight asphalt of cutting point temperature at 420℃,430℃and 440℃could meet with the major technical index of road asphalt's standards, except for substandard performance after aging. Therefore, heavy fraction producing road asphalt by distillation method was infeasible. On the other hand, under conditions of different mixing temperature, stirring time, stirring speed, and the feasibility of AH-70 road asphalts blending with heavy fraction were discussed. The results showed that the aged ductility of the blending asphalt was greatly enhanced, which can basically match the standard of AH-70 road asphalt. The optimum conditions were mixed at 160℃, stirred at 2500 r-min-1 for 10 min with the blending ratio of 1%.
     These results open up a novel route for utilization of used tire pyrolysis oil, and have not only significant academic value but also application value.
引文
[1]李建政,汪群慧.废物资源化与生物能源[M].北京:化学工业出版社.2004.
    [2]钱汉卿,徐怡珊.化学工业固体废物资源化技术与应用[M].北京:中国石化出版社.2007.
    [3]国家统计局.新中国60年[M].北京:中国统计出版社.2009.
    [4]任志伟,孔安,高全胜.我国废旧轮胎的回收利用现状及前景展望[J].中国资源综合利用.2009,27(6):12-14.
    [5]汪群慧.固体废物处理及资源化[M].北京:化学工业出版社.2004.
    [6]陆王琳.废轮胎回转窑热解油油品分析及加氢精制研究[D].杭州:浙江大学,2007.
    [7]Shen Boxiong, Wu Chunfei, Guo Binbin, et al. Pyrolysis of waste tyres with zeolite USY and ZSM-5 catalysts[J]. Applied Catalysis B:Environmental.2007,73:150-157.
    [8]丛晓民,冯涛,盖国胜,等.废轮胎热解技术的现状及发展趋势[J].轮胎工业.2008,28:10-14.
    [9]L. Tang, H. T. Huang. An investigation of sulfur distribution during thermal plasma pyrolysis of used tires [J]. Journal of Analytical and Applied Pyrolysis.2004,72:35-40.
    [10]唐兰,黄海涛,赵黛青.射频等离子体热解废轮胎的研究[J].燃料化学学报.2006,34(3):373-376.
    [11]M. K. Harder, O. T. Forton. A critical review of developments in the pyrolysis of automotive shredder residue [J]. Journal of Analytical and Applied Pyrolysis.2007,79: 387-394.
    [12]J. Shah, M. R. Jan, F. Mabood. Catalytic conversion of waste tyres into valuable hydrocarbons [J]. Journal of Polymers and the Environment.2007,15:207-211.
    [13]董根全,杨建丽,刘振宇.废轮胎热解油品的组成与硫含量研究[J].燃料化学学报.2000,28(6):537-541.
    [14]裴宜星,严建华,阎大海,等.废轮胎回转窑中试热解油整体及轻质馏分的应用研究[J].能源工程.2006,2:39-42.
    [15]M. F. Laresgoiti, B. M. Caballero, I. de. Marco, et al. Characterization of the liquid products obtained in tyre pyrolysis [J]. Journal of Analytical and Applied Pyrolysis.2004, 71(2):917-934.
    [16]中国统计数据应用支持系统[EB/OL]. http://edu.acmr.cn/index.aspx.
    [17]李一成.能源危机与对策[EB/OL].2006.4.11. http://www.aura.cn/aurakm/energy/181625322.html
    [18]祖林.清洁生产与碧水蓝天——从节能减排看日本企业的格局提升[J].现代班 组.2009,6:26.
    [19]循环经济.中国商贸[J].2009,05x:172.
    [20]唐敦挚.日本循环经济及其启示与借鉴[J].世界经济与政治论坛.2004,5:21-25.
    [21]日本环境网站[EB/OL].http://www.env.go.jp/
    [22]刘良栋,陈娟[M].武汉:华中师范大学出版社.2009.
    [23]2009年再生胶产量和橡胶消耗分析[EB/OL].中国橡胶商务网.2010.6.3.http://www.chemn.com/xiangjiao/news/664302.htm.
    [24]韩向雨,岳燕祥,雷黎.汽车轮胎翻新经济效益分析[J].中国资源综合利用.2007,25(5):19-21.
