用户名: 密码: 验证码:
锂离子电池正极材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池具有电池电压高、比容量大、能量密度高、无记忆效应、循环寿命长、环境友好等优点,是目前应用范围最广和最有可能大规模应用于电动汽车的二次电池。正极材料是锂离子电池的关键材料,其性能的好坏不仅直接影响电池的性能,而且对降低电池成本、实现电动汽车产业化具有十分重要的现实意义。本文采用有机物辅助喷雾干燥法,制备了高性能的LiFePO_4、Li_3V_2(PO_4)3和Li_2MnSiO_4等系列锂离子电池正极材料,考察了这些材料的基本电化学性能及其电池性能,并采用SEM、XRD、CV、EIS等实验手段对材料进行了结构表征,同时还研究了这些正极材料在水溶液电解液中的电化学行为,探讨了可充放电水溶液锂离子电池的可能性。
     探索了采用碳浴焙烧工艺固相法制备磷酸铁锂的可能性,在无需惰性气体保护的条件下,成功地制备出了优良性能的LiFePO_4/C复合正极材料。与工业样品比较,该工艺制备的样品的粒径更小更均匀,电化学性能更好,在0.1C倍率下首次放电比容量达到140.4mAh/g,首次库伦效率为99.8%,经过40次循环容量仅衰减3.3%。该方法对于解决磷酸铁锂制备过程中需要使用高纯惰性气体的问题提供了一种参考解决方案。
     研究了采用湿化学法-喷雾干燥法制备磷酸铁锂的新工艺,通过在反应浆料中添加不同有机物,成功地制备出了具有不同形貌和性能优良的LiFePO_4/C正极材料。考察了有机物的种类及添加量、浆料浓度及组成、喷雾工艺条件、焙烧温度及时间等对材料的结构和性能的影响。结果表明:不同的有机添加剂对材料的形貌和微结构影响很大,当以PVA作为有机添加剂时,能得到具有微米-纳米二级结构的LiFePO_4/C均匀微米球;有机物的添加量越多,热解的残留碳越多,LiFePO_4的活性发挥得越充分;最佳焙烧温度为750℃,最佳PVA的添加量为200g/mol,在最佳条件下制得的磷酸铁锂材料在0.1C下放电的初始比容量可高达166.5mAh/g。
     为了减少有机物的使用量,探索了采用有机/无机二元碳源的工艺,通过喷雾干燥法成功地制备了高性能的LiFePO_4/C复合材料。结果表明:碳源对材料的形貌、微结构和电化学性能有一定的影响,采用炭黑部分替代有机物碳源制备的LiFePO_4/C材料表现出了纳米颗粒均匀、高比表面积、介孔结构和优良的电导率等诸多优异的性质,这些性质为材料在充放电过程中提供了快速的离子和电子通道,制备的样品具有接近理论值的比容量和优异倍率循环性能。采用该工艺做了公斤级中间放大实验,所得样品性能跟小试样品相当,在0.5C倍率下循环200次容量衰减仅12.4%。
     通过往喷雾干燥的前驱体中添加过渡金属的可溶盐制备了一系列铁位掺杂的LiFe_(0.95)M_(0.05)PO_4/C(M=V、Mn、Ni、Co和Cu)复合正极材料。与非掺杂的LiFePO_4/C样品比较,镍或钒掺杂能显著提高材料的高倍率容量,锰或钴掺杂效果不明显,铜掺杂会使材料的性能变差。通过优化Ni和V掺杂量表明:掺杂量为3%时制备的LiFe_(0.97)M_(0.03)PO_4/C(M=V和Ni)的性能是最优的;LiFe_(0.97)Ni_(0.03)PO_4/C样品在10.0C倍率下的比容量比非掺杂样品高出80%左右,这两个样品在0.5C倍率下循环200次容量衰减分别为25.8%和8.8%。通过Rietveld精修计算掺杂Ni样品的晶胞参数,表明适量的Ni掺杂可以增大材料快速嵌锂的晶面b,同时又可以减小嵌锂较慢的晶面a和c;EIS和CV测试表明掺入3%的Ni原子可以显著减小材料电荷转移电阻和提高材料的电化学反应可逆性。
     采用喷雾干燥法成功地制备出了球形Li_3V_2(PO_4)_3/C和Li_2MnSiO_4/C复合正极材料,并考察了焙烧温度对材料结构和性能的影响。结果表明:生成纯单斜结构的Li_3V_2(PO_4)_3的最佳焙烧温度为750℃,该焙烧温度下制备的LVP-750具有最高的比容量,其在0.2C倍率下首次放电比容量高达191.4mAh/g,且其表现出优异的倍率循环性能;焙烧温度在700~850℃范围内可生成方斜系的Li_2MnSiO_4正极材料,存在微量的Li_2SiO_3和MnO杂质;800℃制备的Li_2MnSiO_4比容量最高,首次放电比容量达143.1mAh/g,比采用传统的高温固相法制备的Li_2Mn SiO_4/C样品高出40%左右,且循环稳定性也明显优于后者。
     研究了磷酸铁锂在水溶液电解质中的电化学行为,设计并探讨了可充放电水溶液锂离子电池的可行性。结果表明:LiFePO_4在水溶液电解液中具有非常好的电化学稳定性,在10mV/s速率下扫描200圈CV曲线基本重合;通过线性拟合扫描速率的平方根和氧化/还原峰电流计算出了Li~+嵌入和脱嵌LiFePO_4的扩散系数分别为1.22×10~(-14)和9.97×10~(-15)cm~2/s;通过对CV曲线的积分估算了材料的容量,当CV扫描的速率在5mV/s以下时计算出LiFePO_4的比容量跟锂离子电池充放电测试的比容量相当吻合。测试LiMn_2O_4/LiFePO_4电池在1.0M锂离子水溶液中的充放电性能,0.1C倍率下经过20个循环活化后LiFePO_4的比容量将达到理论容量;LiMn_2O_4/LiFePO_4电池在2.0C倍率下1000次长循环仍然能保持70%以上的比容量。
The lithium-ion battery (LIB), as one of the most extensive applied secondary battery,and most promising secondary battery for electric vehicle application, has been intensivelyresearched due to its superiors advantages, e.g. high voltage flat, high specific capacity, highenergy density, no memory effect, longer cycle and calendar life, low cost, environmentfriendly and so on. Cathode materials are the key materials for LIBs, they not only play thecrucial role for the performance of LIB, but also do a significant effort to reduce the cost ofLIBs, and realizing the commercialization of electric vehicles. In this thesis, a series ofcathode materials, including LiFePO_4, Li_3V_2(PO_4)_3and Li_2MnSiO_4, has been prepared by aspray drying method with organic additive as assistant reagent and carbon source. Theelectrochemical properties and battery performances of these materials have been investigatedintensively, and the materials were characterized by SEM, XRD, CV, EIS etc. Moreover, westudied their performance in aqueous electrolyte solution and explored the possibility ofconstructing a rechargeable LIB based on aqueous electrolyte solution.
