用户名: 密码: 验证码:
运动特异电磁介质的物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光是生命的能量之源,可以说没有光就没有现在的自然界。光是如此重要,但是人类对光的认识却一直各持己见。1864年,麦克斯韦建立起电磁场的系统理论,且指出:光也是电磁波的一种形式,随后这一论断被很多实验所证实,至此,人们才对光有了进一步的认识。人们认识光其实是为了更好地调控光,为人类的生活提供更多的便捷,从麦克斯韦的系统理论(麦克斯韦方程)中可以看出,我们可以借助两个电磁参量(介电常数ε和磁导率μ)有效地调节光使其沿着我们需要的方式而发展。当明白这些事情后,我们却失望地发现自然界提供给我们的ε和μ实在太少了,比如有些材料满足(ε<0,μ>0),如光频段的金属;比如有些材料满足(ε>0,μ>0),如常规的介电材料;当然也有些材料可以在微波段实现μ<0,如铁磁材料,但这些材料不仅损耗很大,而且无法推到光频,可见,自然界给我们提供的材料是很有限的,根本无法满足人类的需要。1968年,前苏联物理学家V. G. Veselago从理论上提出了对于一种材料同时具有负的介电常数ε和负的磁导率μ,而且还预言了这种材料里所具有的很多奇异效应。V. G. Veselago的这一独特想法几十年来一直没有引起人们的关注,直到上个世纪90年代,英国物理学家J. B. Pendry提出可以利用有限长的金属棒实现负的介电常数ε,利用金属开口圆环实现负的磁导率μ,结合这两种结构作为最小的材料单元,可以实现在微波段介电常数ε和磁导率μ同时为负的材料,随后不久这一思想就被来自美国的科学家D.R. Smith等人用实验证实。至此,人们才逐渐意识到利用比波长小很多的结构单元来调控光的潜力,而这一方向则渐渐地发展成为一个全新的研究领域,通常称为Metamaterial,中文意为特异材料,或超材料。顾名思义,这种材料不同于自然界的一些已有材料,他的出现使得人们对光的调控能力有了很大的提升,很多奇异的物理效应也都在这种人工材料中实现,如反多普勒效应和反切伦科夫效应等等。本篇论文将在第一章中粗略地介绍人工电磁特异材料的研究进展和当前的一些研究热点。
     特异材料具有很多自然材料难以比拟的优点,比如它与常规材料组成的界面可以呈现负折射现象,它作为棱镜可以成一个打破衍射极限的像等。但这方面的很多工作都是在静止体系中进行的,如果我们考虑把一块特异介质平板置于运动体系,那么会有什么新奇的现象呢?当然,我们首先想到的就是多普勒效应,在研究中我们发现当把源和接受器都置于负折射率介质平板的表面,当它们运动时,接受器接受到的信号非常之奇怪,除了一个峰可以和经典的多普勒信号相对应外,还有其它几个峰完全出乎我们的意料,同时,我们也研究了这几个奇异的峰和源的工作频率以及相互运动速度之间的关系,最后,我们发现这几个奇异的峰是源与平板的表面波相互作用引起的。在论文的第二章,我们基于四维时空的洛伦兹变换和格林函数理论,发展了一套可以用来解决运动体系光学性质的严格方法;接着在论文的第三章中我们就运用此方法,详细讨论运动体系中负折射率介质平板相关的光学现象,我们不仅可以处理上述的奇异多普勒效应,还可以研究运动负折射介质平板的超成像效果,研究中我们发现运动平板较之静止平板成像的效果发生明显的变化,通过对比两种情况下板的表面波色散关系,我们发现运动平板的表面波色散关系会发生明显地扭曲,使得在像点收集到的瞬态波的成分发生很大的变化,直接导致像的质量改变。
     手征材料的本构关系不同于一般材料的本构关系,手征材料中电和磁的分量是有效地耦合在一起的,在其中传播电磁波的电/磁分量不仅可以诱发体系的电/磁极化,同时也可以诱发体系的磁/电极化。由于在实验上要实现负折射,需要制造一个介电常数和磁导率同时为负的材料,具有一定的难度,特别在光频段更加难以实现;但是利用手征材料我们就可以降低实现负折射的难度,因此引起了部分科学家的兴趣。在论文的第四章,我们就研究金属开口圆环的手征特性,发现以此为共振单元形成材料的手征参量具有非对角项。之前关于手征材料的很多研究都只关心手征参量的对角项,那么这个非对角项对电磁波具有怎样的调控作用呢?通过研究我们发现,线偏振电磁波在此体系的界面发生折射时会发生双折射现象,特别之处在于,其中一束折射光仍为线偏振,另一束则为椭圆偏振,这和传统的双折射有很大的不同,最后我们还用全波模拟看到了这种双折射现象。
     论文的第五章,我会对整篇论文进行一个简短的总结和回顾。
Light is the energy source of the lives. We may say that there aren't nowadays na-ture without light. Light is so important to us, but human always have different views on the light. In 1864, Maxwell founded the electromagnetical theory. He pointed out that the light is a kind of electromagnetic waves, and then this prediction was proved by the experiment. Thus people understood the light clearer. People aim to manipu-late the light as understanding them, so it can give us more convenience. According to the Maxwell's equations we can find there are two parameters permittivityεand permeabilityμ, which can be used to manipulate the light efficiently. However, we despairingly found that the nature gave us so few materials. For example, there are some materials withε< 0,μ> 0, like metal, and some materials withε> 0,μ> 0, like the dielectrics. Also there are some materials withμ< 0, like ferromagnetic, but they have very large loss and a very narrow band width. Obviously, the nature gives us so few materials and can't supply the demand of human. In 1968, V. G. Veselago, a physicist from Union of Soviet Socialist Republics, in theory presented the materials with both negativeεand negativeμ, and he predicted there were many anomalous effects in these materials. This idea haven't attracted many attentions for many years. Until 90th in last century, J. B. Pendry, a physicist from England, presented that we can realize negativeεbased on finite metallic wires and negativeμbased on the split metallic rings. Combining these two units we can get both negative materials in micro wave region, and soon this idea was proved by an experiment which was carried out by American physicist D. R. Smith. So people understood the capabilities of manipu-lation light based on these subwavelength structures. This direction opens up as a new research region named Metamaterials. Different from the natural materials, this kind of materials can improve the human's abilities of manipulating light and many anom-alous effects can be realized in them, such as reversed Doppler effects and reversed Cerenkov effects. In the first chapter of this thesis, I will give a simple introduction on the progress of metamaterials research and some research hot recently.