    [25]邓海燕.废旧轮胎另类用途[J].环境导报.2003,20:10-11.
    [26]徐晌,漆新华,庄源益.废旧轮胎综合利用现状简介[J].天津化工.2006,20(6):1-3.
    [27]赵由才,牛冬杰,柴晓利,等.固体废物处理与资源化[M].北京:化学工业出版社.2006.
    [28]董诚春.废橡胶资源综合利用[M].北京:化学工业出版社.2003.
    [29]席北斗.有机固体废弃物管理与资源化技术[M].北京:国防工业出版社.2006.
    [30]丁忠浩,翁达.有机固体废弃物管理与资源化技术[M].北京:国防工业出版社.2006.
    [31]废轮胎利用节能减排目标确定.中国轮胎资源综合利用.2007,7:13.
    [32]周萍,李光明,贺文智.废旧轮胎的热解技术研究进展[J].科技资讯.2008,27:5-7.
    [33]I. M. Rodriguez, M. F. Laresgoiti, M. A. Cabrero, et al. Pyrolysis of scrap tyres [J]. Fuel Process Technology.2001,72(1):9-22.
    [34]高雅丽.回转窑废轮胎热解油的特性和用途分析及热解模型研究[D].杭州:浙江大学,2003.
    [35]张志霄.废轮胎回转窑热解特性及应用研究[D].杭州:浙江大学,2004.
    [36]蒋家羚,刘小龙,刘宝庆.废轮胎热裂解设备的开发[J].化工进展.2002,21(9)681-684.
    [37]刘宝庆,蒋家羚,刘小龙.废轮胎裂解回收炭黑和燃料油的立式裂解塔[J].合成橡胶工业.2004,27(1):17-20.
    [38]阴秀丽,赵增立,徐冰燕,等.废轮胎快速热解实验研究[J].燃料化学学报.2000,28(1):76-79.
    [39]戴先文,赵增立,吴创之.循环流化床内废轮胎的热解油化[J].燃料化学学报.2000,28(1):71-75.
    [40]C. Roy, A. Chaala, H. Darmstadt. The vaccum pyrolysis of used tires:end-uses for oil and carbon black products [J]. Journal of Analytical and Applied Pyrolysis.1999.51: 201-221.
    [41]C. Roy, A. Chaala. Vacuum pyrolysis of automobile shredder residues [J]. Resources, Conservation & Recycling.2001,32:1-27.
    [42]A. M. Cunliffe, P. T. Williams. Composition of oils derived from the batch pyrolysis of tyres [J]. Journal of Analytical and Applied Pyrolysis.1998,44(2):131-152.
    [43]P. T. Williams, R. P. Bottrill, A. M. Cunliff. Combustion of pyrolysis oil [J]. Transaction of the Institution of Chemical Engineers. Part B,1998.76:291-301.
    [44]G. Fortuna, G. Comaeehia, M. Mincarini, et al. Pilot-scale experimental pyrolysis plant:mechanical and operational aspects [J]. Journal of Analytical and Applied Pyrolysis.1997, (40-41):403-417.
    [45]M. Ptedel, W. Kaminsky. Pyrolysis of rape-seed in a fluidized-bed reactor [J]. Bioresource Technology.1998,66(2):113-117.
    [46]W. Karminsky, D. Mennerich. Pyrolysis of synthetic tire rubber in a fluidized-bed reactor to yield 1,3-butadiene, styrene and carbon black [J]. Journal of Analytical and Applied Pyrolysis.2001,58/59(3):803-811.
    [47]V. Roy, B. de Caumia, C. Roy. Development of a gas-cleaning system for a scrap-tire vacuum-pyrolysis plant [J]. Gas Separation & Purification.1992,6(2):83-87.
    [48]A. Chaala, H. Darmastadt, C. Roy. Acid-base method for the demineralization of pyrolytic carbon black [J]. Fuel Processing Technology.1996,46:1-15.
    [49]B. Sahouli, S. Blacher, F. Brouers, et al. Surface morphology of commercial carbon black and carbon black from pyrolysis of used tyres by small-angle X-ray scattering [J]. Carbon.1996,34(5):633-637.