     To avoid the using of inert gas in large amount, we tried to calcine the cathode materialsin a carbon bath, instead of protected with inert gas. Combined with solid preparation process,a decent performance LiFePO_4/C composite was successfully prepared with characters ofuniform and smaller grain size and high specific capacity of the initial discharge. The capacityis140.4mAh/g, and coulomb’s efficiency of first time is98.5%, the decay of capacity ofsample for40cycles is only3.3%, confirmed the feasibility of calcining sample in carbonbath without protection of inert gas.
     A novel “wet chemical method-spray drying”(WCM-SD) process was invented andinvestigated. By adding different types of organics, a series of high performance LiFePO_4/Ccomposites with various morphology were prepared by the process, the effects of the type andadded amount of organic materials, the composition and concentration of the slurry, theparameters of spray drying process, the calcining temperature and time, on the structure andperformance of material were investigated. It was found that the organic additive influenceboth the morphology and micro-structure of material significantly, a uniform LiFePO_4/Cmicrospheres with micro-nano structure were prepared when polyvinyl alcohol (PVA) wasused as organic additive; the more the organic materials was added, the more the carbonformed in final materials, and appropriate amount of carbon will results to high performanceof the materials. The optimum calcination temperature is ca.750℃, and the optimum addedamount of PVA is ca.200g/mol, the sample prepared with the new process and with optimum conditions could reach the initial capacity of166.5mAh/g at0.1C.
     To minimize the organic additive, we substituted part of carbon source by carbon black,denoted as organic/inorganic hybrid carbon source materials. A good result has achieved forthe sample by using this hybrid carbon source materials, such as uniform nanoscale primaryparticles, high specific surface area, mesoporous structure, excellent conductivity, etc., whichmay provide fast ion (Li+) and electron (e-) channels during charge/discharge process. Thesamples prepared with hybrid carbon source showed a theoretical upmost capacity at0.1Cand excellent cycling performance at various rates. A pilot mass production up to kg scale hasbeen carried out with this hybrid carbon source materials process, and the performance of thesample was almost the same as that of LiFePO_4sample prepared at experimental scale,andthe decay for the capacity is only12.4%after200cycles at0.5C charge/discharge rate.
     A series of Fe-site doped LiFe_(0.95)M_(0.05)PO_4/C (M=V, Mn, Ni, Co or Cu) composites weresuccessfully prepared by adding soluble salt of transition elements into precursor slurry. Andthe effects of doped elements on the performances of LiFePO_4were investigated, it was foundthat doping with nickel or vanadium could greatly enhance the capacity of material at highrate, and doping with manganese or cobalt were observed no obvious positive effects, whiledoping with copper would deteriorate the performance of material. The optimal dopingamounts of Ni and V is ca.3%, the LiFe0.97M0.03PO_4/C (M=V or Ni) samples exhibited thebest performance; The specific capacity of LiFe_(0.97)Ni_(0.03)PO_4/C composite was about80%higher than that of non-doping sample at discharge rate of10.0C, and the performance decayfor LiFe_(0.97)Ni_(0.03)PO_4/C is only8.8%after200charge/discharge cycles, much lower than thatof LiFePO_4/C (25.8%) at same discharge rate. The lattice parameters of Ni-doping sample,calculated by Rietveld refinement, showed that the doping with appropriate amount of Nicould change the lattice parameters, which may lead to the fast insertion/extraction of Li+ions;EIS and CV tests showed that doping with3%Ni atoms could sharply decrease chargetransfer resistance and enhance the electrochemical reversibility of material.
     Spherical Li_3V_2(PO_4)_3/C and Li_2MnSiO_4/C composite were successfully prepared byspray drying method, and the effects of calcination temperature on the structure andperformance were investigated. The results showed that the optimal calcination temperaturefor the preparation of monocline Li_3V_2(PO_4)_3was750℃, and the LVP-750sample preparedat this temperature had the highest capacity, with the initial discharge capacity of191.4mAh/g at0.2C. what’s more, it exhibited excellent cycling performance at various rates. Theorthorhombic Li_2MnSiO_4could be prepared by calcining at temperature in rang of700to850℃, but trace of Li_2SiO_3and MnO impurities were co-existed. The sample prepared at800℃ had the highest initial specific capacity of143.1mAh/g, and it was about40%higher thanthat of Li_2MnSiO_4/C sample prepared by a traditional high temperature solid-state method,the cycling stability of sample was obviously superior to the later.
     For the safety consideration, we investigated the performance of LiFePO_4in aqueoussolution, and explored the feasibility of design an aqueous rechargeable lithium-ion battery. In1.0M lithium ion aqueous solution, the LiFePO_4showed excellent electrochemicalperformance and stability; The diffusion coefficient of Li+insertion/extraction of LiFePO_4(1.22×10~(-14)cm~2/s and9.97×10~(-15)cm~2/s, respectively) can be calculated derived by linearfitting the square root of the scanning rates and oxidation/reduction peaks current; Byintegrating the curve of CV below the rate of5mV/s, the capacity of LiFePO_4, which wascalculated by CV curves test below the rate of5mV/s, is agreed well with the capacityderived from charge/discharge test in LIB; Furthermore, a LiMn_2O_4/LiFePO_4battery withaqueous electrolyte solution was designed and prepared, it is interesting that this batteryworked very well, after activated with20charge/discharge cycles, the capacity of LiFePO_4could reach the theoretical upmost value, and can retained over70%after1000long-termcycles at2.0C. Consequently, LiFePO_4can work in aqueous solution vey well, and it ispossible to design and fabricate an aqueous rechargeable lithium-ion battery, which will besafer than that with organic solvent.