     Metamaterials have some advantages comparing with natural materials, such as negative refraction, and a metamaterial slab can be a super lens. However, almost all the researches are presented in the static environment. So if we put a metamaterial slab in a moving environment what will happen? Of course, we first think the Doppler effects. When both the source and receiver were putted near the surface of the slab and were moving, and then we found the received signals are very novel. Except one peak corresponding to the classical Doppler effect, other peaks were totally out of our imagination. We also got the relation between these anomalous peaks and the work-ing frequencies of source, and the velocities of them. At last we found these peaks result from the interaction between the source and surface waves of the slab. In the sec-ond chapter of this thesis, based on 4D Lorentz transformation, we present a rigorous Green's function approach which can be applied to solve movement-based problem.In the third chapter of this thesis, we discuss in detail the optical phenomena related to a moving metamaterial slab. We can deal with the above anomalous Doppler effects based on such approach, furthermore also can treat the super lensing effects of a mov-ing metamaterial slab. Comparing with the static slab, we found the image resolution change much. It was originated from the surface wave dispersion distortion when the slab was moving. This can directly cause the changing of image point collecting surface wave components.
     The constitutive relations of chiral media are different from the traditional materials. The electric and magnetic components are coupling together in chiral media. When the electromagnetic waves are propagating in them, the electric (magnetic) field can induce both the electric (magnetic) polarization and magnetic (electric) polarization. As the realization of negative refraction, we need to create the material with both negativeεand negativeμsimultaneously. Actually, it's difficult to do especially in optical region. However, based on chiral media, we can reduce the difficulties, and this point attracted many attentions. In the fourth chapter of this thesis, we will discuss the chiral properties of the metallic split rings. We found the chirality parameter of such metallic split rings based materials can have off diagonal terms. Many researches only focused on the diagonal terms of chirality parameter, so what's new phenomena will occur in such media? We studied the refraction properties between air and such media. There was double refraction, but different from other double refraction, one refracted wave is linearly polarized and another is longitudinal elliptically polarized. At last, based on the full wave simulation, we predicted this effect.
     In the fifth chapter of this thesis,1 will give a simple conclusion.
引文
[1]V. G. Veselago, The Electrodynamics of Substances with Simultaneously Nega-tive Values of ε and μ [J]. Sov. Phys. Usp.10,509 (1968).
    [2]J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, Extremely Low Frequency Plasmons in Metallic Mesostructures [J]. Phys. Rev. Lett.76,4773 (1996).
    [3]J.B. Pendry, A. J Holden, D. J. Robbins, and W. J. Stewart, Magnetism from Conductors and Enhanced Nonlinear Phenomena [J]. IEEE Trans. Microwave Theory Tech.47,2075 (1999).
    [4]D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite Medium with Simultaneously Negative Permeability and Permittivity [J]. Phys. Rev. Lett.84,4184 (2000).
    [5]R. A. Shelby, D. R. Smith, S. Schultz, Experimental Verification of a Nagetive index of Refraction [J]. Science 292,77 (2001).
    [6]J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Low frequency plasmons in thin-wire structures [J]. J. Phys.:Condens. Matter 10,4785 (1998).
    [7]D. R. Smith, D. C. Vier, Willie Padilla, Syrus C. Nemat-Nasser, and S. Schultz, Loop-wire medium for investigating plasmons at microwave frequencies [J]. Appl. Phys. Lett.75,1425 (1999).
    [8]E. V. Ponizovskaya, M. Nieto-Vesperinas, N. Garcia, Losses for microwave transmission in metamaterials for producing left-handed materials:The strip wires [J]. Appl. Phys. Lett.81,4470 (2002).
    [9]P. Markos, and C. M. Soukoulis, Absorption losses in periodic arrays of thin metallic wires [J]. Opt. Lett.28,846 (2003).
    [10]J. B. Pendry, Negative refraction [J]. Contemp. Phys.45,191 (2004).
    [11]N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Electric coupling to the magnetic resonance of split ring resonators [J]. Appl. Phys. Lett.84,2943 (2004).
    [12]P. Markos and C. M. Soukoulis, Numerical studies of left-handed materials and arrays of split ring resonators [J]. Phys. Rev. E 65,036622 (2002).
    [13]J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, Saturation of the Magnetic Response of Split-Ring Resonators at Op-tical Frequencies [J]. Phys. Rev. Lett.95,223902 (2005).
    [14]T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, Terahertz Magnetic Response from Artificial Materials [J]. Science 303,1494 (2004).
    [15]S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Magnetic Response of Metamaterials at 100 Terahertz [J]. Science 306,1351 (2004).
    [16]J. Zhou, T. Koschny, and C. M. Soukoulis, Magnetic and electric excitations in split ring resonators [J]. Opt. Express 15,17881 (2007).