    [50]H. Darmatadt, C. Roy, S. Kaliaguine, et al. Solid state 13C-NMRspectroscopy and XRD studies of commercial and pyrolytic carbon blacks [J]. Carbon.2000,38:1279-1287.
    [51]A. Chaala, C. Roy, A. A. Kadi. Rheological properties of bitumen modified with pyrolytic carbon black [J]. Fuel.1996,75(13):1575-1583.
    [52]C. Roy, B. Labrecque, B. D. Caumia. Recycling of scrap tires to oil and carbon black by vauum pyrolysis [J]. Resources, Conservation and Recycling.1990,4(3):203-213.
    [53]C. Roy. Pilot plant demonstration of used tires vacuum pyrolysis [A]. Pyrolysis and Gasification[C]. London:Elsevier Science Publishing Co., Inc.1989,180-189.
    [54]P. T. Williams, S. Besler, D. T. Taylor. The pyrolysis of scrap automotive tyres: the influence of temperature and heating rate on product composition [J]. Fuel.1990,69: 1474-1482.
    [55]P. T. Williams, S. Besler. Pyrolysis-thermogravimetric analysis of tyres and tyre pyrolysis oil [J]. Fuel.1995,74:1277-1283.
    [56]C. I. Salnz-Diaz, D. R. Kelly, C. S. Avenel. Pyrolysis of furniture and tire wastes in a flaming pyrolyzer minimizes discharges to the environment [J]. Energy and Fuels.1997,11(5):1061-1072.
    [57]C. I. Salnz-Diaz, A. J. Grifiths. Activated carbon from solid wastes using a pilot-scale batch flaming pyrolysis [J]. Fuel.2000,79(15):1863-1871.
    [58]P. T. Williams, A. J. Brindle. Catalytic pyrolysis of tyre:influence of catalyst temperature [J]. Fuel.2002,81:2425-2434.
    [59]刘阳生,白庆中,李迎霞,等.废轮胎的热解及其产物的分析[J].环境科学.2000,11(6):85-88.
    [60]钱家麟,陈凤珍,王剑秋.废橡胶热解制油品和化学品实验研究[J].云南环境科学2000,19:203-206.
    [61]唐光阳.废旧橡胶轮胎制备燃料油和活性炭[J].云南民族大学学报(自然科学版).2003,12(3):186-188.
    [62]沈伯雄,吴春飞,史展亮,等.废旧轮胎催化热解油品分析[J].化工进展.2007,26(1): 82-85.
    [63]V. K. Sharma, F. Forttma, M. Minearini, etal. Disposal of waste tyres for energy recovery and safe environment [J]. Applied Energy.2000,65(1-4):381-394.
    [64]李水清.固体废物热解制取洁净燃料和化学原料的基础研究[D].杭州:浙江大学.2002.
    [65]黄景涛.废轮胎回转窑热解工艺中试试验研究[D].杭州:浙江大学.2002.
    [66]张志霄,池涌,高雅丽,等.废轮胎热解油的成分分析及二次热解反应[J].工程热物理学报.2005,26(1):159-162.
    [67]张志霄,池涌,闫大海,等.废轮胎回转窑中试热解产物特性[J].浙江大学学报(工学版).2005,39(5):715-721.
    [68]池涌,张志霄,闫大海,等.综合流动和传热的废轮胎回转窑热解模型[J].工程热物理.2004,25(2):333-336.
    [69]闫大海.废轮胎回转窑中试热解产物应用及热解机理和动力学模型研究[D].杭州:浙江大学,2006.
    [70]W. Karminsky, H. Sinn. Pyrolysis of plastic waste and scrap tires using a fluidized bed process [A]. ACS symposium series 130 [C]. Washington:American Chemical Society.1980,68-77.
    [71]W. Kaminsky, C. Mennerich, J. T. Andrersson, et al. Pyrolysis of polychloroprene rubber in a fluidized-bed reactor:product composition with focus on chlorinated aromatic compounds[J]. Pulymer Degradation and Stability.2001,71:39-51.
    [72]李鑫.废轮胎流化床热解特性研究[D].杭州:浙江大学,2003.