引文
[1] Kang B., Ceder G. Battery materials for ultrafast charging and discharging [J]. Nature,2009,458(7235):190-193
    [2] Tarascon J.M., Armand M. Issues and challenges facing rechargeable lithium batteries [J].Nature,2001,414:359-367
    [3]于锋,张敬杰,王昌胤,等.锂离子电池正极材料的晶体结构及电化学性能[J].化学进展,2010,22(1):9-18
    [4] Okada S., Yamaki J. Iron-based cathodes/anodes for Li-ion and post Li-ion batteries [J]. J.Industrial Engineering Chemistry,2004,10(7):1104-1113
    [5] Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. Phospho-olivines aspositive-electrode materials for rechargeable lithium batteries [J]. J. Electrochem. Soc.,1997,144(4):1188-1194
    [6] Padhi A.K., Nanjundaswamy K.S., Masquelier C., et al. Effect of structure on theFe3+/Fe2+redox couple in iron phosphates [J]. J. Electrochem. Soc.,1997,144(5):1609-1613
    [7] Nyten A., Abouimrane A., Armand M., et al. Electrochemical performance of Li2FeSiO4asa new Li-battery cathode material [J]. Electrochem. Commun.,2005,7(2):156-160
    [8]施志聪,杨勇.聚阴离子型锂离子电池正极材料研究进展[J].化学进展,2005,17(4):604-613
    [9] Wang M., Yang Y., Zhang Y. Synthesis of micro-nano hierarchical structured LiFePO4/Ccomposite with both superior high-rate performance and high tap density [J]. Nanoscale,2011,3(10):4434-4439
    [10] Lou X., Zhang Y. Synthesis of LiFePO4/C cathode materials with both high-ratecapability and high tap density for lithium-ion batteries [J]. J. Mater. Chem.,2011,21(12):4156-4160
    [11] Prosini P.P., Carewska M., Lisi M., et al. Energy storage materials based on ironphosphate [J]. Materials for Energy Storage, Generation and Transport,2002,730(232):15-20
    [12] Huang K.L., Yang S., Liu S.Q., et al. Kinetics of electrode processes of LiFePO4insaturated lithium nitrate solution [J]. Acta Physico-Chimica Sinica,2007,23(1):129-133
    [13] Xie J., Imanishi N., Zhang T., et al. Li-ion diffusion kinetics in LiCoPO4thin filmsdeposited on NASICON-type glass ceramic electrolytes by magnetron sputtering [J]. J.Power Sources,2009,192(2):689-692
    [14] Delacourt C., Poizot P., Tarascon J.M., et al. The existence of a temperature-driven solidsolution in LixFePO4for0≤x≤1[J]. Nat. Mater.,2005,4(3):254-260
    [15] Wang D.Y., Wang Z.X., Huang X.J., et al. Continuous solid solutions LiFe1-xCoxPO4andits electrochemical performance [J]. J. Power Sources,2005,146(1-2):580-583
    [16] Nakamura T., Shima Y., Matsui H., et al. Synthesis of LiFePO4/C Composite Particles byGas-Solid Phase Reaction and Their Electrochemical Properties [J]. J. Electrochem. Soc.,2010,157(4): A544-A549
    [17] Yang S.F., Zavalij P.Y., Whittingham M.S. Hydrothermal synthesis of lithium ironphosphate cathodes [J]. Electrochem. Commun.,2001,3(9):505-508
    [18] Xu J., Chen G., Li H.J., et al. Direct-hydrothermal synthesis of LiFe1-xMnxPO4cathodematerials [J]. J Appl Electrochem,2010,40(3):575-580
    [19] Yabuuchi N., Yamakawa Y., Yoshii K., et al. Hydrothermal synthesis and characterizationof Li2FeSiO4as positive electrode materials for Li-ion batteries [J]. Electrochemistry(Tokyo, Japan),2010,78(5):363-366
    [20] Yang G., Ji H.M., Liu H.D., et al. Fast Preparation of LiFePO4Nanoparticles for LithiumBatteries by Microwave-Assisted Hydrothermal Method [J]. J. Nanoscience andNanotechnology,2010,10(2):980-986
    [21] Lee J., Teja A.S. Characteristics of lithium iron phosphate particles synthesized insubcritical and supercritical water [J]. J. Supercritical Fluids,2005,35(1):83-90
    [22] Lee J., Teja A.S. Synthesis of LiFePO4micro and nanoparticles in supercritical water [J].Mater. Lett.,2006,60(17-18):2105-2109
    [23] Xu C.B., Lee J., Teja A.S. Continuous hydrothermal synthesis of lithium iron phosphateparticles in subcritical and supercritical water [J]. J. Supercritical Fluids,2008,44(1):92-97
    [24] Aimable A., Aymes D., Bernard F., et al. Characteristics of LiFePO4obtained through aone step continuous hydrothermal synthesis process working in supercritical water [J].Solid State Ionics,2009,180(11-13):861-866
    [25] Meligrana G., Gerbaldi C., Tuel A., et al. Hydrothermal synthesis of high surfaceLiFePO4powders as cathode for Li-ion cells [J]. J. Power Sources,2006,160(1):516-522
    [26] Piana M., Cushing B.L., Goodenough J.B., et al. New sol-gel synthetic route tophospho-olivines as environmentally friendly cathodes for Li-ion cells [J]. Annali DiChimica,2003,93(12):985-995
    [27] Liu Y., Cao C., Li J. Enhanced electrochemical performance of carbon nanospheresLiFePO4composite by PEG based sol-gel synthesis [J]. Electrochim. Acta,2010,55(12):3921-3926
    [28] Yu F., Zhang J., Yang Y., et al. Porous micro-spherical aggregates of LiFePO4/Cnanocomposites: A novel and simple template-free concept and synthesis viasol-gel-spray drying method [J]. J. Power Sources,2010,195(19):6873-6878
    [29] Doeff M.M., Hu Y.Q., McLarnon F., et al. Effect of surface carbon structure on theelectrochemical performance of LiFePO4[J]. Electrochem. Solid State Lett.,2003,6(10):A207-A209
    [30] Park K.S., Son J.T., Chung H.T., et al. Synthesis of LiFePO4by co-precipitation andmicrowave heating [J]. Electrochem. Commun.,2003,5(10):839-842
    [31] Cho T.H., Chung H.T. Synthesis of olivine-type LiFePO4by emulsion-drying method [J].J. Power Sources,2004,133(2):272-276
    [32] Myung S.T., Komaba S., Hirosaki N., et al. Emulsion drying synthesis of olivineLiFePO4/C composite and its electrochemical properties as lithium intercalation material[J]. Electrochim. Acta,2004,49(24):4213-4222
    [33] Konarova M., Taniguchi I. Preparation of LiFePO4/C composite powders by ultrasonicspray pyrolysis followed by heat treatment and their electrochemical properties [J].Mater. Res. Bull.,2008,43(12):3305-3317