    [17]M. W. Klein, C. Enkrich, and M. Wegener, C. M. Soukoulis, S. Linden, Single-slit split-ring resonators at optical frequencies:limits of size scaling [J]. Opt. Lett.31,1259 (2006).
    [18]E. N. Economou, Th. Koschny, and C. M. Soukoulis, Strong diamagnetic re-sponse in split-ring-resonator metamaterials:Numerical study and two-loop model [J]. Phys. Rev. B 77,092401 (2008).
    [19]Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, Electrically tunable negative permeability metamaterials based on nematic liquid crystals [J]. Appl. Phys. Lett.90,011112 (2007).
    [20]C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, Magnetic Metamaterials at Telecom-munication and Visible Frequencies [J]. Phys. Rev. Lett.95,203901 (2005).
    [21]F. Bilotti, A. Toscano, and L. Vegni, Design of Spiral and Multiple Split-Ring Resonators for the Realization of Miniaturized Metamaterial Samples [J]. IEEE Trans. Antennas Propag.55,2258 (2007).
    [22]A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. OHara, Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators [J]. Appl. Phys. Lett.92,011119 (2008).
    [23]D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, Direct calculation of perme-ability and permittivity for a left-handed metamaterial [J]. Appl. Phys. Lett.77, 2246 (2000).
    [24]D. R. Smith, S. Schultz, P. Markos and C. M. Soukoulis, Determination of ef-fective permittivity and permeability of metamaterials from reflection and trans-mission coefficients [J]. Phys. Rev. B 65,195104 (2002).
    [25]B. Popa and S. A. Cummer, Determining the effective electromagnetic properties of negative-refractive-index metamaterials from internal fields [J]. Phys. Rev. B 72,165102(2005).
    [26]K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, E. Ozbay, Investi-gation of magnetic resonances for different split-ring resonator parameters and designs [J]. New J. Phys.7,168 (2005).
    [27]A. Radkovskaya, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, E. Shamonina, and L. Solymar, Resonant frequencies of a combination of split rings:Experimental, analytical and numerical study [J]. Microwave Opt. Tech-nol. Lett.46,473 (2005).
    [28]J. D. Baena, R. Marques, and F. Medina, J. Martel, Artificial magnetic metama-terial design by using spiral resonators [J]. Phys. Rev. B 69,014402 (2004).
    [29]H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, Terahertz Response of a Microfabricated Rod-Split-Ring-Resonator Electromagnetic Metamaterial [J]. Phys. Rev. Lett.94,063901 (2005).
    [30]S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, Midinfrared Resonant Magnetic Nanostructures Exhibiting a Negative Permeability [J]. Phys. Rev. Lett.94,037402 (2005).
    [31]L. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media, (Elsevier, New York,1984).
    [32]V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, Negative index of refraction in optical metamaterials [J]. Opt. Lett.30,3356 (2005).
    [33]G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis and S. Linden, Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials [J]. Opt. Lett.30,3198(2005).
    [34]S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Experimental Demonstration of Near-Infrared Negative-Index Metamaterials [J]. Phys. Rev. Lett.95,137404 (2005).
    [35]G. Dolling, and M. Wegener, C. M. Soukoulis, S. Linden, Negative-index meta-material at 780 nm wavelength [J]. Opt. Lett.32,53 (2007).
    [36]S. A. Ramarkrishna, Physics of negative refractive index materials [J]. Rep. Prog. Phys.68,449 (2005).
    [37]D. R. Smith, and Norman Kroll, Negative Refractive Index in Left-Handed Ma-terials [J]. Phys. Rev. Lett.85,2933 (2000).
    [38]R. W. Ziolkowski, E. Heyman, Wave propagation in media having negative per-mittivity and permeability [J]. Phys. Rev. E 64,056625 (2001).
    [39]D. R. Smith, D. Schurig, and J. B. Pendry, Negative refraction of modulated electromagnetic waves [J]. Appl. Phys. Lett.81,2713 (2002).
    [40]S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, Refraction in media with a Negative Refractive Index [J]. Phys. Rev. Lett.85,2933 (2000).
    [41]J. Lu, T. M. Grzegorczyk, Y. Zhang, J. Pacheco Jr, B. Wu, and J. A. Kong, M. Chen, Cerenkov radiation in materials with negative permittivity and permeabil-ity [J]. Opt. Express 11,723 (2003).
    [42]P. R. Berman, Goos-Hanchen shift in negatively refractive media [J]. Phys. Rev. E 66,067603 (2002).
    [43]J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Three-dimensional optical metamaterial with a negative refractive index [J]. Nature 455,376 (2008).
    [44]J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartai, A. M. Stacy, X. Zhang, Optical Negative Refraction in Bulk Metamaterials of Nanowires [J]. Science 321,930 (2008).
    [45]J. B. Pendry, and D. R. Smith, Reversing Light With Negative Refraction [J]. Phys. Today 57,37 (2004).
    [46]J. B. Pendry,Negative Refraction Makes a Perfect Lens [J]. Phys. Rev. Lett.85, 3966 (2000).
    [47]N. Fang, H. Lee, C. Sun, X. Zhang, Sub-Diffraction-Limited Optical Imaging with a Silver Superlens [J]. Science 308,534 (2005).
    [48]N. Garcia, and M. Nieto-Vesperinas, Left-Handed Materials Do Not Make a Perfect Lens [J]. Phys. Rev. Lett.88,207403 (2002).
    [49]J. B. Pendry, Comment on "Left-Handed Materials Do Not Makea Perfect Lens" [J]. Phys. Rev. Lett..91,099701 (2003).
    [50]D. R. Smith, D. Schurig, M. Rosenbluth, and S. Schultz, S. A. Ramakrishna and J. B. Pendry, Limitations on subdiffraction imaging with a negative refractive index slab [J]. Appl. Phys. Lett.82,1506 (2003).