    [73]Xianwen D., Xiuli Y., Chuangzhi W., et al. Pyrolysis of waste tires in a circulating fluidized-bed reactor [J]. Energy.2001,26(3):385-399.
    [74]柴琳.废轮胎热裂解及清洁回收工艺研究[D].杭州:浙江大学,2001.
    [75]刘宝庆,蒋家羚,陈伯川,等.多层盘式废轮胎裂解塔中试油品的提纯实验研究[J].应用基础与工程科学学报.2006,14(4):529-534.
    [76]J. W. Black, D. B. Brown. Car Technology [J]. Castle Capital Inc. Newsletter.1991, 55(5):203-210.
    [77]R. Helleur, N. Popovic, M. Ikura, et al. Characterization and potential application of pyrolytic char from ablative pyrolysis of used tires [J]. Journal of analytical and applied pyrolysis.2001,58-59:813-824.
    [78]M. C. Samolada, W. Balauf. Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking [J]. Fuel.1998,77(14): 1667-1675.
    [79]L. L. Anderson, M. Callen. Hydrocoprocessing of scrap automotive tires and coal: Analysis of oils from autoclave coprocessing [J]. Industrial & Engineering Chemistry Research.1997,36(11):4763-4767.
    [80]A. M. Mastral, R. Albarez. Characterization of chars from coal-tire copyrolysis [J]. Industrial & Engineering Chemistry Research.1999,38(7):2856-2860.
    [81]M. Ana, M. Mastral, C. Mayoral, et al. Evaluation of synergy in tire rubber-coal coprocessing [J]. Industrial & Engineering Chemistry Research.1998,37(9):3545-3550.
    [82]鲁锋,沈伯雄,张增辉,等.废轮胎热解催化剂的研究探讨[J].精细石油化工.2009,26(4):64-67.
    [83]董诚春.废轮胎回收加工[M].北京:化学工业出版社.2008.
    [84]Miguel G. S., Aguado J., Serrano D. P., et al. Thermal and catalytic conversion of used type rubber and its polymeric constituents using Py-GC/MS [J]. Applied Catalysis B: Environmental,2006,64:209-219.
    [85]Williams P T, Brindle A J. Fluidised bed pyrolysis and catalytic pyrolysis of scrap tyres [J]. Environmental Teehnology,2003.24(7):921-929.
    [86]Williams P T, Brindle A J. Catalytic pyrolysis of tyres:influence of catalyst temperature [J]. Fuel,2002,81(18):2425-2434.
    [87]Williams P T, Brindle A J. Aromatic chemicals from the catalytic pyrolysis of scrap tyres [J]. Journal of Analytical and Applied Pyrolysis,2003,67(1):143-164.
    [88]王学锋,朱桂芬,刘茜霞,等.废轮胎橡胶的热重分析[J].河南师范大学学报(自然科学版).2003,31(1):61-64.
    [89]王学锋,石新生,刘茜霞,等.废轮胎热解炭对铬离子溶液的吸附研究[J].河南师 范大学学报(自然科学版).2003,31(4):65-67.
    [90]张兴华,常杰,王铁军,等.碱性条件下废轮胎真空热裂解研究[J].燃料化学学报.2005(33)6:713-716.
    [91]付严,张兴华,常杰,等。利用废旧轮胎真空热解生产柠檬精油等技术[J].中国科技成果.2005,13:40.
    [92]张兴华,常杰,王铁军,等。真空条件下金属氧化物催化废轮胎热解研究[J].能源与环境.2006,1:41-45.
    [93]Ucar S., Karagoz S., Yanik J., et al. Upgrading scrap tire derived oils using activated carbon supported metal catalysts[J]. Energy Sources Part A-Recovery Utilization and Environmental Effects,2007,29(5):425-437.
    [94]王文选,仲兆平,陈晓平,等.催化剂在轮胎裂解中作用的研究[J].东南大学学报.1999,29:47-50.
    [95]王文选,仲兆平,陈晓平,等.催化剂在废轮胎裂解中作用的研究[J].洁净煤燃烧与发电技术.1999,4:45-49.