    [34] Konarova M., Taniguchi I. Physical and electrochemical properties of LiFePO4nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling [J]. J.Power Sources,2009,194(2):1029-1035
    [35] Konarova M., Taniguchi I. Preparation of carbon coated LiFePO4by a combination ofspray pyrolysis with planetary ball-milling followed by heat treatment and theirelectrochemical properties [J]. Powder Technol.,2009,191(1-2):111-116
    [36] Bakenov Z., Taniguchi I. LiMgxMn1-xPO4/C cathodes for lithium batteries prepared by acombination of spray pyrolysis with wet ballmilling [J]. J. Electrochem. Soc.,2010,157(4): A430-A436
    [37] Bakenov Z., Taniguchi I. Physical and electrochemical properties of LiMnPO4/Ccomposite cathode prepared with different conductive carbons [J]. J. Power Sources,2010,195:7445-7451
    [38] Bewlay S.L., Konstantinov K., Wang G.X., et al. Conductivity improvements tospray-produced LiFePO4by addition of a carbon source [J]. Mater. Lett.,2004,58(11):1788-1791
    [39] Konstantinov K., Bewlay S., Wang G.X., et al. New approach for synthesis ofcarbon-mixed LiFePO4cathode materials [J]. Electrochim. Acta,2004,50(2-3):421-426
    [40] Yu F., Zhang J.J., Yang Y.F., et al. Reaction mechanism and electrochemical performanceof LiFePO4/C cathode materials synthesized by carbothermal method [J]. Electrochim.Acta,2009,54(28):7389-7395
    [41] Yu F., Zhang J.J., Yang Y.F., et al. Preparation and characterization of mesoporousLiFePO4/C microsphere by spray drying assisted template method [J]. J. Power Sources,2009,189(1):794-797
    [42]于锋,张敬杰,杨岩峰,等.正极材料球形LiFePO4的制备方法综述[J].电池,2009,39(3):170-172
    [43]梁风,戴永年,姚耀春.模板法制备孔状锂离子电池电极材料[J].化学进展,2009,21(10):2060-2066
    [44] Liu X.H., Wang J.Q., Zhang J.Y., et al. Fabrication and characterization of LiFePO4nanotubes by a sol-gel-AAO template process [J]. Chinese J Chem Phys,2006,19(6):530-534
    [45] Amin R., Maier J., Balaya P., et al. Ionic and electronic transport in single crystallineLiFePO4grown by optical floating zone technique [J]. Solid State Ionics,2008,179(27-32):1683-1687
    [46] Chen H., Chen Y., Gong W., et al. Preparation and electrochemical performance ofLiFePO4/C composite with network connections of nano-carbon wires [J]. Mater. Lett.,2010,65(3):559-561
    [47] Croce F., Epifanio A.D., Hassoun J., et al. A novel concept for the synthesis of animproved LiFePO4lithium battery cathode [J]. Electrochem. Solid State Lett.,2002,5(3):A47-A50
    [48] Park K.S., Son J.T., Chung H.T., et al. Surface modification by silver coating forimproving electrochemical properties of LiFePO4[J]. Solid State Commun.,2004,129(5):311-314
    [49] Kim C.W., Lee M.H., Jeong W.T., et al. Synthesis of olivine LiFePO4cathode materialsby mechanical alloying using iron(III) raw material [J]. J. Power Sources,2005,146(1-2):534-538
    [50] Chang H.H., Chang C.C., Su C.Y., et al. Effects of TiO2coating on high-temperaturecycle performance of LiFePO4-based lithium-ion batteries [J]. J. Power Sources,2008,185(1):466-472
    [51] Leon B., Vicente C.P., Tirado J.L., et al. Optimized chemical stability andelectrochemical performance of LiFePO4composite materials obtained by ZnO coating[J]. J. Electrochem. Soc.,2008,155(3): A211-A216
    [52] Fedorkova A., Nacher-Alejos A., Gomez-Romero P., et al. Structural and electrochemicalstudies of PPy/PEG-LiFePO4cathode material for Li-ion batteries [J]. Electrochim. Acta,2010,55(3):943-947
    [53] Hsu K.F., Tsay S.Y., Hwang B.J. Synthesis and characterization of nano-sized LiFePO4cathode materials prepared by a citric acid-based sol-gel route [J]. J. Mater. Chem.,2004,14(17):2690-2695
    [54] Hsu K.F., Hu S.K., Chen C.H., et al. Formation mechanism of LiFePO4/C compositepowders investigated by X-ray absorption spectroscopy [J]. J. Power Sources,2009,192(2):660-667
    [55] Ong C.W., Lin Y.K., Chen J.S. Effect of various organic precursors on the performanceof LiFePO4/C composite cathode by coprecipitation method [J]. J. Electrochem. Soc.,2007,154(6): A527-A533
    [56] Doeff M.M., Wilcox J.D., Kostecki R., et al. Optimization of carbon coatings onLiFePO4[J]. J. Power Sources,2006,163(1):180-184
    [57] Doeff M.M., Wilcox J.D., Yu R., et al. Impact of carbon structure and morphology on theelectrochemical performance of LiFePO4/C composites [J]. J Solid State Electr,2008,12(7-8):995-1001
    [58] Yun N.J., Ha H.W., Jeong K.H., et al. Synthesis and electrochemical properties ofolivine-type LiFePO4/C composite cathode material prepared from a poly(vinylalcohol)-containing precursor [J]. J. Power Sources,2006,160(2):1361-1368
    [59] Yang S.T., Zhao N.H., Dong H.Y., et al. Synthesis and characterization of LiFePO4cathode material dispersed with nano-structured carbon [J]. Electrochim. Acta,2005,51(1):166-171
    [60] Dominko R., Gaberscek M., Drofenik J., et al. Influence of carbon black distribution onperformance of oxide cathodes for Li ion batteries [J]. Electrochim. Acta,2003,48(24):3709-3716
    [61] Dominko R., Gaberscek M., Drofenik J., et al. The role of carbon black distribution incathodes for Li ion batteries [J]. J. Power Sources,2003,119:770-773
    [62] Chen Z.H., Dahn J.R. Reducing carbon in LiFePO4/C composite electrodes to maximizespecific energy, volumetric energy, and tap density [J]. J. Electrochem. Soc.,2002,149(9): A1184-A1189
    [63] Belharouak I., Johnson C., Amine K. Synthesis and electrochemical analysis of vapordeposited carbon-coated LiFePO4[J]. Electrochem. Commun.,2005,7(10):983-988
    [64] Huang Y.H., Ren H.B., Peng Z., et al. Synthesis of LiFePO4/carbon composite fromnano-FePO4by a novel stearic acid assisted rheological phase method [J]. Electrochim.Acta,2009,55(1):311-315
    [65] Zhao B., Jiang Y., Zhang H.J., et al. Morphology and electrical properties of carboncoated LiFePO4cathode materials [J]. J. Power Sources,2009,189(1):462-466