    [51]X. S. Rao, C. K. Ong, Amplification of evanescent waves in a lossy left-handed material slab [J]. Phys. Rev. B 68,113103 (2003).
    [52]X. S. Rao, C. K. Ong, Subwavelength imaging by a left-handed material super-lens [J]. Phys. Rev. E 68,067601 (2003).
    [53]L. Zhou, C. T. Chan, Vortex-like surface wave and its role in the transient phe-nomena of meta-material focusing [J]. Appl. Phys. Lett.86,101104 (2005).
    [54]L. Zhou, C. T. Chan, Relaxation mechanisms in three-dimensional metamaterial lens focusing [J]. Opt. Lett.30,1812 (2005).
    [55]X. Q. Huang, and L. Zhou, C. T. Chan, Modulating image oscillations in fo-cusing by a metamaterial lens:Time-dependent Green's function approach [J]. Phys. Rev. B 74,045123 (2006).
    [56]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature 391,667 (1998).
    [57]H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Surface plasmons enhance optical transmission through subwavelength holes [J]. Phys. Rev. B 58,6779(1998).
    [58]H. Raether, Surface Plasmons (ed. Hohler, G.), (Springer, Berlin,1988).
    [59]R. Ruppin, Surface polaritons of a left-handed medium [J]. Phys. Lett. A 277, 61 (2000).
    [60]S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, Plasmonics-A Route to Nanoscale Optical Devices [J]. Adv. Mater. 13,1501 (2001).
    [61]W. L. Barnes, A. Dereux and T. W. Ebbesen, Surface plasmon subwavelength optics [J]. Nature 424,824 (2003).
    [62]A. V. Zayats, and I.I. Smolyaninov, Near-field photonics:surface plasmon po-laritons and localized surface plasmons [J]. J. Opt. A:Pure Appl. Opt.5, S16 (2003).
    [63]E. Ozbay, Plasmonics:Merging Photonics and Electronics at Nanoscale Dimen-sions [J]. Science 311,189 (2006).
    [64]W. A. Murray, and W. L. Barnes, Plasmonic Materials [J]. Adv. Mater.19,3771 (2007).
    [65]J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Theory of surface plasmons and surface-plasmon polaritons [J]. Rep. Prog. Phys.70,1 (2007).
    [66]S. A. Maier, Plasmonics:Fundamentals and Applications (Springer, New York, 2007).
    [67]M. Dragoman, and D. Dragoman, Plasmonics:Applications to nanoscale tera-hertz and optical devices [J]. Progress in Quantum Electronics 32,1 (2008).
    [68]J. B. Pendry, D. Schurig, D. R. Smith, Controlling Electromagnetic Fields [J]. Science 312,1780(2006).
    [69]U. Leonhardt, Optical Conformal Mapping [J]. Science 312,1777 (2006).
    [70]D. Schurig, J. B. Pendry, D. R. Smith, Calculation of material properties and ray tracing in trans formation media [J]. Opt. Express 14,9794 (2006).
    [71]S. A. Cummer, B. Popa, D. Schurig, D. R. Smith and J. B. Pendry, Full-wave simulations of electromagnetic cloaking structures [J]. Phys. Rev. E 74,036621 (2006).
    [72]D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, Metamaterial Electromagnetic Cloak at Microwave Frequencies [J]. Science 314,977 (2006).
    [73]W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, Optical cloaking with metamaterials [J]. Nature Photonics 1,224 (2007).
    [74]Y. Huang, Y. Feng, T. Jiang, Electromagnetic cloaking by layered structure of homogeneous isotropic materials [J]. Opt. Express 15,11133 (2007).
    [75]J. Li and J. B. Pendry, Hiding under the Carpet:A New Strategy for Cloaking [J]. Phys. Rev. Lett.101,203901 (2008).
    [76]R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, Broadband Ground-Plane Cloak [J]. Science 323,366 (2009).
    [77]B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, Local excitation, scattering, and interference of surface plasmons [J] Phys. Rev. Lett.77,1889 (1996).
    [78]J. B. Pendry, Playing tricks with light [J]. Science 285,1687 (1999).
    [79]K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) [J]. Phys. Rev. Lett.78,1667 (1997).
    [80]S. Nie, S. R. Emory, Probing single molecules and single nanoparticles by surface-enhanced raman scattering [J]. Science 275,1102 (1997).
    [81]K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, Surface enhanced Raman scattering and biophysics [J]. J. Phys. C 14, R597 (2002).
    [82]J. Homola, S. S. Yee, and G. Gauglitz, Surface plasmon resonance sensors:re-view [J] Sensors Actuat. B 54,3 (1999).
    [83]S. A. Maier, and H. A. Atwatery, Plasmonics:Localization and guiding of elec-tromagnetic energy in metal/dielectric structures [J]. J. Appl. Phys.98,011101 (2005).
    [84]J. R. Sambles, G. W. Bradbery, and F. Z. Yang, Optical-excitation of surface-plasmons-an introduction [J]. Contemp. Phys.32,173 (1991).
    [85]J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, Mimicking Surface Plas-mons with Structured Surfaces [J]. Science 305,847 (2004).
    [86]F. J. Garcia-Vidal, LMartin-Moreno, and J. B. Pendry, Surfaces with holes in them:new plasmonic metamaterials [J]. J. Opt. A:Pure Appl. Opt.7, s97 (2005).
    [87]Z. Liang, P. Yao, X. Sun, and X. Jiang, The physical picture and the essential elements of the dynamical process for dispersive cloaking structures [J]. Appl. Phys. Lett.92,131118(2008).