    [96]靳利娥,刘岗,鲍卫仁,等.生物质与废轮胎共热解催化热解油蒸发过程及其动力学研究[J].燃料化学学报.2007,35(5):534-538.
    [97]靳利娥,高永强,鲍卫仁,等.生物质与废轮胎共热解对热解液体性质的影响[J].现代化工.2007,27(2):34-38.
    [98]曹青,刘岗,鲍卫仁,等.生物质与废轮胎共热解及催化对热解油的影响[J].化工学报.2007,58(5):1283-1289.
    [99]曹青,赵红芳,鲍卫仁,等.SBA-15负载Mo、Co对稻壳与废轮胎共热解油的影响[J].工程热物理学报,2008,2(5):893-896.
    [100]刘岗.生物质与废轮胎共热解及催化对液体产物的影响[D].太原:中国科学院山西煤炭化学研究所.2007.
    [101]Anderson. L, et al. Hydrocoprocessing of scrap automotive tires and coal. Analysis of oils from autoclave coprocessing[J]. In. Eng. Chemical Res.1997,36(11):4763-4767.
    [102]Manjula M. Ibrahim, Mohindar S. Seehra. Free radical monitoring of the coprocessing of coal with chemical components of waste tires[J]. Fuel Processing Technology,1995, 45:213-219.
    [103]Manjula M. Ibrahim, Mohindar S. Seehra. Effect of hydrogen pressure and temperature on free radicals produced in coal-tire coprocessing[J]. Fuel Processing Technology,1996, 49:197-205.
    [104]Edward C. Orr, John A. Burghard, Wisanu Tuntawiroon, et al. Coprocessing waste rubber tire material and coal [J]. Fuel Processing Technology,1996,47:245-259.
    [105]唐兰,黄海涛,吴创之.等离子体热解处理废轮胎实验研究[J].环境科学与技 术.2004,27(6):82-83,99.
    [106]唐兰,黄海涛,郝海青,等.废轮胎粉等离子体热解过程中硫的分布与转化初步研究[J].环境污染与防治.2010,32(3):5-8,13.
    [107]唐兰,黄海涛,王欢.废轮胎等离子热解过程中微量金属元素在固体产物中的分布与控制[J].三峡环境与生态.2009,2(1):32-34,42.
    [108]刘玉强,马瑞刚,殷晓玲.废旧橡胶材料及其再资源化利用[M].北京:中国石化出版社.2010.
    [109]A. Arion, F. Baronnet, S. Lartiges, et al. Characterization of emissions during the heating of tyre contaminated scrap [J]. Chemosphere.2001,42:853-859.
    [110]T. P. Williams, J. B. Alexander. Aromatic chemicals from the catalytic pyrolysis of scrap tyres [J]. Journal of analytical and applied pyrolysis.2003,67:143-164.
    [111]F. Murena. Kinetics of sulphur compounds in waste tyres pyrolysis [J]. Journal of analytical and applied pyrolysis.2000,56:195-205.
    [112]C. Berrueco, E. Esperanza, F. J. Mastral, et al. Pyrolysis of waste tyres in an atmospheric static-bed batch reactor:Analysis of the gases obtained [J]. Journal of analytical and applied pyrolysis.2005,74:245-253.
    [113]E. Aylon, R. Murillo, A. Fernandez-Colino, et al. Emissions from the combustion of gas-phase products at tyre pyrolysis [J]. Journal of Analytical and Applied Pyrolysis.2007,79:210-214.
    [114]M. F. Laresgoiti, I. de Marco, A. Torres, et al. Chromatographic analysis of the gases obtained in tyre pyrolysis [J]. Journal of analytical and applied pyrolysis.2000,55: 43-54.
    [115]S. Ucar, S. Karagoz, A. R. Ozkan, et al. Evaluation of two different scrap tires as hydrocarbon source by pyrolysis [J]. Fuel.2005,84(14-15):1884-1892.
    [116]M. R. Islam, M. S. H. K. Tushar, H. Haniu. Production of liquid fuels and chemicals from pyrolysis of Bangladeshi bicycle/rickshaw tire wastes [J]. Journal of Analytical and Applied Pyrolysis.2008,82(1):96-109.