    [66] Wang Y., Wang Y., Hosono E., et al. The design of a LiFePO4/carbon nanocomposite witha core–shell structure and its synthesis by an in situ polymerization restriction method [J].Angewandte Chemie,2008,47:7461-7465
    [67] Wu S.H., Hsiao K.M., Liu W.R. The preparation and characterization of olivine LiFePO4by a solution method [J]. J. Power Sources,2005,146(1-2):550-554
    [68] Chung S.Y., Bloking J.T., Chiang Y.M. Electronically conductive phospho-olivines aslithium storage electrodes [J]. Nat. Mater.,2002,1(2):123-128
    [69] Yang M.R., Ke W.H. The doping effect on the electrochemical properties ofLiFe0.95M0.05PO4(M=Mg2+, Ni2+, Al3+, or V3+) as cathode materials for lithium-ion cells[J]. J Electrochem. Soc,2008,155(10): A729-A732
    [70] Thackeray M. Lithium-ion batteries-An unexpected conductor [J]. Nat. Mater.,2002,1(2):81-82
    [71] Lu Y., Shi J.C., Guo Z.P., et al. Synthesis of LiFe1-xNixPO4/C composites and theirelectrochemical performance [J]. J. Power Sources,2009,194(2):786-793
    [72] Nakamura T., Sakumoto K., Okamoto M., et al. Electrochemical study onMn2+-substitution in LiFePO4olivine compound [J]. J. Power Sources,2007,174(2):435-441
    [73] Shin H.C., Bin Park S., Jang H., et al. Rate performance and structural change ofCr-doped LiFePO4/C during cycling [J]. Electrochim. Acta,2008,53(27):7946-7951
    [74] Sun C.S., Zhou Z., Xu Z.G., et al. Improved high-rate charge/discharge performances ofLiFePO4/C via V-doping [J]. J. Power Sources,2009,193(2):841-845
    [75] Wang G.X., Bewlay S., Yao J., et al. Characterization of LiMxFe1-xPO4(M=Mg, Zr, Ti)cathode materials prepared by the sol-gel method [J]. Electrochem. Solid State Lett.,2004,7(12): A503-A506
    [76] Lu J.B., Tang Z.L., Zhang Z.T., et al. Influence of Mg ion doping on the batteryproperties of LiFePO4/C [J]. Acta Physico-Chimica Sinica,2005,21(3):319-323
    [77] Wang G.X., Needham S., Yao J., et al. A study on LiFePO4and its doped derivatives ascathode materials for lithium-ion batteries [J]. J. Power Sources,2006,159(1):282-286
    [78] Li D., Huang Y.D., Jia D.Z., et al. Synthesis and electrochemical properties of nanosizedcarbon-coated Li1-3xLaxFePO4composites [J]. J Solid State Electr,2010,14(5):889-895
    [79] Abbate M., Lala S.M., Montoro L.A., et al. Ti-, Al-and Cu-doping induced gap states inLiFePO4[J]. Electrochem. Solid State Lett.,2005,8(6): A288-A290
    [80] Hu J.Z., Xie J., Zhao X.B., et al. Doping effects on electronic conductivity andelectrochemical performance of LiFePO4[J]. J. Mater. Sci. Technol,2009,25(3):405-409
    [81] Huang Y.H., Ren H.B., Yin S.Y., et al. Synthesis of LiFePO4/C composite with high-rateperformance by starch sol assisted rheological phase method [J]. J. Power Sources,2010,195(2):610-613
    [82]杨书廷,刘玉霞,尹艳红.钽离子掺杂对LiFePO4/C物理和电化学性能的影响[J].无机化学学报,2007,23(7):1165-1168
    [83] Amin R., Lin C.T., Maier J. Aluminium-doped LiFePO4single crystals [J]. Phys ChemChem Phys,2008,10(24):3519-3523
    [84] Zhou X., Zhao X.B., Yu H.M., et al. Electrochemical properties of F-doped LiFePO4/Cprepared by solid-state synthesis [J]. J Inorg Mater,2008,23(3):587-591
    [85] Liao X.Z., He Y.S., Ma Z.F., et al. Effects of fluorine-substitution on the electrochemicalbehavior of LiFePO4/C cathode materials [J]. J. Power Sources,2007,174(2):720-725
    [86] Amin R., Lin C.T., Peng J.B., et al. Silicon-Doped LiFePO4Single Crystals: Growth,Conductivity Behavior, and Diffusivity [J]. Adv Funct Mater,2009,19(11):1697-1704
    [87] Zhou F., Cococcioni M., Kang K., et al. The Li intercalation potential of LiMPO4andLiMSiO4olivines with M=Fe, Mn, Co, Ni [J]. Electrochem. Commun.,2004,6(11):1144-1148
    [88] Deb A., Bergmann U., Cairns E.J., et al. X-ray absorption spectroscopy study of theLixFePO4cathode during cycling using a novel electrochemical in situ reaction cell [J]. JSynchrotron Radiat,2004,11:497-504
    [89] Dedryvere R., Maccario M., Croguennec L., et al. X-Ray Photoelectron SpectroscopyInvestigations of Carbon-Coated LixFePO4Materials [J]. Chem. Mater.,2008,20(22):7164-7170
    [90] Wagemaker M., Ellis B.L., Luetzenkirchen-Hecht D., et al. Proof of supervalent dopingin olivine LiFePO4[J]. Chem. Mater.,2008,20(20):6313-6315
    [91] Herle P.S., Ellis B., Coombs N., et al. Nano-network electronic conduction in iron andnickel olivine phosphates [J]. Nat. Mater.,2004,3(3):147-152
    [92]胡国荣,曹雁冰,彭忠东,等.微波合成法制备锂离子电池正极材料Li2FeSiO4[J].物理化学学报,2009,25(5):1004-1008
    [93]张新龙,胡国荣,童汇,等.正极材料锂铁(锰)硅氧化物的研究进展[J].电源技术,2008,32(2):128-131
    [94] Li L.-m., Guo H.-j., Li X.-h., et al. Effects of roasting temperature and modification onproperties of Li2FeSiO4/C cathode [J]. J. Power Sources,2009,189(1):45-50
    [95] Nadherna M., Dominko R., Hanzel D., et al. Electrochemical Behavior of Li2FeSiO4withIonic Liquids at Elevated Temperature [J]. J. Electrochem. Soc.,2009,156(7):A619-A626
    [96] Peng Z.D., Cao Y.B., Hu G.R., et al. Microwave synthesis of Li2FeSiO4cathode materialsfor lithium-ion batteries [J]. Chinese Chem. Lett.,2009,20(8):1000-1004
    [97] Huang X., Li X., Wang H., et al. Synthesis and electrochemical performance ofLi2FeSiO4/C as cathode material for lithium batteries [J]. Solid State Ionics,2010,181(31-32):1451-1455
    [98] Zhang S., Deng C., Fu B.L., et al. Doping effects of magnesium on the electrochemicalperformance of Li2FeSiO4for lithium-ion batteries [J]. J. Electroanal. Chem.,2010,644(2):150-154
    [99]张有新,曹才放,刘旭恒,等. Li-Fe-Si-H2O体系的热力学分析[J].中南大学学报,自然科学版,2010,41(2):428-433
    [100] Zaghib K., Salah A.A., Ravet N., et al. Structural, magnetic and electrochemicalproperties of lithium iron orthosilicate [J]. J. Power Sources,2006,160(2):1381-1386