    [88]H. Chen and C. T. Chan, Time delays and energy transport velocities in three dimensional ideal cloaking devices [J]. J. Appl. Phys.104,033113 (2008).
    [89]S. A. Cummer, B. Popa, D. Schurig, D. R. Smith, J. B. Pendry, M. Rahm, and A. Starr, Scattering Theory Derivation of a 3D Acoustic Cloaking Shell [J]. Phys. Rev. Lett.100,024301 (2008).
    [90]S. Zhang, D. A. Genov, C. Sun, and X. Zhang, Cloaking of Matter Waves [J]. Phys. Rev. Lett.100,123002 (2008).
    [91]I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, Boston.London,1994).
    [92]J. B. Pendry, A Chiral Route to Negative Refraction [J]. Science 306, 1353(2004).
    [93]T. G. Mackay, and A. Lakhtakia, Plane waves with negative phase velocity in Faraday chiral mediums [J]. Phys. Rev. E 69,026602 (2004).
    [94]S. L. Prosvirnin, and N. I. Zheludev, Polarization effects in the diffraction of light by a planar chiral structure [J]. Phys. Rev. E 71,037603 (2005).
    [95]S. Tretyakov, A. Sihvola, L. Jylha, Backward-wave regime and negative refrac-tion in chiral composites [J]. Photonics Nanostruct. Fundam.Appl.3,107 (2005).
    [96]Cesar Monzon, and D.W. Forester, Negative Refraction and Focusing of Circu-larly PolarizedWaves in Optically Active Media [J]. Phys. Rev. Lett.95,123904 (2005).
    [97]Qiang Cheng, and Tie Jun Cui, Negative refractions and backward waves in biaxially anisotropic chiral media [J]. Opt. Express 14,6322 (2006).
    [98]A.V. Rogacheva, V.A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Giant Gy-rotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure [J]. Phys. Rev. Lett.97,177401 (2006).
    [99]V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A.V. Rogacheva, Y. Chen, and N. I. Zheludev, Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure [J]. Phys. Rev. Lett.97,167401 (2006).
    [100]Vassilios Yannopapas, Negative index of refraction in artificial chiral materials [J]. J. Phys.:Condens. Matter 18,6883 (2006).
    [101]Jian Qi Shen, and Sailing He, Backward waves and negative refractive indices in gyrotropic chiral media [J]. J. Phys. A:Math. Gen.39,457 (2006).
    [102]E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, Gi-ant optical gyrotropy due to electromagnetic coupling [J]. Appl. Phys. Lett.90, 223113(2007).
    [103]Ricardo Marques, Lukas Jelinek, and Francisco Mesa, Negative refraction from balanced quasi-planar chiral inclusions [J]. Microwave Opt. Technol. Lett.49, 2606 (2007).
    [104]Cheng-Wei Qiu, Hai-Ying Yao, Le-Wei Li, Said Zouhdi, and Tat-Soon Yeo, Backward waves in magnetoelectrically chiral media:Propagation, impedance, and negative refraction [J]. Phys. Rev. B 75,155120 (2007).
    [105]E. Plum, V. A. Fedotov, and N. I. Zheludev, Optical activity in extrinsically chiral metamaterial [J]. Appl. Phys. Lett.93,191911 (2008).
    [106]E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Metamaterial with negative index due to chirality [J]. Phys. Rev. B 79,035407 (2009).
    [107]Shuang Zhang, Yong-Shik Park, Jensen Li, Xinchao Lu, Weili Zhang, and Xiang Zhang, Negative Refractive Index in Chirai Metamaterials [J]. Phys.Rev. Lett. 102,023901(2009).
    [108]Bingnan Wang, Jiangfeng Zhou, Thomas Koschny, and Costas M. Soukoulis, Nonplanar chiral metamaterials with negative index [J]. Appl. Phys. Lett.94, 151112(2009).
    [109]S. Bassiri, C. H. Papas, N. Engheta, Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab [J]. J. Opt. Soc. Am. A 5, 1450(1988)
    [110]L. Jelinek, R. Marques, F. Mesa, and J. D. Baena, Periodic arrangements of chiral scatterers providing negative refractive index bi-isotropic media [J]. Phys. Rev. B 77,205110 (2008).
    [1]N. Seddon, and T. Bearpark, Observation of the Inverse Doppler Effect [J]. Sci-ence 302,1537 (2003).
    [2]E.J. Reed, M. Soljacic, J.D. Joannopoulos, Reversed Doppler Effect in Photonic Crystals [J]. Phys. Rev. Lett.91,133901 (2003).
    [3]Chiyan Luo, Mihai Ibanescu, Evan J. Reed, Steven G. Johnson, and J. D. Joannopoulos, Doppler Radiation Emitted by an Oscillating Dipole Moving in-side a Photonic Band-Gap Crystal [J]. Phys. Rev. Lett.96,043903 (2006).
    [4]J. A. Kong, Electromagnetic Wave Theory (Higher Education Press,2002).
    [5]R. W. Ziolkowski and E. Heyman, Wave propagation in media having negative permittivity and permeability [J]. Phys. Rev. E 64,056625 (2001).
    [6]X. S. Rao and C. K. Ong, Amplification of evanescent waves in a lossy left-handed material slab [J]. Phys. Rev. B 68,113103 (2003).
    [7]X. S. Rao and C. K. Ong, Subwavelength imaging by a left-handed material superlens [J]. Phys. Rev. E 68,067601 (2003).
    [8]S. A. Cummer, Simulated causal subwavelength focusing by a negative refractive index slab [J]. Appl. Phys. Lett.82,1503 (2003).
    [9]P. F. Loschialpo, D. L. Smith, D. W. Forester, F. J. Rachford, and J. Schelleng, Electromagnetic waves focused by a negative-index planar lens [J]. Phys. Rev. E 67,025602 (2003).