    [117]严建华,高雅丽,张志霄,等.废轮胎回转窑中试热解油的理化性质[J].燃料化学学报.2003,31(6):589-594.
    [118]裴宜星.废轮胎回转窑热解油的应用研究[D].杭州:浙江大学,2006.
    [119]薛大明,赵雅芝,刘宏岩,等.废旧轮胎热解过程的温度效应[J].环境科学.1999,20(6):77-79.
    [120]A. M. Mastral, R. Murillo, M. S. Callen, et al. Optimization of scrap automotive tyres recycling into valuable liquid fuels [J]. Resources, Conservation and Recycling.2000, 29(4):263-272.
    [121]严建华,高雅丽,池涌,等.废轮胎热解石脑油馏分的组成分析[J].燃料化学学报.2004,32(2):165-170.
    [122]王学锋,刘茜霞.废轮胎热解资源化研究新进展[J].化工进展.2001,10:36-39,42.
    [123]薛大明、全燮、赵雅芝,等.废旧轮胎热解资源化研究[J].环境工程.1998,16(1):47-48.
    [124]薛大明,全燮,赵雅芝,等.废旧轮胎热解过程的能耗分析[J].大连理工大学学报.1999,39(4):519-522.
    [125]谷月玲,李水清,严建华.废轮胎热解油中极性物的分析[J].质谱学报.21(4):51-52.
    [126]谷月玲,李水清.废轮胎热解油中极性物的分析[J].质谱学报.21(3):51-52.
    [127]K. Fukumori, M. Matsumasa, H. Okamato, et al. Recycling technology of tire rubber [J]. JSAE Review.2002,23:259-264.
    [128]A. A. Zabaniotou, G. Stavropoulos. Pyrolysis of used automobile tires and residual char utilization [J]. Journal of Analytical and Applied Pyrolysis.2003,70(2):711-722.
    [129]金余其,陆王琳,池涌,等.废轮胎热解油加氢精制硫氮脱除特性研究[J].燃料化学学报.2007,35(6):772-776.
    [130]R. Cypres, B. Bettens. Production of benzoles and active carbon from waste rubber and plastic materials by means of pyrolysis with simultaneous post-cracking [A]. Pyrolysis and Gasification [C]. London:Elsevier Science Publishing Co., Inc.,1989.209-216.
    [131]M. Stanciulescu, M. Ikura. Limonene ethers from tire pyrolysis oil Part 1:Batch experiments [J]. Journal of Analytical and Applied Pyrolysis.2006,75(2):217-225.
    [132]B. Benallal, C. Roy, H. Pakdel, et al. Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tyres comparison with petroleum naphtha [J]. Fuel.1995, 74(11):1589-1594.
    [133]H. Pakdel, D. M. Pantea, C. Roy. Production of di-limonene by vacuum pyrolysis of used tires [J]. Journal of Analytical and Applied Pyrolysis.2001.57(1):91-107.
    [134]M. Stanciulescu, M. Ikura. Limonene ethers from tire pyrolysis oil Part 2:Continuous flow experiments [J]. Journal of Analytical and Applied Pyrolysis.2007,78(1):76-84.
    [135]S. Murugan, M. C. Ramaswamy, G. Nagarajan. Assessment of pyrolysis oil as an energy source for diesel engines [J]. Fuel Processing Technology.2009,90(1):67-74.
    [136]S. Murugan, M. C. Ramaswamy, G. Nagarajan. A comparative study on the performance, emission and combustion studies of a DI diesel engine using distilled tyre pyrolysis oil-diesel blends [J]. Fuel.2008,87(10-11):2111-2121.
    [137]S. Murugan, M. C. Ramaswamy, G. Nagarajan. Performance, emission and combustion studies of a DI diesel engine using Distilled Tyre pyrolysis oil-diesel blends [J]. Fuel Processing Technology.2008,89(2):152-159.
    [138]A. Chaala, O. G. Ciochiaa, C. Roy. Vacuum pyrolysis of automobile shredder residues: use of the pyrolytic oil as a modifier for road bitumen [J]. Resources, Conservation & Recycling,1999,26(3-4):155-172.
    [139]杨嘉谟,周四平.废旧橡胶轮胎的催化裂解[J].化工进展.2000,1:71-78.