    [101] Moskon J., Dominko R., Cerc-Korosec R., et al. Morphology and electrical propertiesof conductive carbon coatings for cathode materials [J]. J. Power Sources,2007,174(2):683-688
    [102] Dominko R., Bele M., Gaberscek M., et al. Structure and electrochemical performanceof Li2MnSiO4and Li2FeSiO4as potential Li-battery cathode materials [J]. Electrochem.Commun.,2006,8(2):217-222
    [103] Dominko R., Conte D.E., Hanzel D., et al. Impact of synthesis conditions on thestructure and performance of Li2FeSiO4[J]. J. Power Sources,2008,178(2):842-847
    [104] Kokalj A., Dominko R., Mali G., et al. Beyond One-Electron Reaction in Li CathodeMaterials:Designing Li2MnxFe1-xSiO4[J]. Chem. Mater,2007,19:3633-3640
    [105] Deng C., Zhang S., Yang S.Y., et al. Synthesis and characterization ofLi2Fe0.97M0.03SiO4(M=Zn2+, Cu2+, Ni2+) cathode materials for lithium ion batteries [J].J. Power Sources,2011,196(1):386-392
    [106] Dominko R. Li2MSiO4(M=Fe and/or Mn) cathode materials [J]. J. Power Sources,2008,184(2):462-468
    [107] Arroyo-de Dompablo M.E., Armand M., Tarascon J.M., et al. On-demand design ofpolyoxianionic cathode materials based on electronegativity correlations: Anexploration of the Li2MSiO4system (M=Fe, Mn, Co, Ni)[J]. Electrochem. Commun.,2006,8(8):1292-1298
    [108] Li W., Dahn J., Wainwright D. Rechargeable lithium batteries with aqueous electrolytes[J]. Science,1994,264(5162):1115-1118
    [109] Li W., Dahn J. Lithium-ion cells with aqueous electrolytes [J]. J Electrochem. Soc.,1995,142(6):1742-1746
    [110] Salah A.A., Mauger A., Zaghib K., et al. Reduction Fe3+of impurities in LiFePO4frompyrolysis of organic precursor used for carbon deposition [J]. J Electrochem. Soc.,2006,153(9): A1692-A1701
    [111] Ravet N., Gauthier M., Zaghib K., et al. Mechanism of the Fe3+reduction at lowtemperature for LiFePO4synthesis from a polymeric additive [J]. Chem. Mater.,2007,19(10):2595-2602
    [112]严彩霞,董文彬,杨儒,等.柠檬酸溶胶-凝胶法合成BaAl12-xO19:Mnx荧光粉[J].北京化工,2005,32(4):106-109
    [113]刘新红,周超杰,张磊. Al2O3-SiC-SiAlON复合材料的制备和性能[J].郑州大学学报(工学版),2012,33(1):46-50
    [114]李军营. Al2O3-Si系原料在不同气氛下的高温反应机理研究[D].武汉科技大学,2006
    [115] Wang J., Sun X. Understanding and recent development of carbon coating on LiFePO4cathode materials for lithium-ion batteries [J]. Energy Environ. Sci.,2012,5(1):5163-5185
    [116] Jugovic D., Uskokovic D. A review of recent developments in the synthesis proceduresof lithium iron phosphate powders [J]. J. Power Sources,2009,190(2):538-544
    [117] Prosini P.P., Lisi M., Zane D., et al. Determination of the chemical diffusion coefficientof lithium in LiFePO4[J]. Solid State Ionics,2002,148(1-2):45-51
    [118] Choi D., Kumta P.N. Surfactant based sol-gel approach to nanostructured LiFePO4forhigh rate Li-ion batteries [J]. J. Power Sources,2007,163(2):1064-1069
    [119] Delacourt C., Poizot P., Levasseur S., et al. Size effects on carbon-free LiFePO4powders [J]. Electrochem. Solid State Lett.,2006,9(7): A352-A355
    [120]郑明森,刘善科,孙世刚,等. Cu2+掺杂LiFePO4的制备及其电化学性能[J].电化学,2008,14(1):1-5
    [121] Lu J.B., Tang Z.L., Le B., et al. Structure and electrochemical properties of LiFePO4asthe cathode of lithium ion battery [J].高等学校化学学报,2005,26(11):2093-2096
    [122] Dominko R., Bele M., Gaberscek M., et al. Porous olivine composites synthesized bysol-gel technique [J]. J. Power Sources,2006,153(2):274-280
    [123] Cai Y., Li Z.J., Zhang H.L., et al.1-Alkyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl) imide ionic liquids as highly safe electrolyte for Li/LiFePO4battery [J]. Electrochim. Acta,2010,55(16):4728-4733
    [124]邹红丽,张光辉,沈培康.水热还原法合成LiFePO4及电化学性能研究[J].电化学,2010,16(4):416-419
    [125] Saravanan K., Reddy M.V., Balaya P., et al. Storage performance of LiFePO4nanoplates[J]. J. Mater. Chem.,2009,19(5):605-610
    [126] Hasegawa G., Ishihara Y., Kanamori K., et al. Facile Preparation of MonolithicLiFePO4/Carbon Composites with Well-Defined Macropores for a Lithium-Ion Battery[J]. Chem. Mater.,2011,23(23):5208-5216
    [127] Gao H.Y., Jiao L.F., Peng W.X., et al. Enhanced electrochemical performance ofLiFePO4/C via Mo-doping at Fe site [J]. Electrochim. Acta,2011,56(27):9961-9967
    [128] Gomez L.S., de Meatza I., Martin M.I., et al. Morphological, structural andelectrochemical properties of lithium iron phosphates synthesized by Spray Pyrolysis[J]. Electrochim. Acta,2010,55(8):2805-2809
    [129] Xie H., Zhou Z.T. Physical and electrochemical properties of mix-doped lithium ironphosphate as cathode material for lithium ion battery [J]. Electrochim. Acta,2006,51(10):2063-2067
    [130] Yu F., Zhang J.J., Yang Y.F., et al. Up-scalable synthesis, structure and charge storageproperties of porous microspheres of LiFePO4@C nanocomposites [J]. J. Mater. Chem.,2009,19(48):9121-9125
    [131] Ju S.H., Kang Y.C. LiFePO4/C cathode powders prepared by spray pyrolysis from thecolloidal spray solution containing nano-sized carbon black [J]. Mater. Chem. Phys.,2008,107(2-3):328-333
    [132] Wang G.X., Bewlay S.L., Konstantinov K., et al. Physical and electrochemicalproperties of doped lithium iron phosphate electrodes [J]. Electrochim. Acta,2004,50(2-3):443-447
    [133]蒋庆来.浆料喷雾干燥法制备球形锰酸锂正极材料及其改性研究[D].中南大学,2011
    [134] Liu Q.B., Liao S.J., Song H.Y., et al. LiFePO4/C Microspheres with Nano-microStructure, Prepared by Spray Drying Method Assisted with PVA as Template [J].Current Nanoscience,2012,8(2):208-214
    [135] Dominko R., Bele M., Goupil J.M., et al. Wired porous cathode materials: A novelconcept for synthesis of LiFePO4[J]. Chem. Mater.,2007,19(12):2960-2969
    [136] Hu Y.S., Guo Y.G., Dominko R., et al. Improved electrode performance of porousLiFePO4using RuO2as an oxidic nanoscale interconnect [J]. Adv. Mater.,2007,19(15):1963-1966