    [10]L. Chen, S. L. He and L. F. Shen, Finite-Size Effects of a Left-Handed Material Slab on the Image Quality [J]. Phys. Rev. Lett.92,107404 (2004).
    [11]Weihua Wang, Xueqin Huang, and Lei Zhou, Dynamical Green's function theory to study the optical phenomena related to metamaterials [J]. Photonics Nanos-truct. Fundam. Appl.8,23 (2010).
    [12]Weihua Wang, Xueqin Huang, Lei Zhou, and C.T. Chan, Doppler effects of a light source on a metamaterial slab:a rigorous Green's function approach [J]. Opt. Lett.33,369 (2008).
    [13]L. Zhou and C. T. Chan, Vortex-like surface wave and its role in the transient phenomena of meta-material focusing [J]. Appl. Phys. Lett.86,101104 (2005).
    [14]L. Zhou and C. T. Chan, Relaxation mechanisms in three-dimensional metama-terial lens focusing [J]. Opt. Lett.30,1812 (2005).
    [15]X. Q. Huang, L. Zhou, C. T. Chan, Modulating image oscillations in focusing by a metamaterial lens:Time-dependent Green's function approach [J]. Phys. Rev. B 74,045123(2006).
    [16]Y. Zhang, T. M. Grzegorzyk, and J. A. Kong, Propagation of Electromagnetic waves in a slab with negative permittivity and negative permeablity [J]. Electro-magn. Waves.35,271 (2002)
    [17]J. D. Jackson, Classical Electrodynamics (Wiley, New York,1962)
    [1]V. G. Veselago, The Electrodynamics of Substances with Simultaneously Nega-tive Values of ε and μ [J]. Sov. Phys. Usp.10,509 (1968).
    [2]J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, Extremely Low Frequency Plasmons in Metallic Mesostructures [J]. Phys. Rev. Lett.76,4773 (1996).
    [3]J.B. Pendry, A. J Holden, D. J. Robbins, and W. J. Stewart, Magnetism from Conductors and Enhanced Nonlinear Phenomena [J]. IEEE Trans. Microwave Theory Tech.47,2075 (1999).
    [4]D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite Medium with Simultaneously Negative Permeability and Permittivity [J]. Phys. Rev. Lett.84,4184 (2000).
    [5]R. A. Shelby, D. R. Smith, S. Schultz, Experimental Verification of a Nagetive index of Refraction [J]. Science 292,77 (2001).
    [6]J. B. Pendry, Negative Refraction Makes a Perfect Lens [J]. Phys. Rev. Lett.85, 3966 (2000).
    [7]J. B. Pendry, D. Schurig, D. R. Smith, Controlling Electromagnetic Fields [J]. Science 312,1780(2006).
    [8]U. Leonhardt, Optical Conformal Mapping [J]. Science 312,1777 (2006).
    [9]J. A. Kong, Electromagnetic Wave Theory (Higher Education Press,2002).
    [10]A. V. Kats, Sergey Savel'ev, V. A. Yampol'skii, and Franco Nori, Left-Handed Interfaces for Electromagnetic Surface Waves [J]. Phys. Rev. Lett.98,073901 (2007).
    [11]M. Einat, and E. Jerby, Normal and anomalous Doppler effects in a dielectric-loaded striplinecyclotron-resonance maser oscillator [J]. Phys. Rev. E 56,5996 (1997).
    [12]E.J. Reed, M. Soljacic, J.D. Joannopoulos, Reversed Doppler Effect in Photonic Crystals [J]. Phys. Rev. Lett.91,133901 (2003).
    [13]N. Seddon, and T. Bearpark, Observation of the Inverse Doppler Effect [J]. Sci-ence 302,1537(2003).
    [14]Alexander B. Kozyrev, and Daniel W. van der Weide, Explanation of the Inverse Doppler Effect Observed in Nonlinear Transmission Lines [J]. Phys. Rev. Lett. 94,203902 (2005).
    [15]Xinhua Hu, Zhihong Hang, Jensen Li, Jian Zi, and C. T. Chan, Anomalous Doppler effects in phononic band gaps [J]. Phys. Rev. E 73,015602(R) (2006).
    [16]Chiyan Luo, Mihai Ibanescu, Evan J. Reed, Steven G. Johnson, and J. D. Joannopoulos, Doppler Radiation Emitted by an Oscillating Dipole Moving in-side a Photonic Band-Gap Crystal [J]. Phys. Rev. Lett.96,043903 (2006).
    [17]R. W. Ziolkowski and E. Heyman, Wave propagation in media having negative permittivity and permeability [J]. Phys. Rev. E 64,056625 (2001).
    [18]X. S. Rao and C. K. Ong, Amplification of evanescent waves in a lossy left-handed material slab [J]. Phys. Rev. B 68,113103 (2003).
    [19]X. S. Rao and C. K. Ong, Subwavelength imaging by a left-handed material superlens [J]. Phys. Rev. E 68,067601 (2003).
    [20]S. A. Cummer, Simulated causal subwavelength focusing by a negative refractive index slab [J]. Appl. Phys. Lett.82,1503 (2003).
    [21]P. F. Loschialpo, D. L. Smith, D. W. Forester, F. J. Rachford, and J. Schelleng, Electromagnetic waves focused by a negative-index planar lens [J]. Phys. Rev. E 67,025602 (2003).
    [22]L. Chen, S. L. He and L. F. Shen, Finite-Size Effects of a Left-Handed Material Slab on the Image Quality [J]. Phys. Rev. Lett.92,107404 (2004).