    [140]Chaala A, Roy C. Production of coke from scrap rite vacuum pyrolysis oil [J]. Fuel Processing Technology,1996,46(3):227-239.
    [141]A. A. Yousefi, A. A. Kadi, C. Roy. Effect of used-tire-derived pyrolytic oil residue on the properties of polymer-modified asphalts [J]. Fuel.2000,79:975-986.
    [142]C. Roy, H. Darmstadt, B. Benallal, et al. Characterization of naphtha and carbon black obtained by vacuum pyrolysis of polyisoprene rubber [J]. Fuel Processing Technology.1997,50:87-103.
    [143]M. Rofiqul Islam, H. Haniu, M. Rafiqul Alam Beg. Liquid fuels and chemicals from pyrolysis of motorcycle tire waste:Product yields, compositions and related properties [J]. Fuel.2008,87:3112-3122.
    [144]M. F. Laresgoiti, B. M. Caballero, I. de. Marco, et al. Characterization of the liquid products obtained in tyre pyrolysis [J]. Journal of Analytical and Applied Pyrolysis.2004,71(2):917-934.
    [145]H. Pakdel, C. Roy. Simultaneous gas chromatographic-Fourier transform infrared spectroscopic-mass spectrometric analysis of synthetic fuel derived from used tire vacuum pyrolysis oil, naphtha fraction [J]. Journal of Chromatography A.1994,683:203-214.
    [146]S. Mirmiran, H. Pakdel, C. Roy. Characterization of used tire vacuum pyrolysis oil: nitrogenous compounds from the naphtha fraction [J]. Journal of Analytical and Applied Pyrolysis.1992,22:205-215.
    [147]罗立文,夏道宏,林蕾.四乙酸铅电位滴定法测定汽油中的硫醚硫[J].石油与天然气化工,2003,32(6):393-395.
    [148]钱迈原,王少军,凌凤香,等.渣油中碱性氮含量电位滴定测定法研究[J].当代化工,2007(36)4:463-465,468.
    [149]罗立文,夏道宏,林蕾.四乙酸铅电位滴定法测定汽油中的硫醚硫[J].石油与天然气化工,2003,32(6):393-395.
    [150]师丽娟,沈本贤.蓬莱高酸原油中环烷酸的结构组成[J].华东理工大学学报(自然科学版).2007,33(3):314-317.
    [151]管红霞,蔡青松,蒋生祥,等.大庆原油中石油羧酸组成的GC-MS分析[J].分析测试技术与仪器.2002,8(1):34-39.
    [152]侯祥麟.中国炼油技术(第二版)[M].北京:中国石化出版社.2008.
    [153]林世雄.石油炼制工程(第三版)[M].北京:石油工业出版社.2006.
    [154]http://www.39hg.com/Article/BasicChmTech/200709/5575.html
    [155]方向晨.加氢精制[M].北京:中国石化出版社.2010.
    [156]程丽华,吴金林.石油产品基础知识[M].中国石化出版社.2010.
    [157]史开洪.加氢精制装置技术问答[M].北京:中国石化出版社.2007.
    [158]刘淑蕃.石油非烃化学[M].山东东营:石油大学出版社.1988.
    [159]S. Mirmiran, H. Pakdel, C. Roy. Characterization of used tire vacuum pyrolysis oil: nitrogenous compounds from the naphtha fraction [J]. Journal of Analytical and Applied Pyrolysis.1992,22:205-215.
    [160]傅晓钦,田松柏,侯栓弟,等.蓬莱和苏丹高酸原油中的石油酸结构组成研究[J].石油与天然气化工,2007,36(6):507-510.
    [161]刘泽龙,田松柏,樊雪志,等.蓬莱原油初馏点-350℃馏分中石油羧酸的结构组成[J].石油学报(石油加工).2003,19(6):40-45.
    [162]Qian K. Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negativation micro electric spray high field fourier transform ion cyclotron resonance mass spectrometry [J]. Energy & Fuels.2001,15(6): 1505-1511.
    [163]董庆年.红外光谱法[M].北京:石油化学工业出版社.1977.
    [164]杜一平.现代仪器分析方法[M].上海:华东理工大学出版社.2008:173-180.