    [137] Mohan V.M., Qiu W.L., Shen J., et al. Electrical properties of poly(vinyl alcohol)(PVA)based on LiFePO4complex polymer electrolyte films [J]. J. Polymer Research,2010,17(1):143-150
    [138] Jiang T., Pan W., Wang J., et al. Carbon coated Li3V2(PO4)3cathode material preparedby a PVA assisted sol-gel method [J]. Electrochim. Acta,2010,55(12):3864-3869
    [139] Huang B., Zheng X.D., Jia D.M., et al. Design and synthesis of high-rate micron-sized,spherical LiFePO4/C composites containing clusters of nano/microspheres [J].Electrochim. Acta,2010,55(3):1227-1231
    [140] Sun C., Rajasekhara S., Goodenough J.B., et al. Monodisperse Porous LiFePO4Microspheres for a High Power Li-Ion Battery Cathode [J]. J. Am. Chem. Soc.,2011,133(7):2132-2135
    [141] Hwang B.J., Hsu K.F., Hu S.K., et al. Template-free reverse micelle process for thesynthesis of a rod-like LiFePO4/C composite cathode material for lithium batteries [J]. J.Power Sources,2009,194(1):515-519
    [142] Gao F., Tang Z.Y. Kinetic behavior of LiFePO4/C cathode material for lithium-ionbatteries [J]. Electrochim. Acta,2008,53(15):5071-5075
    [143] Wilcox J.D., Doeff M.M., Marcinek M., et al. Factors influencing the quality of carboncoatings on LiFePO4[J]. J. Electrochem. Soc.,2007,154(5): A389-A395
    [144] Yuan L.-X., Wang Z.-H., Zhang W.-X., et al. Development and challenges of LiFePO4cathode material for lithium-ion batteries [J]. Energy Environ. Sci.,2011,4(2):269-284
    [145] Wang Y., He P., Zhou H. Olivine LiFePO4: development and future [J]. Energy. Environ.Sci.,2011,4(3):805-817
    [146] Doherty C.M., Caruso R.A., Smarsly B.M., et al. Hierarchically Porous MonolithicLiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries[J]. Chem. Mater.,2009,21(21):5300-5306
    [147] Doherty C.M., Caruso R.A., Drummond C.J. High performance LiFePO4electrodematerials: influence of colloidal particle morphology and porosity on lithium-ionbattery power capability [J]. Energ. Environ. Sci.,2010,3(6):813-823
    [148] Sinha N.N., Shivakumara C., Munichandraiah N. High Rate Capability of aDual-Porosity LiFePO4/C Composite [J]. Acs Appl Mater Inter,2010,2(7):2031-2038
    [149] Wu X.L., Jiang L.Y., Cao F.F., et al. LiFePO4Nanoparticles Embedded in a NanoporousCarbon Matrix: Superior Cathode Material for Electrochemical Energy-Storage Devices[J]. Adv. Mater.,2009,21(25-26):2710-2714
    [150] Zhao J., He J., Zhou J., et al. Facile Synthesis for LiFePO4Nanospheres inTridimensional Porous Carbon Framework for Lithium Ion Batteries [J]. J. Phys. Chem.C,2011,115(6):2888-2894
    [151]王兆翔,陈立泉,黄学杰.锂离子电池正极材料的结构设计与改性[J].化学进展,2011,23(2/3):284-301
    [152] Wang K., Cai R., Yuan T., et al. Process investigation, electrochemical characterizationand optimization of LiFePO4/C composite from mechanical activation using sucrose ascarbon source [J]. Electrochim. Acta,2009,54(10):2861-2868
    [153] Liao S., Holmes K.A., Tsaprailis H., et al. High performance PtRuIr catalysts supportedon carbon nanotubes for the anodic oxidation of methanol [J]. J. Am. Chem. Soc.,2006,128(11):3504-3505
    [154] Jiang L., Sun G., Sun S., et al. Structure and chemical composition of supported Pt-Snelectrocatalysts for ethanol oxidation [J]. Electrochim. Acta,2005,50(27):5384-5389
    [155] Xia Y., Zhang W., Huang H., et al. Self-assembled mesoporous LiFePO4withhierarchical spindle-like architectures for high-performance lithium-ion batteries [J]. J.Power Sources,2011,196(13):5651-5658
    [156] Wang G., Liu H., Liu J., et al. Mesoporous LiFePO4/C nanocomposite cathode materialsfor high power lithium-ion batteries with superior performance [J]. Adv. Mater.,2010,22(44):4944-4948
    [157] Jamnik J., Dominko R., Erjavec B., et al. Stabilizers of particle size and morphology: aroad towards high-rate performance insertion materials [J]. Adv. Mater.,2009,21(25-26):2715-2719
    [158] Li H., Wang Z.X., Chen L.Q., et al. Research on advanced materials for Li-ion batteries[J]. Adv. Mater.,2009,21(45):4593-4607
    [159] Fergus J.W. Recent developments in cathode materials for lithium ion batteries [J]. J.Power Sources,2010,195(4):939-954
    [160] Yang S., Zhou X., Zhang J., et al. Morphology-controlled solvothermal synthesis ofLiFePO4as a cathode material for lithium-ion batteries [J]. J. Mater. Chem.,2010,20:8086-8091
    [161] Ellis B., Kan W.H., Makahnouk W.R.M., et al. Synthesis of nanocrystals andmorphology control of hydrothermally prepared LiFePO4[J]. J. Mater. Chem.,2007,17(30):3248-3254
    [162] Yin Y., Gao M., Pan H., et al. High-rate capability of LiFePO4cathode materialscontaining Fe2P and trace carbon [J]. J. Power Sources,2012,199:256-262
    [163] Shi S.Q., Liu L.J., Ouyang C.Y., et al. Enhancement of electronic conductivity ofLiFePO4by Cr doping and its identification by first-principles calculations [J]. Phys.Rev. B,2003,68(19):1951081-1951085
    [164] Wang Z.H., Yuan L.X., Wu M., et al. Effects of Na+and Cl co-doping onelectrochemical performance in LiFePO4/C [J]. Electrochim. Acta,2011,56(24):8477-8483
    [165] Pang L., Zhao M., Zhao X., et al. Preparation and electrochemical performance ofGd-doped LiFePO4/C composites [J]. J. Power Sources,2012,201:253-258
    [166] Zhao R.R., Hung I.M., Li Y.T., et al. Synthesis and properties of Co-doped LiFePO4ascathode material via a hydrothermal route for lithium-ion batteries [J]. J. AlloysCompds.,2012,513:282-288
    [167] Bilecka I., Hintennach A., Rossell M.D., et al. Microwave-assisted solution synthesis ofdoped LiFePO4with high specific charge and outstanding cycling performance [J]. J.Mater. Chem.,2011,21(16):5881-5890
    [168] Zhang D.Y., Zhang P.X., Yi J.A., et al. XRD simulation study of doped LiFePO4[J]. JAlloys Compd.,2011,509(4):1206-1210