    [23]Weihua Wang, Xueqin Huang, and Lei Zhou, Dynamical Green's function theory to study the optical phenomena related to metamaterials [J]. Photonics Nanostruct. Fundam. Appl.8,23 (2010).
    [24]Weihua Wang, Xueqin Huang, Lei Zhou, and C.T. Chan, Doppler effects of a light source on a metamaterial slab:a rigorous Green's function approach [J]. Opt. Lett.33,369 (2008).
    [25]L. Zhou and C. T. Chan, Vortex-like surface wave and its role in the transient phenomena of meta-material focusing [J]. Appl. Phys. Lett.86,101104 (2005).
    [26]L. Zhou and C. T. Chan, Relaxation mechanisms in three-dimensional metama-terial lens focusing [J]. Opt. Lett.30,1812 (2005).
    [27]X. Q. Huang, L. Zhou, C. T. Chan, Modulating image oscillations in focusing by a metamaterial lens:Time-dependent Green's function approach [J]. Phys. Rev. B 74,045123 (2006).
    [28]Y. Zhang, T. M. Grzegorzyk, and J. A. Kong, Propagation of Electromagnetic waves in a slab with negative permittivity and negative permeablity [J]. Electro-magn. Waves.35,271 (2002)
    [29]J. D. Jackson, Classical Electrodynamics (Wiley, New York,1962)
    [30]R. Ruppin, Surface polaritons of a left-handed medium [J]. Phys. Lett. A 277, 61 (2000).
    [31]F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, Surfaces with holes in them:new plasmonic metamaterials [J]. J. Opt. A:Pure Appl. Opt.7, s97 (2005).
    [32]J B Pendry, and S Anantha Ramakrishna, Near-field lenses in two dimensions, [J]. J. Phys.:Condens. Matter 14,8463 (2002).
    [33]J. T. Shen, and P. M. Platzman, Near field imaging with negative dielectric con-stant lenses [J]. Appl. Phys. Lett.80,3286 (2002).
    [34]David R. Smith, David Schurig, Marshall Rosenbluth, Sheldon Schultz, S. Anan-tha Ramakrishna, and John B. Pendry, Limitations on subdiffraction imaging with a negative refractive index slab [J]. Appl. Phys. Lett.62,1506 (2003).
    [35]J. B. Pendry, Negative refraction [J]. Contemp. Phys.45,191 (2004).
    [36]Nicholas Fang, Hyesog Lee, Cheng Sun, and Xiang Zhang, Sub-Diffraction-Limited Optical Imaging with a Silver Superlens [J]. Science 308,534 (2005).
    [37]Igor I. Smolyaninov, Yu-Ju Hung, and Christopher C. Davis, Magnifying Super-lens in the Visible Frequency Range [J]. Science 315,1699 (2007).
    [38]Michael B. Johnston, Superfocusing of terahertz waves [J]. Nature Photonics 1, 14 (2007).
    [39]Koray Aydin, Irfan Bulu, and Ekmel Ozbay, Subwavelength resolution with a negative-index metamaterial superlens [J]. Appl. Phys. Lett.90,254102 (2007).
    [40]Xiang Zhang, and Zhaowei Liu, Superlenses to overcome the diffraction limit [J]. Nature Material 7,435 (2008).
    [41]N. Garcia and M. Nieto-Vesperinas, Left-Handed Materials Do Not Make a Per-fect Lens [J]. Phys. Rev. Lett.88,207403 (2002).
    [42]J. B. Pendry, Comment on "Left-Handed Materials Do Not Make a Perfect Lens" [J]. Phys. Rev. Lett.91,099701 (2003).
    [43]A. Ono, J. Kato, S. Kawata, Subwavelength Optical Imaging through a Metallic Nanorod Array [J]. Phys. Rev. Lett.95,267407 (2005).
    [44]P. A. Belov, Y. Hao, S. Sudhakaran, Subwavelength microwave imaging using an array of parallel conducting wires as a lens [J]. Phys. Rev. B 73,033108 (2006).
    [1]Ismo V. Lindell, Ari H. Sihvola, and JuhaniKurkijarvi, Karl F. Lindman:The last Hertzian, and a Harbinger of Electromagnetic Chirality [J]. IEEE Antennas and Propagation Magazine 34,24 (1992).
    [2]I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, Boston.London,1994).
    [3]L. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media, (Elsevier, New York,1984).
    [4]B. V. Bokut, A. N. Serdyukov, and F. I. Fedorov, On the phenomenological the-ory of optically activity crystals [J]. Soviet Physics Crystallography 15,1002 (1970).
    [5]B. V. Bokut, and A. N. Serdyukov, On the phenomenological theory of natural optical activity [J]. Soviet Physics JETP 61,1808 (1971).
    [6]V. V. Gvozdev, and A. N. Serdyukov, The Green function and fields radiated by moving charges in gyrotropic medium [J]. Optics and Spectroscopy 47,544 (1979).
    [7]A. N. Godlevskaya, Some peculiarities of spherical electromagnetic wave prop-agation in naturally gyrotropic media [J]. Doklady Akademii Nauk BSS 31,616 (1987).
    [8]D. K. Cheng, and J. A. Kong, Time-harmonic fields in source-free bianisotropic media [J]. J. of Appl. Phys.39,5792 (1968).
    [9]H. C. Chen, and D. K. Cheng, Constitutive relations for a moving anisotropic medium [J]. Proc. IEEE 54,62 1966.
    [10]V. G. Veselago, The Electrodynamics of Substances with Simultaneously Nega-tive Values of ε and μ [J]. Sov. Phys. Usp.10,509 (1968).
    [11]J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, Extremely Low Frequency Plasmons in Metallic Mesostructures [J]. Phys. Rev. Lett.76,4773 (1996).