    [165]S. Karagoz, T. Bhaskar, A. Muto, et al. Low-temperature catalytic hydrothermal treatment of wood biomass:analysis of liquid products [J]. Chemical Engineering Journal.2005,108:127-137.
    [166]李恪,张景河,赵晓文,等.克拉玛依九区原油中石油羧酸组成和结构的研究[J].石油学报(石油加工).1995,11(2):100-108.
    [167]殷福珊.油脂化学品的工业应用[J].中国油脂.2000,25(6):24-30.
    [168]汪多仁.脂肪酸的生产与应用[J].表面活性剂工业.2000,1:10-12.
    [169]S. Tamura, K. Mukarami, H. Kuwazoe. Isothermal Degradation of Cis-1, 4-Polyisoprene Vulcanizates [J]. Journal of Applied Polymer Science,1983,28(11): 3467-3484.
    [170]高占先.有机化学(第二版)[M].北京:高等教育出版社.2007:164-165.
    [171]单文波.特戊酸的合成及其在有机合成中的应用[EB/OL].第一情报/化学工业.http://www.istis.sh.cn/list/list.aspx?id=4368. HTML.2007-6-11.
    [172]张德勤.石油沥青的生产及应用[M].北京:中国石化出版社.2001.
    [173]任满年,柴志杰.沥青生产与应用技术问答[M].北京:中国石化出版社.2005.
    [174]梁文杰.石油化学[M].北京:中国石油大学出版社.1995.
    [175]孙大勇,李会鹏,亓玉台.FH-98催化剂的首次工业应用试验[J].石油化工高等学校学报.2000,13(3):41-45.
    [176]史开洪.加氢精制装置技术问答[M].北京:中国石化出版社.2007.
    [177]徐征利,吴辉,李承烈.加氢脱氮动力学模型[J].华东理工大学学报.2001,27(1):42-45,88.
    [178]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社.2005.
    [179]郑少华,姜奉华.试验设计与数据处理[M].北京:中国建筑工业出版社.2004:85.
    [180]汪道明.三种产品方案的焦化汽油加氢精制[J].炼油技术与工程.2003,33(4):12-14.
    [181]翁惠新,毛信军.石油炼制过程反应动力学[M].北京:烃加工出版社.1987.
    [182]谭汉森,方向晨.重油馏分加氢精制反应动力学模型的研究-加氢脱氮动力学模型[J]。抚顺石油化工研究院院报.1989,4:15-25.
    [183]王迎春,高步良.胜利VGO加氢精制反应动力学模型的研究[J]。齐鲁石油化工.1993,3:210-214.
    [184]方星,方向晨,程振民,等.柴油加氢脱硫反应动力学研究[J].当代化工.2005,34(3):145-148,153.
    [185]刘毅,赵珑.应用红外光谱分析法解析硅藻土改性沥青老化机理[J].中外公路.2007,27(2):171-173.
    [186]王寿治,朱国军,肖敏,等.基于红外光谱法的SBS沥青光氧老化机理[J].国外建材科技.2008,29(6):86-90.
    [187]水恒福,沈本贤,高晋生,等.1HNMR和IR对道路沥青老化过程的研究[J].华东理工大学学报.1998,24(4):405-409.
    [188]金鸣林,冯祖安,钱湛芬,等.煤沥青橡胶改质道路沥青老化的研究——沥青质结构与官能团变化.燃料化学学报.1999,27(6):556-561.
    [189]金鸣林,杨俊合,冯祖安,等.韩国70道路沥青老化特性分析(II)官能团与分子结构变化[J].煤炭转化.2002,25(1):91-96.
    [190]陈静,周晓龙,金鸣林,等.FCC油浆热转化制备中间相沥青的研究[J].华东理工大学学报(自然科学版).2007,33(1):14-18.
    [191]金鸣林,史美仁,冯安祖等.胜利100B和韩国70道路沥青的热老化过程[J].南京化工大学学报.2001,23(1):35-39.
    [192]王寿治,朱国军,肖敏等.基于红外光谱法的SBS沥青光氧化老化机理[J].国外建材科技.2008,29(6):86-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700