    [169] Yin X.G., Huang K.L., Liu S.Q., et al. Preparation and characterization of Na-dopedLiFePO4/C composites as cathode materials for lithium-ion batteries [J]. J. PowerSources,2010,195(13):4308-4312
    [170] Yao J., Wu F., Qiu X., et al. Effect of CeO2-coating on the electrochemicalperformances of LiFePO4/C cathode material [J]. Electrochim. Acta,2011,56(16):5587-5592
    [171] Ni J.F., Morishita M., Kawabe Y., et al. Hydrothermal preparation of LiFePO4nanocrystals mediated by organic acid [J]. J. Power Sources,2010,195(9):2877-2882
    [172] Xie J., Imanishi N., Zhang T., et al. Li-ion diffusion kinetics in LiFePO4thin filmprepared by radio frequency magnetron sputtering [J]. Electrochim. Acta,2009,54(20):4631-4637
    [173] Zheng H.B., Fan X., Song X., et al. Enhanced rate performance of nano-microstructured LiFePO4/C by improved process for high-power Li-ion batteries [J].Electrochim. Acta,2011,56(13):4865-4868
    [174] Liu J., Conry T.E., Song X., et al. Nanoporous spherical LiFePO4for high performancecathodes [J]. Energ. Environ. Sci.,2011,4(3):885-888
    [175] Jiang Y.P., Xie J., Cao G.S., et al. Electrochemical performance of Li4Mn5O12nano-crystallites prepared by spray-drying-assisted solid state reactions [J]. Electrochim.Acta,2010,56(1):412-417
    [176] Li Z.H., Zhang D.M., Yang F.X. Developments of lithium-ion batteries and challengesof LiFePO4as one promising cathode material [J]. J. Mater. Sci.,2009,44(10):2435-2443
    [177] Park M., Zhang X., Chung M., et al. A review of conduction phenomena in Li-ionbatteries [J]. J. Power Sources,2010,195:7904-7929
    [178] Cahill L.S., Kirby C.W., Goward G.R.6Li{31P} Rotational-echo, double-resonancestudies of lithium ion site dynamics in Li3V2(PO4)3[J]. J. Phys. Chem. C,2008,112(6):2215-2221
    [179] Li Y.Z., Liu X., Yan J. Study on synthesis routes and their influences on chemical andelectrochemical performances of Li3V2(PO4)(3)/carbon [J]. Electrochim. Acta,2007,53(2):474-479
    [180]王刚.锂离子电池正极材料Li2MSiO4(M=Fe, Mn)的第一性原理研究[D].吉林大学,2010
    [181] Liu W., Xu Y., Yang R. Synthesis, characterization and electrochemical performance ofLi2MnSiO4/C cathode material by solid-state reaction [J]. J Alloys Compd.,2009,480(2): L1-L4
    [182] Yang Y., Fang H.S., Li L.P., et al. Synthesis and electrochemical performance ofLi2MnSiO4/C composite cathode materials [J]. Rare Metal. Mat. Eng.,2008,37(6):1085-1088
    [183] Zhang L.L., Zhang X., Sun Y.M., et al. Improved Electrochemical Performance in Li3V2(PO4)3Promoted by Niobium-Incorporation [J]. J. Electrochem. Soc.,2011,158(8):A924-A929
    [184] Sun C., Rajasekhara S., Dong Y., et al. Hydrothermal Synthesis and ElectrochemicalProperties of Li3V2(PO4)3/C Based Composites for Lithium-ion Batteries [J]. Acs ApplMater. Inter.,2011,3:3772-3776
    [185] Deng C., Zhang S., Fu B.L., et al. Characterization of Li2MnSiO4and Li2FeSiO4cathode materials synthesized via a citric acid assisted sol-gel method [J]. Mater. Chem.Phys.,2010,120:14-17
    [186] Dominko R., Arcon I., Kodre A., et al. In-situ XAS study on Li2MnSiO4and Li2FeSiO4cathode materials [J]. J. Power Sources,2009,189(1):51-58
    [187] Sirisopanaporn C., Masquelier C., Bruce P.G., et al. Dependence of Li2FeSiO4Electrochemistry on Structure [J]. J. Am. Chem. Soc.,2011,133:1263-1265
    [188] Johns P.A., Roberts M.R., Wakizaka Y., et al. How the electrolyte limits fast dischargein nanostructured batteries and supercapacitors [J]. Electrochem. Commun.,2009,11(11):2089-2092
    [189] Qu Q., Fu L., Zhan X., et al. Porous LiMn2O4as cathode material with high power andexcellent cycling for aqueous rechargeable lithium batteries [J]. Energ. Environ. Sci.,2011,4:3985-3990
    [190] Zhao M., Song X., Wang F., et al. Electrochemical performance of single crystallinespinel LiMn2O4nanowires in an aqueous LiNO3solution [J]. Electrochim. Acta,2011,56(16):5673-5678
    [191] Liu L., Tian F., Zhou M., et al. Aqueous rechargeable lithium battery based onPolyaniline and LiMn2O4with good cycling performance [J]. Electrochem. Acta,2012:
    [192] Tang W., Liu L., Zhu Y., et al. An aqueous rechargeable lithium battery of excellent ratecapability based on a nanocomposite of MoO3coated with PPy and LiMn2O4[J]. Energ.Environ. Sci.,2012:
    [193] Yadegari H., Jabbari A., Heli H. An aqueous rechargeable lithium-ion battery based onLiCoO2nanoparticles cathode and LiV3O8nanosheets anode [J]. J. Solid StateElectrochem.,2012,16:227-234
    [194] Wessells C., Huggins R.A., Cui Y. Recent results on aqueous electrolyte cells [J]. J.Power Sources,2011,196(5):2884-2888
    [195]王高军.新型二次化学电源的探索[D].复旦大学,博士论文,2008
    [196]杨绍斌,蒋娜.水溶液锂离子电池电极材料研究进展[J].电池工业,2008,13(4):254-257
    [197] Ruffo R., Wessells C., Huggins R.A., et al. Electrochemical behavior of LiCoO2asaqueous lithium-ion battery electrodes [J]. Electrochem. Commun.,2009,11(2):247-249
    [198] Liu L., Tian F., Wang X., et al. Electrochemical behavior of sphericalLiNi1/3Co1/3Mn1/3O2as cathode material for aqueous rechargeable lithium batteries [J]. J.Solid State Electrochem,2012,16:491-497
    [199]巍嘉.锂离子电池正极材料在水溶液中的电化学行为研究[D].武汉理工大学,2011
    [200] Churikov A.V., Ivanishchev A.V., Ivanishcheva I.A., et al. Determination of lithiumdiffusion coefficient in LiFePO4electrode by galvanostatic and potentiostaticintermittent titration techniques [J]. Electrochim. Acta,2010,55(8):2939-2950
    [201] Zhu Y.J., Wang C.S. Galvanostatic Intermittent Titration Technique for PhaseTransformation Electrodes [J]. J. Phys. Chem. C,2010,114(6):2830-2841
    [202]黄可龙,赛杨,刘素琴,等.磷酸铁锂在饱和硝酸锂溶液中的电极过程动力学[J].物理化学学报,2007,23(1):129-133
    [203] Liu X.H., Saito T., Doi T., et al. Electrochemical properties of rechargeable aqueouslithium-ion batteries with an olivine-type cathode and a Nasicon-type anode [J]. J.Power Sources,2009,189(1):706-710

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700