    [12]J.B. Pendry, A. J Holden, D. J. Robbins, and W. J. Stewart, Magnetism from Conductors and Enhanced Nonlinear Phenomena [J]. IEEE Trans. Microwave Theory Tech.47,2075 (1999).
    [13]R. A. Shelby, D. R. Smith, S. Schultz, Experimental Verification of a Nagetive index of Refraction [J]. Science 292,77 (2001).
    [14]Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, Electromagnetic waves Negative refraction by photonic crystals [J]. Nature 423,604 (2003).
    [15]Shiyang Liu, Weikang Chen, Junjie Du, Zhifang Lin, S. T. Chui, and C. T. Chan, Manipulating Negative-Refractive Behavior with a Magnetic Field [J]. Phys. Rev. Lett.101,157407 (2008).
    [16]J. B. Pendry, A Chiral Route to Negative Refraction [J]. Science 306, 1353(2004).
    [17]T. G. Mackay, and A. Lakhtakia, Plane waves with negative phase velocity in Faraday chiral mediums [J]. Phys. Rev. E 69,026602 (2004).
    [18]S. Tretyakov, A. Sihvola, L. Jylha, Backward-wave regime and negative refrac-tion in chiral composites [J]. Photonics Nanostruct. Fundam.Appl.3,107 (2005).
    [19]Cesar Monzon, and D.W. Forester, Negative Refraction and Focusing of Circu-larly PolarizedWaves in Optically Active Media [J]. Phys. Rev. Lett.95,123904 (2005).
    [20]Qiang Cheng, and Tie Jun Cui, Negative refractions and backward waves in biaxially anisotropic chiral media [J]. Opt. Express 14,6322 (2006).
    [21]Vassilios Yannopapas, Negative index of refraction in artificial chiral materials [J]. J. Phys.:Condens. Matter 18,6883 (2006).
    [22]Cheng-Wei Qiu, Hai-Ying Yao, Le-Wei Li, Said Zouhdi, and Tat-Soon Yeo, Backward waves in magnetoelectrically chiral media:Propagation, impedance, and negative refraction [J]. Phys. Rev. B 75,155120 (2007).
    [30]L. Jelinek, R. Marques, F. Mesa, and J. D. Baena, Periodic arrangements of chiral scatterers providing negative refractive index bi-isotropic media [J]. Phys. Rev. B 77,205110 (2008).
    [24]E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Metamaterial with negative index due to chirality [J]. Phys. Rev. B 79,035407 (2009).
    [25]Shuang Zhang, Yong-Shik Park, Jensen Li, Xinchao Lu, Weili Zhang, and Xiang Zhang, Negative Refractive Index in Chiral Metamaterials [J]. Phys.Rev. Lett. 102,023901 (2009).
    [26]Ricardo Marques, Francisco Medina, and Rachid Rafii-El-Idrissi, Role of bian-isotropy in negative permeability and left-handed metamaterials [J]. Phys. Rev. B 65,144440 (2002).
    [27]Lei Zhou and S. T. Chui, Eigenmodes of metallic ring systems:A rigorous ap-proach [J]. Phys. Rev. B 74,035419 (2006).
    [28]David R. Smith, Jonah Gollub, Jack J. Mock, Willie J. Padilla, and David Schurig, Calculation and measurement of bianisotropy in a split ring resonator metamaterial [J]. J. Appl. Phys.100,024507 (2006).
    [29]Lei Zhou and S. T. Chui, Magnetic resonances in metallic double split rings: Lower frequency limit and bianisotropy [J]. Appl. Phys. Lett.90,041903 (2007).
    [30]L. Jelinek, R. Marques, F. Mesa, and J. D. Baena, Periodic arrangements of chiral scatterers providing negative refractive index bi-isotropic media [J]. Phys. Rev. B 77,205110 (2008).
    [31]Erich Zauderer, Complex argument Hermite-Gaussian and Laguerre-Gaussian beams [J]. J. Opt. Soc. Am. A 3,465 (1986).
    [32]Em E. Kriezis, P. K. Pandelakis, and A. G. Papagiannakis, Diffraction of a Gaussian beam from a periodic planar screen [J]. J. Opt. Soc. Am. A 11,630 (1994).
    [33]Ehud Heyman and Leopold B. Felsen, Gaussian beam and pulsed-beam dy-namics:complex-source and complex-spectrum formulations within and beyond paraxial asymptotics [J]. J. Opt. Soc. Am. A 18,1588 (2001).
    [34]Juan Yang, Le-Wei Li, Kiyotoshi Yasumoto, Senior Member, and Chang-Hong Liang, Two-Dimensional Scattering of a Gaussian Beam by a Periodic Array of Circular Cylinders [J]. IEEE Transactions on Geoscience and Sensing 43,280 (2005).
    [35]Em. E. Kriezis, P. K. Pandelakis, and A. G. Papagiannakis, Electromagnetics and Optics, (World Scientific, Singapore,1992).
    [36]S. T. Chui,Weihua Wang, L Zhou, and Z F Lin, Longitudinal elliptically polar-ized electromagnetic waves in off-diagonal magnetoelectric split-ring compos-ites [J]. J. Phys.:Condens. Matter 21,292202 (2009).
    [1]J. A. Kong, Electromagnetic Wave Theory (Higher Education Press,2002).
    [2]Y. Zhang, T. M. Grzegorzyk, and J. A. Kong, Propagation of Electromagnetic waves in a slab with negative permittivity and negative permeablity [J]. Electro-magn. Waves.35,271 (2002)
    [3]Lei Zhou, Xueqin Huang, and C.T. Chan, A time-dependent Green's function approach to study the transient phenomena in metamaterial lens focusings [J]. Photonics Nanostruct. Fundam. Appl.3,100 (2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700